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Abstract—In our Formalin project to formalize C11 (the AN- ants indeed hold. To be practical most of these invariants
SISO standard of the C programming language) we discovered should be proven automatically, and the remaining ones
many subtleties that make formalization of this standard difficult. by interactive reasoning.

We discuss some of these subtleties and indicate how they may

be addressed in a formal C semantics. This approach is an extension efatic analysis But

Furthermore, we argue that the C standard does not allow whereas static analysis tools often yield false-positives
Turing complete implementations, and that its evaluation seman- this approach allows the developer to prove that a false-
tics does not preserve typing. Finally, we claim that no strictly positive is not an actual error.
conforming programs exist. That is, there is no C program for For functional correctness, this approach has also been
which the standard can guarantee that it will not crash. ’ . .

Index Terms—C programming language, programming lan- successful. There have begn various prOJegts to prove
guage standardization, formal methods the C source code of a microkernel operating system

correct [2, 12].
|. INTRODUCTION There are many tools for the second approach, like VCC [2],
A. Problem Verifast [10] and Frama-C [19]. However, these tools do not

n'se an explicit formal C semantics and only implicitly *know
about the semantics of C. Therefore the connection between

An important reason is that a lot of programs are developHf correctness proof and the behavior of the program when
using low-level programming languages. One of the mospmpiled wnhgreal-world cpmpner is shallow. The sourske
extreme instances is the widespread use of the C programm‘ﬂfnéhese tools is thus questionable [6].

language. In the TIOBE popularity index [23] it is (fall 2012 FOr this reason, we started in 2011 at the Radboud Uni-
in the top position. versity a project to provide a formal semantics of the C pro-

Whereas most modern programming languages requiregrémming language: the Formalin project [13]. This sentanti

compiler to throw an exception when exceptional behavidyas {0 be developed for interactive theorem provers, afigwi
occurs €.g. dereferencing &NULL pointer, integer overflow, ON€ tO base formal proofs on it. Although there already exist

accessing an array out of its bounds), C [11, 7] does n@trious versions of a formal semantics of significant fragtee

impose such requirements. Instead, it classifies theseioesia ©f C (see Section I-C for an overview), our goal was to

as undefinedand allows a program to do literally anythmgformalize the ‘official’ semantics of C, as written down in

in such situations [7: 3.4.3]. On the one hand, this allows3€ C11 standard (back then the target was C99, as C11 was

compiler to omit runtime checks and to generate more efficigft finished yet). We intended not to skim the more difficult

code, but on the other hand these undefined behaviors of@siects of C and to provide a semantics of the whole language.
lead to security vulnerabilities [4, 14, 24]. Unfortunately, the Formalin project has turned out to be

There are two main approaches for improving this situatiof?uch harder than we anticipated because the C11 standard
. . - turned out to be very difficult to formalize. We were aware
« Switch to a more modern and higher level programmi

. nl%at C11 includes many features, so that we would need to
language. This approach reduces the number of program- 2 . .
write a large formalization to include them all. Also, since

ming errors, and if there still is an error, the chance of {he standard is written in English, we knew we had to deal

being gsed by an explo@ is much '°"Yer- . with its inherent ambiguity and incompleteness. But we had
One disadvantage of this approach is that there will be . e . L
. not realized how difficult things were in this respect.
a thicker layer between the program and the hardware : I
Already, the very basis of our formalization, the memory

of the system. This costs performance, both in execution . . L .
speed and in memory usage, but it also means a reducthOdeL turned out to be almost impossible to bring into line
' With the standard text. The reason for this is that C allows

gﬁmcbogézjo;;\/sers';gange:ri\jnzr g‘;;‘i?‘ 33;Stsetr:r'nEks§r?$§I¥hﬁqbrcleth high-level(by means of typed expressions) dod-level
Y P g sy ?by means of bit manipulation) access to the memory. The

an undesired consequence. 99 and C11 standards have introduced various restricbions

« Stick to a low-level programming language like C, buf ™" . .
) . e interaction between these two levels to allow compilers
add a formal methods layer on top of it to establish therlrt'lake more effective non-aliasing hypotheses based ongypin
programs do not exhibit undefined behavior. 9 nyp yp

. As also observed in [9, 18] these restrictions have lead to
Such a layer might allow the developer to annotate their L e T

o . .~ _lunclarities and ambiguities in the standard text.
programs with invariants, and to prove that these invari-

Current programming technology is rather fragile: progsa
regularly crash, hang, or even allow viruses to have fregnrei



B. Approach of related work on undefined behavior, and a brief comparison

The aim of this paper is to discuss the situation. We descriBother versions of a formal semantics of C.
various issues by small example programs, and discuss whafth important related document is a post by Maclaren [18]
the C11 standard says about them, and how a formal semar@@sthe standard committee’s mailing list where he expresses
may handle these. his concerns about the standard’s notion obbhjectandeffec-
During the year that the Formalin project has been runnifiy€ type and discusses their relation to multiprocessing. Like
we have developed an (implicit) prototype of a C11 semanti€§r Paper, he presents various issues by considering egampl
in the form of a large Haskell program. This program can g&ograms. Most importantly, he describes three directions

seen as aerycritical C interpreter. If the standard says that §onsistency. We will treat those in Section Il.
program has undefined behavior, our Haskell interpretdr wil The standard committee’s website contains a list of defect

terminate in a state that indicates this. reports. These reports describe issues about the staraaatd,

The intention of our prototype was to develop a cleagfter discussion by the committee, may lead to a revision
semantics of the high-level part. To this end, we postpon@é clarification of the official standard text. Defect Report
inc|uding low-level details as bytes' Object represeutmj #260 [9] raises similar issues as we do and will be discussed
padding and alignment. Due to the absence of low-level d&oroughly throughout this paper.
tails, we were able to support features that are commonty lef There is also some related work on undefined behavior and
out, or handled incorrectly, in already existing formalsiens its relation to bugs in both programs and compilers. Wang
of C. In particular, we treat effective types, the commotiahi al- [24] classified various kinds of undefined behavior and
segment rule, indeterminate values, pointers to one pasash studied its consequences to real-world systems. They have
element, variable length arrays, andnst -qualified objects. shown that undefined behavior is a problem in practice and
But even without the low-level part, we experienced marijiat various popular open-source projects (like the Linux
other difficulties, that are also described in this paper. kernel and PostgreSQL) use compiler workarounds for it.

Our prototype is currently being ported to the interactivelowever, they do not treat the memory model, and non-
theorem prover Coq. Nonetheless, the source of the praotyiasing specifically, and also do not consider how to det wi

can be inspected 4t t p: // ch20. cs.ru.nl /. undefined behavior in a formal C semantics.
While working on a formal version of the C11 standard, we Yang et al. [25] developed a tool to randomly generate C
had four rules that guided our thinking: programs to find compiler bugs. This tools has discovered a

1) If the standard is absolutely clear about something, ofgnificant number of previously unknown bugs in state of
semantics should not deviate from that. That means, ¢ art compilers. In order to do this effectively, they had
the standard clearly states that certain programs shotfidminimize the number of generated programs that exhibit
not exhibit undefined behavior, we are not allowedndefined behavior. However, they do not seem to treat the

to take the easy way out and leur version of the kinds of undefined behavior that we consider.
semantics assign undefined behavior to it. Lastly, we will briefly compare the most significant already
2) Ifitis notclear how to read the standard, our semanti&Xisting formal versions of a C semantics. There are alsoyman
should err on the side of caution. Generally this mea$hers like [3, 21, 15], but these only cover small fragmerits
assigning undefined behavior as we did not want ofy or are not recent enough to include the troublesome fesature
semantics to allow one to prove that a program has® C99 and C11 that are the topic of this paper.
certain property, when under a different reading of the Norrish defined a semantics of a large part of C89 in
standard this property might not hold. the interactive theorem prover HOL [20]. His main focus
3) C idiom that is heavily used in practice should not b¥as to precisely capture the non-determinism in evaluation
considered to exhibit undefined behavior, even if th@f expressions and the standard’s notionsefjuence points
standard is not completely clear about it. However, the problems described in our paper are due to more
4) If real-world C compilers like GCC and clang in AN-récent features of the standard than Norrish’s work.
SIISO C mode exhibit behavior that is in conflict with Blazy and Leroy [1] defined a semantics of a large part of C
a straightforward reading of the standard, but that cdin the interactive theorem prover Coq to prove the corresstne
be explained by a contrived reading of the standar@f the optimizing compiler CompCert. CompCert treats some
our semantics should take the side of the compilers affithe issues we raise in this paper, but as its main apmicati
assign undefined behavior. is to compile code for embedded systems, its developers are

Of course there is a tension between the second and third r(fiTe interested in giving a semantics to various undefined
Furthermore, the fourth rule is a special case of the sedmrid, 0€haviors (such as wild pointer casts) and to compile thiose i

we included it to stress that compiler behavior can be takéh@ faithful manner, than to support C's non-aliasing feegu
as evidence of where the standard is unclear. to their full extent (private communication with Leroy).
Ellison and Rosu [5] defined an executable semantics of the

C. Related Work C11 standard in th&-framework. Although their semantics
This related work section consists of three parts: disoussiis very complete, has been thoroughly tested, and has some
of related work on unclarities in the C standard, discussiomteresting applications, it seems infeasible to be used fo


http://ch2o.cs.ru.nl/

interactive theorem provers. Besides, their current mgmor
model seems not capable of supporting the issues we present.
We give more details of the discussed semantics in Selction i
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D. Contribution (@) (b)

The contribution of this paper is fourfold:

« We indicate various subtleties of the C11 memory model
and type system that we discovered while working on our 0
formal semantics (Section (I, [Il, 1V and ViI).

o We argue for various properties of C11: lack of Turing ©
completeness (Section|V), lack of programs that are Fig. 1: Adjacent blocks.
guaranteed not to exhibit undefined behavior (Section
[VI), and lack of preservation of typing (Section VII).

o We present many small example programs that can beNow we have ended up in a situation where the low- and
used as a ‘benchmark’ for comparing different formahigh-level world are in conflict. On the one hang,is a
versions of a C semantics. pointer to the edge of th& block, and thus dereferencing

« We discuss some considerations on how to best proceediould be undefined behavior. On the other hand, the object
with formalizing the C standard, given that the existingepresentation gp is the same as the objection representation
standard text is imprecise and maybe even inconsisterf q, and sop andq should behave identically.

Although the standard itself is very unclear about these

problems, in Defect Report #260 [9] the committee expressed
An important feature of C is to allow bothigh-level(by the following judgment:

means of typed expressions) alwv-level (by means of bit
manipulation) access to the memory. For low-level accéss, t
standard requires that each value is represented as a sequen
of bytes [7: 3.6, 5.2.4.2.1], called ttubject representatiofi:
6.2.6.1p4, 6.5.3.4p2].

In order to allow various compiler optimizations (in partic
ular strong non-aliasing analysis), the standard hasdotred
various restrictions on the interaction between these éwel$
of access. Let us consider the following program [9]:

Il. POINTER ALIASING VERSUS BIT REPRESENTATIONS

Implementations are permitted to track the origins

of a bit-pattern and treat those representing an inde-
terminate value as distinct from those representing a
determined value. They may also treat pointers based

on different origins as distinct even though they are
bitwise identical.

Apparently a value can contain additional information abou
its origin that is not reflected in its object representation
The reason the committee allows this, is to allow compiler

int x =30, y =31, optimizations that would not be correct otherwise.
int xp =& + 1, *q = &; To show that this is a real issue, we changed the last example
if (mencnp(&p, &g, sizeof(p)) == 0) slightly and compiled it without warnings with GGC
printf("o%hn", «p); inty =31 x =30

Here we declare two objecisandy of typei nt and use the int xp =& + 1, *q = &;

&-operator to take the address of both (Figure 1a). Incrgasin if (nencnp(&p, &g, sizeof(p)) == 0) {

the pointer&x by one moves isi zeof (i nt) bytes ahead *p = 10;

and yields a pointer to the right edge of tkeblock. It may printf("%l %\n", *p, *q);

seem strange that such pointers are allowed at all [7: @b.6p }
because they cannot be dereferenced, but their use is COMRIAR prints two distinct valuesl0 31’

. . . Despite the fact that
programming practice when looping through arrays.

W h : ) bi dq of . and g are identical on the bit-level (which follows from
e store these pointers into objepKndq of type ponter ., ¢t that theori nt f is executed at all), they still behave

toint (Figure/1b). The next step is to check whether the‘f‘J‘"ﬁ‘ferentIy on the object-level, as indeed Defect RepoiG#2
pointersp and q are equal (note: not whether the memory,, . ¢ '

they point to is equal). We do this by using thencnmp

f : hich checks whether their obi . Maclaren describes similar unclarities of the standardh wit
unction, w Ich checks w ether t er o ject rep_reserr_hatmrespect to the size of array objects corresponding to pointe
are equal. It is important to use a bitwise comparison, atste

. . » . . ~values [18]. He presents three directions the standard akay t
of the ordinaryp == q, to reveal if additional information [18] P

is stored. If the object representations of the two are equal 1 ngiec;r'g'rlagilfnerr'ggggrife'?h; da?r?é?ragg:eSto Irre]:terresen-
we can conclude that both pointers point to the same memory Py ' ) P

. . - . . tations are all that matters.
location and do not contain conflicting bounds information. %) Pointers carry their oriain. Each pointer value carries
From this we are allowed to conclude thatandy are : a history on )rllow it is goﬁstructeg This history should
allocated adjacently (Figure 1c). y ' y

lUsinggcc -OL -std=c99 -pedantic -Wall, version 4.1.2.



be preserved by various operations on pointers. Further-
more, if the pointer is refined to a subobject (for example
by array indexing, or by taking a field of a structure), ‘
it is impossible to get the original pointer back, even if
they correspond to the same address in memory.

3) Only visible information is relevant. This is a weaker
variant of the previous one where the history is limited
to a certain visibility, for example the current scope. IZl -

The first approach is taken by the semantics of Norrish [20]
in HOL. Although this approach is clearly understood, and is

(a) flattened

(7]

convenient to formalize, it implies that pointers with eljua ‘Undef‘ ‘ o ‘ ‘ ° ‘
object representation always have to be treated as equal.
Therefore, optimizations as for example performed by GCq 13 | 21 34 | 55 ‘

and allowed by Defect Report #260 are not sound with respect /
to Norrish’s semantics.

The second approach allows the most compiler optimiza-
tions and is therefore the most appealing one. However, it _
is unclear how bit-level operations and library functioie| Fig. 2: Example contents of the memory.
mencpy should deal with a pointer’s origin. In an earlier

version of the CompCert memory model of by Leroy and , , )
Blazy [17], bytes were not modeled as simple sequences/BP0S€s special treatment on pointers that point to elesnent

bits, but as abstract entities. Although this approach makn€ past the end of an object. We do not allow these pointers
many bit-level operations exhibit undefined behavior, it efi® Pe dereferenced, and they are only allowed in comparisons
sures that the abstract information can easily be preserv&(ih other pointers to the same subobject, making the above
even by byte-level operations. In a more recent version gxample undefined. _

their memory model [16], only bytes that constitute a painte |N€ Semantics by Ellison and Rosu [5] in teframework

are abstract entities, whereas those that constitutedrgegy MPOSes similar treatment. CompCert [16] does not allow
floating point numbers are real sequences of bits. pointers to the end of an object to be used at all. It seems not

The third approach requires a careful definition of ‘visibilt® P€ a fundamental limitation of their model to incorporate
ity’. It is unclear whether such a definition can be given fsat Similar treatment as ours and Ellison and Rosu’s.
both consistent and that allows sufficient compiler optaniz Of course, the drawback of our current memory model
tions. This approach therefore seems not very attractive. 1S that bytes are not present at all, whereas the CompCert

The memory model of our semantics takes the secoRfMOry model at least allows byte-level operations on dsjec
approach to its fullest extent. We represent the memo?9|e|y consisting of integers and flpatlng point numberst Bu
as a finite map from indexes to trees that expose the f§Nce the intention of our semantics was to obtain a better
structure of values, and pointers are paths through thees.tr Understanding of the high-level part of the C memory, we do
Subobjects (subarrays, fields of structures or unions) thBAt consider this to be a problem for the moment.
correspond to subtrees of the memory. The origin of pointers [1l. THE COMMON INITIAL SEQUENCE

in our semantics is much more detailed than its counterpart_l_he C programming language supports various data types to

in CompCert where only a pointer’s block and offset into th%e used to build more complex types. In particular, strectur
block is stored. In particular, since we do not flatten arrays ) :

: hion, and array types. Structures are like product typels an
and structures, we are able to handle subobjects corrécity. ~ . wrray typ P b
. : . ! unions are like sum types. Due to the low-level nature of C,
example, it allows our semantics to impose undefined behavig . .
: unions areuntaggedrather thantagged This means that the
on the following example.

current variant of the union is not stored. Consider:
int a[2][2] ={ {13, 21}, {34, 35} };

struct t { int *r, *p, *q; } S;

(b) abstract

unionint_or float { int x; float y; };

s.p=&0][2]; s.q=&1][0]; Given an object of typé nt _or _f | oat, it is not possible
if (p==0 to (portably) test whether it contains thet or thef| oat
printf("%\n", *p); variant. This may seem unnatural, but it is in the spirit of C

to let the programmer decide whether or not to store the tag.

We do not userentnp in this example, because our seman- . ; . :
tics does not support object representations. The co s An interesting consequence of untagged unions is the stan-
: el ard's common initial sequencelle [7: 6.5.2.3]. Consider:

p == q is the source of the undefined behavior.
Figure[2 displays the representation of the memory after struct t1 { int m float f; };

evaluating the first three lines of this code in both a comcret struct t2 { int m short s; };

memory and our abstract memory as trees. Our semanticsunion { struct t1 sl1; struct t2s2; } u;



sLpm ] aa [ [ [ e [ ]

1 1
I T 1

or | ‘ ‘ Fig. 4:struct T { short a ; int b } onastandard
s2 m S | 32 bits architecture.

Fig. 3: A union containing two structures with a common

initial sequence. IV. INDETERMINATE VALUES

Uninitialized variables and padding bytes of objects of

The representation of the objeatmight look as pictured in StUcture type take amndeterminate value{7: 6.2.6.1p6].

Figure 3. Although, due to alignment there may be additiona indeterminate value is an object that either describes an

space between the members, the standard guarantees thatffiecified value or is &ap representatior{7: 3.17.2]. A
trap representation is an object representation that does n

integer parts always coincide. Even stronger, in this case ; e
guarantees the following [7: 6.5.2.3p6]: represent a value of the object type and reading it leads to
undefined behavior [7: 6.2.6.1p5].

. it is permitted to inspect the common initial part
of any of them anywhere that a declaration of the A. Uninitialized variables
completed type of the union is visible. o Since an object of typensi gned char cannot have a
For example, that means we are allowed to do things like: trap value, reading it does not exhibit undefined behavior.

int main(voi d) { Instead it just gives an unspecified value. This property is

u.s2.m= 20 important to allow simple minded bit-wise copying of struc-
p;i nif("%i\ nousl ) tures, without having to worry about padding bytes between
} oo members. For example:
struct T{ short a; int b; } x ={10, 11}, v;

So, we set the integer part via the one variant of the union,
and read it out via the other. However, the following program
exhibits undefined behavior as in the function body the iatat

to the union type is not visible.

for (sizet i =0; i <sizeof(x); i++)
((unsi gned char+) &)[i] =
((unsi gned char+*) &) [i];

Figurel 4 displays the representationxobn a standard 32 bits
p2->m = 20; arehitecture with a 4 bytes alignment requirement for iateg
return pi- '>m This means that integers should be aligned at addresses that

} are multiples of 4, and therefore we have 2 padding bytes

between the members. In case reading indeterminate values

. WO i of type unsi gned char (and in particular these padding

} printf("o6hn", f(&.sl, &.s2)); bytes) would exhibit undefined behavior, this copy wouldals
exhibit undefined behavior.

This is to allow compilers to make additional aliasing assum An interesting property of indeterminate values is that

tions aboutpl andp2 because their types are different. Reabefect Report #260 [9] allows them to change arbitrarily,

compilers, like GCC, happily use this, and indeed this eXampso reading an indeterminate value twice might yield diffi¢re

can be adapted for GCC such that something different fromsults. This is useful for an optimizing compiler because i

the naively expected?0’ is printed. may figure out the actual lifetime of two values is disjointian
The standard’s definition of ‘visible’ is rather unclearthereby share the storage location of both. As an exampde (th

especially when a pointer to a common initial segment raysterious&x will be explained later)

passed through another function. For example, in

int f(struct t1 «pl, struct t2 *p2) {

int mai n(void) {

unsi gned char x; &x;

int «f(int *p) { return p; } printf("%\n", x);

int main(void) { printf("os\n", X);
u.s2.m= 20; does not exhibit undefined behavior (an object of type
printf("oe\n", f(u.sl.nm);

unsi gned char cannot contain a trap value), but Defect

} Report #260 allows the two printed values to be different.
does passing the pointer through remove the visibility This is not so strange: the compiler might do liveness aislys
of the common initial segment? Our semantics takes thed decide that does not need to be saved on the stack when
cautious way, and annotates each structure fragment irathe alling pri nt f . And then of courseri nt f might clobber
corresponding to a pointer with a flag whether the commadhe register that contains.
initial segment rule may be used. When storing objects in theUnfortunately, the standard is very unclear about the im-
memory, this flag is set to false. Hence, it imposes undefinpdsed behavior of various operations on indeterminatesgalu
behavior on this last example. e.g, what happens when they are copied or used in expres-
sions. For example, shouldbe indeterminate after evaluating



unsi gned char x, y; &; int *p = nal |l oc(si zeof (i nt));
y = x 2 free(p);

Surely the most significant bit of will be 0 after this? Or is Int *q fomil l oc(szeofp nt))s
this not something that the standard guarantees? Bytisf printf(*o6\n", p == q);
not indeterminate after this, what about: because the value of the pointerhas become indeterminate
B ) and now can be a trap value. Of course, we can still compare
y =x1 the bit patterns of both pointers, and if they are equal, dry t
We just changed the constant, and therefore after thiss¢aie usep instead.

y also should be determinate? But after: int *p = mal | oc(si zeof (i nt)):

y = X; free(p);
L . . 5 Thi . int xq = nal | oc(si zeof (i nt));
will it still not be indeterminate? This seems almost indis- i f(mencnp( &, &g, si zeof (p)) == 0)

tinguishable from thex/ 1 case, but the liveness analysis «p = 10:

. - p =10
argument surely also will apply to thig? A formal C ) . o
semantics will have to take a stance on this. Again, Defect Report #260 [9] states that this program eaidib

Also, should the following print 0’, or may it print a undefined behavior. _ . .
different value as well, because the changed during the The fact that a pointer object becomes indeterminate after

evaluation of the subtraction expression? the block it points to has been freed means that if we copy
. pointers to various places in memory, then all copies should

unsi gned char x; &; become indeterminate and not just the argumenf oée
printf("%\n", x - X); (which does not even need to be an Ivalue). This means that a

Defect Report #338 [9] remarks that on some architecturb§€€ operation will affect the formal memory state globally.
(e.g. 1A-64) registers may hold trap values that do not exiéind what about individual bytes of a pointer that have been
safely copy uninitialized variables of typmsi gned char  that pointer?
because these might reside in registers. In the C11 stan-padding bytes
dard this problem has been fixed by including the following
workaround [7: 6.3.2.1p2]:

If the Ivalue designates an object of automatic stor-

The standard states that when a value is stored in a member
of an object of structure or union type, padding bytes take
- 4 an unspecified value |[7: 6.2.6.1p6], and that when a value
age duration that could have been declared with the 5 stored in a member of a union type, bytes that do not

register storage class (never had its address taken), correspond to that member take an unspecified value [7:
and that object is uninitialized (not declared with 6.2.6.1p7]. Considet:

an initializer and no assignment to it has been ) ] .
performed prior to use), the behavior is undefined. union { int a[1] ; int b[2]; } Xx;

This is the reason we had to take the address of the uninitial- *° bl 0] = 105 x.b1] =1L

ized variables in the preceding examples. Of course even wit X. a[ 0 fo 12 " )

the & present, a compiler can decide to ignore it and still use printf("ohn", x.b[1]);

a register forx, as this address is never used. This example can lead to undefined behavior, as assigning
This workaround again shows that treating uninitializeth x. a makes the bytes af. b that do not belong tx. a

objects as indeterminate has its difficulties. In the memounnspecified, and thus. b[ 1] possibly indeterminate. Taking

model of our semantics we keep track of uninitialized (dbefect Report #260 into account, it is unclear whether the

freed) memory by specialndef nodes (see Figure 2). Sincebytes that belong ta. b[ 1] after this may change arbitrarily.

objects of structure or union type cannot be indeterminaée,  This program also suggests that the representation of-point

only allow thesaindef nodes on the leaves. Again, we take thers in a formal semantics should contain information descri

most cautious way, and let operations on these speeidf ing which parts of the memory should become indeterminate

nodes, like reading them, exhibit undefined behavior. upon assignment to them. If instead of assigning t@[ 0]

. directly we do:
B. Freeing memory y

The standard states that the value of a pointer becomes hnt p : &.a[0];
indeterminate when the object it points to reaches the end of *p =12
its lifetime [7: 6.2.4]. In particular this means that wheee x. b[ 1] will still become indeterminate. But the assignment
some memory is freed, all pointers to it become indeterrainato p might happen anywhere in the program, even in a context
For example, assuming tmel | ocs do not fail, the following where the union type is not visible at all.

program can still exhibit undefined behavior ) ) ] )
2Adapted from Shao Miller, Bounds Checking as Undefined Biehay

conp. st d. ¢ newsgroup, July 29, 2010.



V. C IS NOT TURING COMPLETE bound to the recursion depth will not be exceeded, in which
In this section we will argue thaho Turing complete Case the size of the state is bounded, and it behaves as a finite

implementation of the C standard exists. Obviously there §@teé machine. Or, the recursion depifil be exceeded, in
exist someimplementations that are not Turing complete, by¥hich case the program will infinitely go deeper and deeper
that is weaker than what we claim. We argue that doy in recursion, repeating the pattern of function calls, inalh
implementation that behaves as described by the standardC@se the program also behaves as a finite state machine. This
programs will correspond to a finite state machine, and herf§@Shes our argument. _ _ o
that their termination is decidable. This implies that C @ n  The result that C is not Turing complete is surprising: it
Turing complete, as for a Turing complete language termin@€€Ms possible to implement a Turing machine emulator in
tion is undecidable by the halting problem. Our argument fs» Which seems to imply Turing completeness. However, the
similar to the well-known pumping lemma [22]. problem is that the C data types are too small to represent an

Unfortunately, we cannot give a mathematical proof that @bitrarily long tape. C integers only have a specific number
is not Turing complete, as that would require a mathemfmcapf bits, and even when one wants to use arrays or linked lists
precise version of the standard, which does not exist yet. 1O hold bigger data structures, tip@intersthat are involved

Let us put a restriction on what we will establish. witHn this also only have a finite number of bits, and therefore
sufficient 1/0, an external file may be used as the tape @€ cannot have arbitrarily large data structures as onédwou
create a Turing machine emulator. Even then the existence'sf out of different pointer values.

the function VI. STRICTLY CONFORMING C PROGRAMS DO NOT EXIST
longint ftell (FILE *strean); An implementation of a programming language typically
that gives the position in a file [7: 7.21.9.4], seems to impl§fganizes its storage into two parts: Btackand theheap On

that files as described in the standard need to have a boungidgnction call, the stack is extended with a frame contginin
length as the return type dftel | is bounded. However the function’s arguments, local variables and return asidre

an implementation could have its own infinite-file acces@he address of the instruction to be executed when theiumct

interface, allowing it to become Turing complete. Therefor'S finished). The heap contains dynamically allocated geara
we will here only consider C programs without 1/0. (Our The standard abstracts from implementation details like
argumentcan be adapted to show that the programs thétgese,. and Fhus also gllovx{s implementations that do not
restrict 1/0 to readingst di n and writingst dout are Turing ©rdanize their memory in this way. Although we agree that
incomplete as well, but we will not do so here.) this is the right approach, we do believe it should at the very

The first step in our argument is the observation that eal@fSt account for (an abstract version of) the problerstatk
type that is not an array has finitely many distinct valuesa aspverf!ow Unfortunately, the notion of stack ovEerrovy |s’ not
value of a typel” needs to have a representation that consists'@gntioned by the standard [7] or the standard's rationgle [8
si zeof (T) * CHAR_BI T many bits. Now for array types theat all. This is very troublesome, as for most actual implemen
elements of the array need to have an address that correspdftions stack overflow is a real problem. Let us consider the
to a pointer, and those pointeatso only have finitely many following function.
distinct values. This means that there is an upper bound on /*@decreases n; ensures \result == n; */
the length of arrays, and thus array types also only have a unsigned | ong f(unsi gned | ong n) {
bounded number of distinct values. if (n!'=0) returnf(n- 1) +1;

There are three ways to get storage in C: (1) through global el se return O;
or static variables, (2) through allocated storagey.(using }
mal | oc), (3) through automatic variables in function calls, . e . .
The size of the storage obtained through (1) is clearly bednd VX'T tthStf toolt§ fofr vaﬁ”flcauon ciﬂe C.Zn F;.rtovi by tlnduc'ilon
All allocated storage needs to be addressable and therel&reE) a Ie lt“'f?c 'Sm e Iave_s 6]}5 Fe ! encl ylgun:: lon Ehor
finitely many pointers, therefore storage obtained thro(@h examlp €t ? 9ezss||_e P ugf-l\r;\/ho:;MLramc’:\j- I[ j urrtws ¢ ese
is also bounded. As for (3), since the standard does nota’estfou.r. INes Into 92 ines o yaliL code, leading 1o tour
recursion depth, there could be unboundedly many automéf%”f'cat'on cpndmons th"’.‘t are all trlv!ally provable)oWev_er,
variables. This means that the size of this part of the state'd 2 real C |mpIementat|0.n, a call l.'kb( 10009000) will
a program does not have to be bounded. However, the siz r.‘8¥ return 10000900’ but instead will crash with a message
the visible part of that state, the automatic variables that a |é<e segmentation faul t’.

in scope, together with those that can be reached by follpwin Fultrtrilnermo;e, r?t\?vftl;\ ovenriflow ioismnot ”ecezs"’t‘”r'%/i hh?’el to
pointers,is bounded. esult in a cras a nice error message, but might also

Now there will be a (very large) bound to the recursioﬁverwrite non-stack parts of the memory (possibly puttimg t

depth, such that if that bound is exceeded, a function wil er"f‘dgg;‘:‘ gf ;";llés ng: tr;(;rne)(.mc ithout function calls. Fo
up in a visible state that it has been in before. Clearly, in vertiow even ur- without tunct s. For

that case, the program will be in an infinite loop. Thereforg,xample' the program

for an arbitrary program there are two possibilities. Hittie int main(void) { int a 10000000]; }



might also crash. In order to make this really happen with VIlI. FAILURE OF THE SUBJECT REDUCTION PROPERTY

an optimizing compiler, one might need to use the amay A desired property for a typed programming language
to prevent it from being optimized away. For example Wheg sybject reductionwhich means that evaluation preserves
compiled with GCC or clang (with O2) the following crashes typing. As proven by Norrish, this property holds for (his

when running it with the standard stack size: small-step expression semantics of) C89 [20]. We will argue
int mai n(voi d) { that due to the introduction of variable length arrays in C99
i nt a[ 10000000] ; this property no longer holds. Before pursuing the problém o
for (int i =0; i <10000000; i++) a[i] =i;  Subject reduction, we briefly introduce variable lengtragsr
return a[ 10] ; and some other problems of these.
} Before C99, arrays were required to have a size that

could be determined at compile-time. To avoid this resbict

This all means that a proof of correctness of a program V,ViH?ogrammers had to use dynamically allocated memerg. (
respect to thg standard only guarantees correctness/eciati throughmal | oc andf r ee) for arrays of dynamic size. To
the assumption that the stack does not overflow. As we hqy@qen this restriction, C99 introduced support f@riable
seen, this assumption does not hold in general. But BVerBWOliRoth arrays(VLAS) to the language.

it is not clear for whichn the program The first shortcoming of VLAs is related to the fact that

int min(void) { int a[n]; } there is no portable way to test if there is sufficient storage
available (on the stack) when entering a block (see Sectipn V

is guaranteeahot to overflow the stack. On a microcontrollersmce most implementations use the stack to store VLAS, not
this might already happen for rather small Therefore, as ’

. R being able to perform such a test, makes VLAs dangerous in
there is no a clear division between thehat are safe and the 9 b 9

. ractice. Consider the following program.
ones that are not, it seems reasonable that even the extrgme g prog

program, which is a variation on the case foe 0, int mai n(void) {

. . . int n;

int main(void) { } scanf ("%, &n);
potentially could overflow a (very) small stack. For one thin int anl;
there need to be space on the stack forithé return value, }

and then the runtime environment that cafisi n also might Since there is no way to test if there is enough space on the

need a bigger stack than is there. o .

The ob\glli%us way to change the text of the C standard %ack, it is impossible to portably ensure that the prograssd
address this issue would be to addto [7: 6.5.2.2] somethiﬂat crash. : .
like: Another problem of VLAs is that C allows casts to variable

length types. Since size expressions in such casts may @npos
side-effects, this makes the situation rather complex. For
example, consider:

A function call (even the initial call terai n) might

overflow the stack, in which case the behavior is
undefined. It is implementation defined under what
circumstances this is guaranteed not to happen. 12 (int(*)[f(5)])0: (int(*)[f(3)])0;

It is important that it is not justunspecifiedwhen these \heref is the identity function oni nt. We were unable
overflows happen, for then it still would be impossible tg, find anything in the standard on which of the function
reason about any program formally from the text of thgy)is f (5) and f(3) may (or should) be evaluated. It is
standard. reasonable to allow implementations to evaluate neither of
A consequence of this addition is thsirictly conforming them, as programs can generally be executed correctly utitho

programsno longer exist as one of their defining propertiegeeding to know the size of array bounds in pointer casts. But
is that they ‘shall not produce output dependent on ... iMyhat about:

plementation defined behavior’ [7: 4.5]. Of course, once one § §
takes stack overflow into account no program has that prppert Pri ntf ("%l n", _
anymore. sizeof (x(1 ? 0 : (int(*)[f(3)])0)));

Another consequence is thait C implementations become Here an implementation clearly needs to evaluate the fomcti
conforming as that notion is defined by quantification over allg)| to obtain the value of thei zeof , even though it is in
strictly conforming programs [7: 4.6]. Therefore, the d&iim {he pranch of the conditional that is not taken. The standard

of conforming C implementations should also be adapted. jncjudes the following related clause [7: 6.7.6.2p5]:
The fact that the standard does not allow to portably test Where a size expression is part of the operand of a

:‘or stack oxerflﬁv;/ 'S Itcl) us o'rllle Otf the ESI'_nLom.'StS'OHShOf the si zeof operator and changing the value of the size
tﬁngu?‘ge- tca ora '?CbIWI rﬁ_ urr]n a thpcf['n erwhen expression would not affect the result of the operator,
ere 1S no storage avaiiablé, which means that a program can 4 ;o unspecified whether or not the size expression
test for that situation. But there is no counterpart to this f .
: . is evaluated.
function calls, or for entering a block.



Since in this example the size expression in the ‘not to example because it invokes axit or loops indefinitely),

taken’ branch has to be evaluated, one may wonder whethesulting in the undefined behavior not getting described by

they are also allowed to be evaluated in the ‘not to be takethie semantics.

branch of the earlier example. But does this mean that in a formal C semantics each
It also is unclear how these function calls in casts areduction step has to establish that typing does not break

evaluated with respect to sequence points. As they are-evafuorder to catch undefined behavior? This would obviously

ated in branches that are not taken, it seems they are exefiypsubject reduction, but destroys the locality of a smdps

from the normal execution flow of an expression. But if theyeduction semantics.

already can be executed before the sequence point that start

the subexpression that contains them, is there a reason they

cannot be executed before the evaluation of the statemant #h. Discussion

contains them starts? We will finish our discussion of the subtleties of the C
The standard’s (implicit) distinction betwestaticandrun-  standard by asking the following questions:

time typing is the reason that subject reduction breaks. This1y s the interpretation of the C standard that we presented

means that an expression can get a more restricted type i this paper a reasonable reading of the standard?

during its evaluation. For example, statically the expmss ) |s the C standard itself (under this interpretation) rea-
(int(*)[f(5)])0 has type ‘pointer to integer array of sonable?

variable length’, whereas at run-time it will become of th
more restricted type ‘pointer to integer array of length
wheren is the result of evaluating ( 5) .

VIIl. CONCLUSION

Rirst of all, we claim that the standard is not fully clear.eTh
standard committee’s response in Defect Report #260 [9] is
r}0t obvious from the text of the standard. Also, Maclarer [18

T:;f? prei\t/LOL;s et))(."" mtp:e dalrt?agy rlndrllicatei that fotn € hast ploesents various issues about which the standard doesvet ha
sacrifice either subject reduction or uniqueness of typfest ( an unambiguous reading, even when taking Defect Report

is, each expression has a unique type). However, we W"'ear%eo into account. One might even claim that the exact text of

that the situation is v_vorse, and tha’.[ for a redl_Jcnor! Semntihe standard (without giving it a liberal reading) is incistent,
whose rules are applied locally, subject reduction will éen i.e. that from a logical point of view the standard implies

if expressions are allowed to have multiple types. Cons'deranything one likes. But of course that position is not very

12?2 (int(*x)[f(5])0: (int(*)[3])0 productive.

Even the relation between Defect Report #260 and the
official standard text is not completely clear. The remmoes
include a response by the standard committee and as such
should not be taken lightly. It was a clarification of the C99
Xersion of the standard, and hence it seems obvious that ther
was some defect in that text. However, the parts of the text

If the function callf (5) gets evaluated, and returnsavalu%.f the St(‘j"‘f‘d?gd n thteh Ci1 v;arshlon r?jl?vantﬂ:or the issues
different from3, typing breaksi.e., a well typed expression is . Iscussed in the report have not changed from their couaterp

evaluated to a non-well typed expression. Luckily, the céad in the C99 standard at all.

imposes undefined behavior on this example by means of thérhe 7standz?_rd make_s "fl very_clear distinction between “nor-
following clause [7: 6.7.6.2p5]: mative’ and ‘informative’ text in the standard, and the ex-

If the t ¢ di text which planations of Defect Report #260 certainly are not part of
€ two array types are used In a context whic the ‘normative’ text of the C11 standard. Therefore, it seem
requires them to be compatible, it is undefined

behavior if the two size specifiers evaluate to unequal an option to decide to ignore the committee's response in
values P q this report, especially the notion of thaigin of an object,

) ] ) which does not occur in the standard at all. In that case,
Currently, our C semantics deals with this problem by allowsne could read the standard in a ‘Kernighan & Ritchie’

ing evaluation of size expressions at any place in a bigg&hnner. But of course in that case the optimizations of for
expression. If the conditional gets reduced, we check ih boéxample GCCwill be incorrect, and one will get standard
arguments have compatible types, and if not, assign undbfi%mp"ant behavior only when compiling using flags like
behavior. This approach has two obvious drawbacks. Firstnq.strict-ali asi ng. Many real world programs, like
of all, it breaks subject reduction, and secondly, undefingg, example the Linux kernel, are compiled with such flags

behavior gets caught at a late moment, or might not get Ca“%&/way [24], but on the other hand this attitude would mean

at all. For example, in that strictly conforming programs would have less thanropti

g() 2 (int(*)[f(5)])0: (int(*)[3])0 performance, because they would need to generate more code
: . , to test for changes due to aliasing.
it may happen thek( 5) Is evaluated first, and retums a value The second question, whether the standard can and should

unqual t03, in which case typing has already failed. Aﬂerbe improved is even more interesting. We think that the fact
that, it may happen that the call g ) does not return (for

In this example the two subexpressidrisnt (*) [f(5)]) 0
and (i nt(*)[3])0 have (static) typesnt(*)[*] and
int(*)[3], respectively, wherd'[ ] denotes the variable
length array type ovefl’. By typing of the conditional and
composite types [7: 6.5.15p6, 6.2.7] the full expressioa h

typeint(*)[3].
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