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Compile-time Metaprogramming in C++

Introduction

This paper proposes several new facilities for compile-time metaprogramming which build upon the
design for value-based, static reflection presented in P1240R0. This paper expands significantly on earlier
work presented in PO712R0. Specifically, the proposed features include facilities for generating or
injecting statements and declarations.

Static reflection (P1240R0) provides (mostly) read-only facilities for inspecting source code. There are
only a few ways reflections can be used to generate new source code contracts: reifying identifiers and
types, and instantiating templates. The metaprogramming facilities presented in this paper provide
significantly enhanced capabilities, including the ability to generate new statements, declarations,
enumerators, parameters, etc. These capabilities are needed to support software frameworks with
significant generative requirements (e.g., Qt, WinRT, etc.).

There are essentially two ways we can generate new code that can be inserted into a program:
programmatically or declaratively.

A programmatic approach entails the construction abstract syntax trees as constexpr values, and then
translate into C++ constructs to actually generate the code. This approach has some problems in C++.
First and foremost, C++ is a big language. The number of tree nodes may be oppressively large. Also, it’s
not at all clear what the right level of abstraction of the tree should be. For example, are users expected to
explicitly build trees with the right conversions or should that be inferred by the compiler?

A declarative approach would allow the user to specify code-to-be-generated using patterns (much like
templates!). While this approach lets us avoid a heavyweight library for building abstract syntax trees, it
poses a number of difficult questions. In particular, how much semantic analysis is done on the source
code in the fragment? Can patterns depend on local variables or parameters? Can patterns depend on
declarations at the point where they are inserted?

Ultimately, we adopted a declarative approach for specifying code-to-generated. It provides a more direct
method of specifying what code should be generated, and allows that to be done in a natural way: using
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the syntax that you want to generate. Note that this approach does not preclude adding programmatic
code generation later.

There are three central features introduced by this paper:

e metaprograms allow the execution of code where it appears in a translation,

® source code fragments are partial specification of various constructs, and

® source code injection allows the insertion of fragments at particular points in the program.
These features are designed to build on and extend the features of P1240 (Scalable Static Reflection) and
P1306R1 (Expansion Statements).

A First Example

Before enumerating specific features and their details, we present a basic example that demonstrates how
metaprograms, source code fragments, and source code injection can be used to implement a tuple class
template. The entire definition is shown below:

template<typename... Types>
class tuple {
consteval {
int counter = 0;
for... (meta::info type : reflexpr(Types)) {

auto fragment = __fragment struct {
typename(type) unqualid("element_", counter);

}

-> fragment;

++counter;

}
}
b

tuple<bool, char, int> tup;

The tuple class is defined by its metaprogram. A metaprogram is a sequence of statements, enclosed in
consteval { ... },thatare executed where they appear in the translation unit. Metaprograms
appearing in templates are executed during instantiation, not when the template is parsed. Metaprograms
are evaluated after parsing the closing brace.

The metaprogram iterates over the types in the template argument pack Types using an expansion

, __fragment
struct { ... }, which encapsulates members to be injected into the tuple class. A source code
fragment is a kind of literal that contains a pattern of code that can be injected into source code. This

statement (P1306R 1). Each expansion of the pack constructs an unnamed class fragment
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expression produces a value that can be injected later. The syntax of source code fragments is a
placeholder for syntax to be determined later.

The class fragment contains a single data member declaration. The type of the declaration is given as
typename (type); this is the proposed reification operator described in P1240. Given a reflection (of a
type), it produces a type-id.

The unqualid operator is another reification operator; this one introduces a new unqualified-id. 1t takes
a sequence of arguments, which are concatenated to form the new identifier. Here, identifiers have the
form “elementN” where N is determined by the value of counter.

Note that the operands for the typename and unqualid reifiers require constant expressions.
However, the variables type and counter are not declared as such. References to local variables
within a fragment are actually placeholders for eventual values supplied during evaluation. We discuss
this in greater detail in sections below.

The statement -> fragment ; is an injection statement. This registers a request with the compiler to
inject the given fragment in the context where the metaprogram was evaluated. The expression of this
statement is not required to be a constant expression.

In this example the metaprogram is not executed until the class template is instantiated. This happens
when declaring the variable tup. When the metaprogram executes, it will enqueue a sequence of requests
to inject fragments. Each request contains a fragment value, which is comprised of a reflection of the
class fragment (a static component), and a mapping of placeholders to their corresponding values.

Processing an injection request is similar to template instantiation. Each member of the class fragment
(not the class itself) is synthesized into translation unit while performing a number of substitutions
(described below).

The final definition of tuple<bool, char, int> will be:

template<typename... Types>
class tuple {

bool element®;

char elementi;

int element2;

}s

Obviously, this is not a complete definition of tuple. To fully define the class we would also need to inject
constructors and member accessors.
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Source Code Fragments

A source code fragment is an expression that specifies a “snippet of code" that is intended to be injected,
transforming it into executable code. There are several kinds of fragments: class fragments, namespace,
fragments, enum fragments, and block fragments. The kind of the fragment determines what kinds of
code can be injected.

The type of the expression is a fragment type. It contains, among other things, a reflection of the
fragment. We explain the structure and contents of fragment values below.

Class fragments

A class fragment specifies a sequence of class members that can be injected into class scope. Class
fragments are written like this:

__fragment class {
// member declarations

|3

When injected, the members of the fragment (not the fragment itself) are inserted into the class being
defined. For example:

constexpr auto f = __fragment class {
int x;
int f() { return x; }

3

struct S {
consteval { -> f; }

3

After injection, S will have members S: : X and S: : T (which returns S : : x).

The fragment can also be written using struct instead of class. The choice between class and
struct controls only the default access level of its elements.

__fragment class {
int x; // xisprivate

3

__fragment struct {

int y; // yispublic

3
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A class fragment can also be named, which allows its nested members to refer to that fragment.

constexpr auto links = __fragment class links {
links* next;
links* prev;

}s

When injected, references to the type of class fragment is replaced with the class into which the fragment
is injected. For example:

class node {
consteval { -> links; }

¥
After injection node will be equivalent to the following:

class node {
node* next;
node* prev;

}s

As shown above, member functions of class fragments can refer to member variables of class fragments.
As with normal classes, member function definitions and default member initializers are parsed only at
the close of the class (fragment).

Namespace Fragments

A namespace fragment defines a sequence of members that can be injected at namespace scope.
Namespace fragments can be written like this:

__fragment namespace {
/] declarations

b

When injected, the nested declarations in the fragment are injected into the namespace in which the
injection was initiated. For example:

constexpr fns = __fragment namespace {
void f() { }
void g() { return f(); }

}
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// In global scope
consteval -> fns;

The injection declaration will copy the functions T and g into the global namespace.

Unlike class fragments (or perhaps more like normal namespaces), definitions are parsed where they
appear inside a namespace fragment. The usual name lookup rules apply.

Like class fragments, namespace fragments can also be written with a name, which allows self-references.

__fragment namespace a {
/| namespace members

¥
This is allowed for consistency with class fragments more than utility.

Enum Fragment

An enum fragment specifies a list of enumerators that can be injected into an enum.

__fragment enum {
// enumerators

}
For example:

constexpr auto f = __fragment enum {
A, B, C = 42
3

enum E {
consteval { -> f; }

i
After evaluation, E will have the enumerators A, B, and C.

As with class and namespace fragments, a name can also be given even though it’s use within the
fragment would serve little to no purpose.
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Block Fragments

A block fragment specifies a sequence of statements that can be injected at block scope. Block fragments
can be written like this:

__fragment {
// statements

}s

When injected the statements inside of the fragment are injected into the compound statement, in the
position in which the injection was initiated. For example:

constexpr auto f = __fragment {
int a = 4;
int b = 2;
return a + b;

2

int g() A
consteval { -> f };

}

The injection declaration will copy the statements from the fragment f into g, resulting in g being
equivalently to the following:

int g() {
int a = 4;
int b = 2;

return a + b;

}

Statement fragments can introduce local variables, that are used outside of the fragment. For example:

constexpr auto f = __fragment {
int a = 4;
int b = 2;

¥

int g() |
consteval -> f;

return a + b;

}
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This will result in logic equivalent to the first example, i.e.:

int g() |
int a = 4;
int b = 2;

return a + b;

Parameterizing Fragments

It’s useful to define fragments that depend on user-supplied values (i.e., fragments parameterized by some
set of variables). Our design allows for implicit parameterization by capturing local variables. An
example of this can be seen in our initial example:

consteval {
int counter = 0; // #1
for... (meta::info type : reflexpr(Types)) {

auto fragment = __fragment struct {
typename(type) unqualid("element_", counter); // #2
}
-> fragment;
++counter;

The variable declared in #1 is used within the class fragment at #2.

In actuality, the use of counter at #2 is not a direct use of the variable declared at #1; that name refers
to an implicitly declared placeholder that will eventually be replaced by the value of counter (#1) when
the fragment is created during constant expression evaluation. A placeholder is simply a constexpr
variable declared within the fragment for the purpose of type checking and analysis, and later for source
code injection.

The placeholder also becomes part of the type and value of the fragment expression. The type of the class
fragment above is essentially defined by the following class:

struct fragment_closure {

constexpr fragment_closure(meta::info x, int c)
: reflection(x), counter(c)
{}

meta::info reflection; // reflects the class of the fragment
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int counter; /] the value of the placeholder

2

When the fragment is evaluated, we create an object of this class, which reflects the underlying class of
the fragment and stores the current value of the local counter variable. These captured values are then
used during source code injection to replace the constexpr placeholders initially created when parsing the
fragment.

Non-local dependencies

While writing fragments, you sometimes want to depend on a declaration which will be found in the
context being injected into. Rather than leave references to such dependencies unresolved, we introduce a
new feature that explicitly requires their declaration within the fragment.

Required Declarators

Required declarators allow you to find declarations that have yet to be declared, and are specified with the
syntax:

requires deci-specifier-seq declarator
For example:
constexpr int foo(int n) { return n + 1; }
consteval -> __fragment namespace {
requires constexpr int foo(int n);

int bar(int n) { return 2 x foo(n); }

b

Within the definition of bar, the identifier foo will be resolved to the immediately preceding requirement.
When the fragment is injected, two things happen. First, the required declaration is processed for
injection. Instead of injecting the declaration, we lookup the name of the required declaration to find a
matching declaration in the injection context, including declaration specifiers. There is an exact match, so
we establish (another) substitution that replaces required declarations with those found by lookup during
injection.

Argument dependent lookup is not used to resolve required declarations.
To further demonstrate the resolution rules for required declarations, consider:

int foo(int n) { return n + 1; }
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consteval -> __fragment namespace {
requires constexpr int foo(int n); // error: no matching declaration
int bar(int n) { return 2 * foo(n); }

2

In this case, the required declaration will not be resolved successfully because the declaration specifiers
do not match. In particular, the fragment expects to find and use a constexpr function, but this is not
provided in the injection context.

Finally, consider:
int foo();

consteval -> __fragment namespace {

requires int& foo(); // error: no matching declaration
foo() = 42;

3

Here, the required declaration will not be resolved because the return type of the declarator does not
match the return type of the found declaration.

Obviously, there are many relaxations of strict matching that could be made. Allowing resolution to select
constexpr functions when none are expected is totally reasonable. Covariant return types might also
be admissible. We have left the rules simple for now.

It's important to note that a required declaration can only ever resolve to one declaration. Functions in
C++ however, can be overloaded, resulting in multiple candidates. Required declarators use argument
dependent lookup, to resolve these candidates and select a single function.

Consider one more example:

void f() {} // #
void f(int a) {} // #

consteval -> __fragment namespace {
requires void f(); // matches #I only
f():

¥

The resolution rules select the best match if the required function is overloaded. If there is no best match,
resolution will fail. If we want to require both, we must require both explicitly, as follows:

void f() {}
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void f(int a) {}

consteval -> __fragment namespace {
requires void f();
requires void f(int a);

¥
As with overload resolution, required declaration resolution will instantiate default arguments.
int f(int a =0, int b =0) { }

consteval -> __fragment namespace {
requires int f(); // ok
¥

That said, uses of the function within the fragment must conform to the signature given. For example:
int f(int a =0, int b =0) { }
consteval -> __fragment namespace {
requires int f();

int result = f(1); // error: no matching function

I
Note that the required declaration of T hides the original declaration of f.
Required Types
Required types are specified with the syntax:
requires typename identifier;
Where identifier is the identifier for a type-name to be resolved when this declaration is injected.
Prior to injection, inside the fragment preceding the required type declaration, identifier is a dependent
type. At the point of injection the type-name is looked up. If a corresponding type is found, it is then

substituted for all uses of the required type.

As a simple example, consider:

constexpr auto frag = __fragment {
requires typename Foo;
Foo x;

return x.val;
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}s

struct Foo {
int val = 10;
Hi

int return_num() {
consteval -> frag;

}

Required types function much like template type parameters. They denote the existence of a type, but not
its properties.

Required Templates

It should also be possible to require templates. This feature has not yet been fully specified, although we
believe it will be analogous to template template parameter declarations.

Source Code Injection

In this section, we describe the various mechanisms for injecting source code and their semantics.

Injection statements

An injection statement can appear with a metaprogram or any constexpr function called by a
metaprogram. They look like this:

consteval {
-> expression ;

}

The -> operator is followed by an expression whose value is either a fragment or a reflection (discussed
below). When executed, the statement enqueues a request to inject the given value at the completion of
the currently executing metaprogram. When the metaprogram completes, it should have a (possibly
empty) queue of injection requests. These requests are injected in the order that they were generated.

Injection (of a fragment) is closely related to template instantiation, except that we are not substituting
template arguments. We are simply generating new versions of the declarations, statements, enumerators,
etc. at the point where the metaprogram appears in the program. There are two sets of substitutions:
e (Context substitution replaces the name of class, namespace, etc. of a fragment with that of the
context in which injection occurs.
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® Placeholders substitution replaces placeholders of captured local variables with their
corresponding values computed during constant expression evaluation.
For example:

struct S {
consteval {
int n = 42;

-> __fragment struct X {
X(X const&) = default;
int number = n;
3
}
¥

The final definition of S will be:

struct S {
S(S const&) = default; // context substitution
int number = 42; // placeholder substitution

2

Note that a program is ill-formed if a constant expression injects fragments during constant expression
evaluation. For example:

constexpr int f() {
-> __fragment struct { int x; };
return 0;

}

int array[f()]; // error: cannot inject class members here

Injection Declarations

An injection declaration can also be used to inject code and is written as:
consteval -> constant-expression ;

The expression of an injection declaration has the same requirements as that of an injection statement,
except that it must be a constant expression. The syntax above is equivalent to:

consteval {
-> constant-expression ;

}
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The injection happens at the point the declaration appears in the translation unit.

Declaration Cloning

Sometimes, we don’t want to inject a fragment, but rather a copy of an existing declaration. This is
particularly true for metaclasses (described below), where methods are frequently copied from a prototype
(a kind of fragment) into the output class. For example, we might want to copy members of this class into
a different class:

struct S {

int x;

int f() { return x; }
}

We can inject S: :x and S: : f like so:

struct my_class {
consteval -> reflexpr(S::x);
consteval -> reflexpr(S::f);

}

The resulting body of my_class will be identical to that of S. Note that if we had not injected S::x first,
the injection of S : :  would fail since its definition refers to S: : x.

The expression of injection statements and declarations can be either a fragment (as above) or simply a
reflection of a declaration. When the expression reflects a declaration, that declaration is injected as if it
had been written in a fragment.

Sometimes, we also want to modify the access of the declaration. For example, we may want to make
S: :X private as it is injected.

struct my_class {
consteval {
meta::info x reflexpr(S::x);
meta: :make_private(x);
> x:
}

consteval -> reflexpr(S::f);

}

We support setting the access of a declaration to public, private, and protected.
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We might also want to add properties to a declaration. For example, we may want to make S : : T pure
virtual as it is injected.

struct my_class {
consteval -> reflexpr(S::x);
consteval {
meta::info f = reflexpr(S::f);
meta: :make_pure_virtual(f);
-> f:
}

The call make_pure_virtual modifies the reflection f so that, when injected, the function is made
pure virtual. Every reflection value contains a set of bits designating which properties will be added to a
declaration when injected. Note that you cannot remove properties, only add. We currently support the
addition of the following properties:

e virtual and pure virtual
® constexpr
e static and thread local

We also allow the generation of new names for the declaration.

struct my_class {
consteval -> S::x;
consteval {
meta::info f = reflexpr(S::f);
meta: :make_constexpr(f);

char const* name = meta::get_name(f);
meta::set_new_name(f, __concatenate(name, “_c”));

-> f"

The name of a declaration is modified by the set_new_name function. The __concatenate
intrinsic is a workaround for lacking constexpr strings. It produces a new string literal from its inputs. The
final definition of my _class is:

struct my_class {
int x;
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constexpr int f_c() { return x; }

2

Nested Injection

With more complex metaprograms, we often need to nest injections. Suppose our application architecture
is a metaprogramming based component system. Components can be defined from sets of mixins,
implemented using class fragments.

Suppose our initial codebase looks something like this:

class entity_a {
consteval -> position_mixin;
consteval -> acceleration_mixin;
consteval -> inventory_mixin;

void adjust_velocity(...);
//
Hs

class entity_b {
consteval -> position_mixin;
consteval -> acceleration_mixn;
consteval -> stopwatch_mixin;

void adjust_velocity(...);
//
i

There’s an inherent notion of “movement” represented by the injection of mixins for position and
acceleration. We can further reduce code duplication by creating a new fragment composed of the others:

constexpr moveable_mixin = __fragment class {
consteval -> position_mixin;

consteval -> acceleration_mixin;

void adjust_velocity(...);

}
We can adjust our previous entities accordingly:

class entity_a {
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consteval -> moveable_mixin;
consteval -> inventory_mixin;
//

i

class entity_b {

consteval -> moveable_mixin;
consteval -> stopwatch_mixin;
//

i

The use of the moveable_mixin triggers recursive source code injections. The outermost injection is
the moveable_mixin itself. This causes the injection of the nested injection declarations in that
fragment, which can also trigger additional (inner) injections.

Parameter Injection

Sometimes it becomes useful to be able to clone parameters from one function into another. For example,
if we wanted to create a metafunction for integration into a simple timing system, we can do that using
parameter injection.

Let's say our existing code looks like this:

class bar {
void foo(int a, int b, int c) {

}
|2

We want to rework this code to integrate with our timings system:

class bar {
void foo(int a, int b, int c) {
begin_timing("bar::foo");

end_timing("bar::foo");
}
¥

We can write a meta function, and make bar a metaclass (discussed below), so that we can change this
transformation from a change that's potentially an impractical number of lines, to a single line change.
The metaclass (actually just a constexpr function) could be defined as follows:
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constexpr void timed(meta::info source) {
for (meta::info member : meta::range(source)) {
if (meta::is_member_function(member)) {
make_impl(member) ;
make_wrapper (member) ;
}
}
}

The make_impl function essentially renames the source method and clones its definition.

constexpr void make_impl(meta::info member) {
char const* name =
__conctatenate(meta: :name_of(member), “impl”);
meta: :make_private(member) ;
meta: :set_new_name(member, name);
-> member;

}

The make_wrapper function is more complex, as it requires the synthesis of an entirely new function

definition.

constexpr make_wrapper(meta::info member) {
char const* name = meta::name_of(member);
char const* gname = meta::qualified_name_of(member);
char const* impl = __conctatenate(name, “impl”);
meta::range params(member);
-> __fragment struct {
void unqualid(name)(-> params) {
begin_timing(qname);
unqualid(impl) (unqualid(... params));
end_timing(qgname) ;
}
}
}

The class fragment in the function declares a single member function, highlighted here for convenience.

void unqualid(name)(-> params) {
begin_timing(qname);
unqualid(impl) (unqualid(... params));
end_timing(qname) ;

}
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The name of the function is generated from the name of the original member. The parameters, indicated
by -> params, are injected from the original list of parameters of that function. In general, any
sequence of reflections of parameter declarations can be injected into a function declarator. Moreover,
there may be multiple injections at various positions in the parameter list.

The function sandwiches a call to the previously cloned implementation with timing functions. The call to
the underlying function is comprised of two uses of unqualid. The first names the implementation
function. Note that we can’t use the idexpr reifier because we can’t reflect the underlying
implementation. It hasn’t been injected yet. The second use of unqualid expands generates a sequence
of identifiers for each of the parameters in params.

When injected, the resulting functions will resemble the code we had previously written by hand.

Unlike parameter packs, injected parameters do not participate in template argument deduction or
ordering rules for overload resolution. Injecting parameters produces concrete parameters.

Injection into Alternative Contexts

The injection statement, by default, will inject into the current context of the metaprogram. However, in
certain circumstances it is desirable to inject into other contexts. For example, our initial tuple
implementation would need this feature to inject get overloads into the class’s namespace.

Injection into the Parent Namespace

Injection into the parent namespace can be achieved by adding the namespace keyword, before the
fragment or reflection being injected.

As an example, let's say we wanted to add a factory function to the enclosing namespace of our class,
generating logic similar to the following:

class factory_instance {
int value;

public:
factory_instance(int v) : value(v) { }

int get_value() { return value; }
void set_value(int v) { this->value = v; }

Hs

factory_instance create_factory_instance() {
return factory_instance(10);



Compile Time Metaprogramming in C++ P1717R0O

To inject into the parent namespace, you must specify an injection context, for example:
-> namespace expression,

The namespace keyword causes the injection request to “float” into the namespace in which the class is
written. We can use this feature as follows:

class factory_instance {
int value;

public:
factory_instance(int v) : value(v) { }

int get_value() { return value; }
void set_value(int v) { this->value = v; }

consteval -> namespace __fragment namespace {
requires typename factory_instance;
factory_instance create_factory_instance() {
return factory_instance(10);
}
}
3

Note the use of the required type in the namespace fragment. This is needed because the parsing of
create_factory_instance is not deferred until the end of the class: factory_instance is
incomplete at this point in the program. Declaring the required type allows us to defer semantic analysis
until injection.

Injecting into a Specified Namespace

In some cases, it may be desirable to inject into a specific namespace. As an example, let's say, you're
creating a geometry library, and you want all areas function to live under the same namespace, but be
defined with the class. As an example consider:

namespace {
struct square {
unsigned width, height;
3

namespace area {
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unsigned calculate(square const& s) {
return s.width * s.height;

}

To inject into a specific namespace, you must specify an injection context, for example:
-> namespace ( namespace-name ) expression
This comes together as follows:

namespace shape {
namespace area { }

struct square {
unsigned width, height;

consteval -> namespace(area) __fragment namespace {
requires typename square;

unsigned calculate(square const& s) {
return s.width * s.height;

Metaclasses

A metaclass uses reflection and source code injection to define special kinds of classes. The original
motivation of metaclasses aims to reduce the core language rules of “class-like” declarations (classes,
structs, unions, interfaces, namespaces, etc.) by making them library features. For example, if we want to
define an interface, we would write this:

class(interface) comparable

{

bool equal_to(comparable const& x);
bool less_than(comparable const& x);

Hs
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A metaclass is specified as part of the class-key, in parentheses following struct or class. The name
in parentheses designates a constesxpr function that transforms the contents of class definition. The
metaclass definition above is roughly equivalent to this:

class comparable_prototype

{
bool equal_to(comparable const& x);
bool less_than(comparable const& x);

}s

class comparable {
using prototype = comparable_prototype;
constexpr -> interface(reflexpr(prototype));

¥
The semantics of interface are defined only by that function. For completeness, that function is defined as:

consteval void interface(meta::info source) {
for (meta::info mem : meta::range(source)) {
meta::compiler_require(
Imeta: :is_data_member (mem),
"interfaces may not contain data");
meta::compiler_require(
Imeta::is_copy(mem) && !meta::is_move(mem),
"interfaces may not copy or move; consider
"a virtual clone() instead");

if (meta::has_default_access(mem))
meta: :make_public(mem) ;

meta::compiler_require(
meta::is_public(mem),
"interface functions must be public");
meta: :make_pure_virtual(mem);
-> mem;

-> __fragment struct X { virtual ~X() noexcept = default; };

}s
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This function does a few things, first, it iterates over the prototype designated by the parameter source.
Inside of the loop, it then checks some basic requirements of an interface, ensuring that there are no data
members in the prototype, and that there are no copy or move constructors, or assignment operators.

The interface metafunction then begins to set modifiers on the member to transform the member when it
is injected. First, it checks to see if the member has default access. This is specifically defined to mean
that the member's access level has been inherited from the prototype class, and was not set explicitly by
an access specifier.

If the member has default access, its access level is then explicitly set to public. Then, we check to make
sure that the member is now public. This in turn, effectively makes a compiler error for any member
which is declared following a non-public access specifier, inside of the prototype. Finally, the
metafunction makes the member pure virtual, and then queues it for injection.

After iterating over existing members, the metafunction then finishes the interface class by injecting a
virtual destructor.

Type Transformations

Type transformers provide a facility similar to metaclasses except that they can be applied to
already-existing classes. Type transformations have the following syntax:

using class identifier as id-expression
( nested-namespace-specifier,, class-name )

using class identifier as id-expression
( nested-namespace-specifier,, class-name , expression-list )

The id-expression names a constexpr function: the transformation function. The first operand to that
function is the name of the class to transform. Additional arguments to function can be provided after the
class name. This is equivalent to writing the following:

class identifier {
using prototype = class-name;
constexpr -> id-expression(reflexpr(prototype), expression-list) ;

}
In other words, we are generating a new class whose members are computed from the initial input.

For example, if we want to build an interface from an existing class, we can apply the interface
metaprogram without modifying the initial source.
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using class IShape as interface(shape);

This will generate a new abstract base class using shape as an initial specification.

Conclusion and Future Work

This paper presents a large number of new (and sometimes complex) features that support compile-time
generative programming in C++. The syntax is still unformalized, and there are a number of design
decisions that may need to be reconsidered as the language evolves. For example, a future version of
static reflection may be allowed to directly modify the translation context, which is something that we
have generally tried to avoid. With that change, we could change source code injection so that their results
would be immediately available rather than queued for completion. That said, we believe this design is a
good first step towards standardized language support for compile-time metaprogramming.



