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1 Changelog

R2

� focus on EWG
� add cancel_if section
� add Strategy pattern section
� add concurrency motivation
� add Lisa Lippincott and Lewis Baker as co-authors

R1

� Use bibliography for Cologne paper references
� add stack-frame analogy for callbacks
� add fiber_context unwind mechanisms
� add section on non-cpp-exception
� add code to show throw(...) usages that break unwind by exception
� fix code examples (apply Lewis’ feedback)
� add f(g(h())), generator & retry examples
� switch the term neither-a-result-nor-an-error to serendipitous-success

2 Introduction

One of the basis operations for any async function is cancellation. In this paper we explore the uses of cancellation
to determine how to represent the result of a cancelled async function (the mechanism to signal a request for
cancellation is covered by stop_source in C++20). In this paper a cancelled result is described as an instance
of serendipitous-success (Credit to Lisa Lippincott for coining this term).

2.1 cancellation is not just for async functions

In writing this paper it became clear that serendipitous-success is essential for all C++ functions. C++ already
supports serendipitous-success within blocks using goto and the more constrained break and continue to skip
over code without throwing an exception. However these do not compose in a way that allows a stack of
functions to be unwound without throwing an exception. [P0709R4] Zero-overhead deterministic exceptions:
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Throwing values describes mechanisms that could possibly be extended to enable serendipitous-success for C++
functions. [P1095R0] Zero overhead deterministic failure - A unified mechanism for C and C++ may allow
serendipitous-success to be supported for C functions as well.

2.2 Dual of the Strategy pattern

An effort is cancelled when some higher-level goal has already been satisfied, rendering the current effort
unnecessary, and possibly wasteful.

This pattern is dual to the strategy pattern where we use exceptions. In the strategy pattern, we abort a strategy
when we discover that a low-level goal cannot be satisfied, rendering the current strategy impossible.

Both patterns share the idea of early exit from an operation, and the thinking that has gone into the early exit
model for exceptions also applies to cancellation. In particular:

— There are discrete points in the code where early exit may be initiated, i.e., throw statements or cancellation
points.

— Early exit, whether by exception or cancellation, must unwind the stack, executing destructors.

— Some functions must guarantee to their callers that they will not exit early.

On the other hand, some things are reversed:

— The reason for an exception is governed at a low level, near the throw point. The reason for cancellation is
governed at a high level, near the cancellable effort.

— High-level code must be prepared to accept failure for a wide variety of low level reasons. Low-level code
must be prepared to be cancelled for a wide variety of high-level reasons.

— When a sub-strategy of a larger strategy fails, we only abort the sub-strategy. When a larger effort
encompassing a sub-effort is rendered unnecessary, we abort the larger effort.

2.3 return value and exception representations of serendipitous-success

The ideas in this paper have proved to be exceedingly difficult to communicate. Each time this conversation is
begun with a new person the same process of exploring the existing options to represent a cancelled result from a
function is repeated.

It is usually easy to discard using an optional<T> return value. This ease is due to the noise it introduces, so we
can skip the much harder task of explaining that the return value is a poor representation of a cancelled result.

We cannot avoid the hard task of explaining why something like a cancelled_error exception or error_code is
a poor representation of a cancelled result, because it does not appear at first glance to introduce a lot of noise.
This paper is focused on explaining why errors are a bad way to represent a cancelled result.

3 Poll proposals

— [] Does EWG wish to pursue a language representation of serendipitous-success?

— [] Should serendipitous-success be limited to coroutines?

— [] Should serendipitous-success be available to all functions?

— [] n-way poll for which of the language proposals should be pursued?
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4 Background

The jthread paper [P0660R9] and the fiber_context paper revisions [P0876R5] & [P0876R6] each describe
exception based mechanisms for unwinding a stack in response to a cancellation request. These mechanisms have
all been removed in later paper revisions due to issues with using exceptions to unwind the stack.

The jthread paper also defines stop_source and stop_token. A stop_source allows cancellation to be
requested. A callback can be attached to the corresponding stop_token that will be called when the cancellation
is requested. The stop_token also has methods to report the current cancellation state.

The stop_source/stop_token mechanism provides a way to request an async function to stop but does not
specify how the async function completes without a value or an error. This paper will explore how an async
function will complete when it is stopped and why that is not an exception or an error.

The jthread and fiber_token use cases involve unwinding conventional stack frames. This same functionality
is also required in other realms. [P1745R0] describes how to add support for unwinding a graph of coroutine
frames without using errors. [P1660R0] describes a solution for unwinding a graph of dependent tasks.

5 Motivation

Motivations for this paper include previously proposed features (eg. stack unwinding), existing practice (eg.
Callbacks), and the needs of generic code and algorithms (eg. Algorithms that cancel).

5.1 concurrency

Concurrency is one of the many motivations for cancellation.

When there is no concurrency, then the result of a function call can be used to skip additional work and return
early.

When there is concurrency, then the result of an async function must also be able to skip related concurrent work
and return early.

Without cancellation, the related concurrent work must either be detached (which leads to a variety of problems
around resource utilization and lifetime), or the related concurrent work must be joined before the result is
produced (which causes increased resource utilization and latency).

5.2 stack unwinding

[P0660R4] is an earlier revision of the jthread paper that defined a std::interrupted exception and a
std::this_thread::throw_if_interrupted() API. These were intended to exit an arbitrary scope using the
exception mechanism.

This revision of the paper was discussed in an SG1 meeting in Seattle wiki. After several issues were described
related to TLS and reporting cancellation as an exception, the participants voted that the parts related to the
std::interrupted exception should be removed from the paper.

The fiber_context paper [P0876R5] defined unwind_exception, and after similar discussion in San Diego,
[P0876R6] replaced unwind_exception with a ‘platform exception’ that did not run catch blocks. The ‘platform
exception’ was removed after more discussion in Cologne.

The issues related to reporting cancellation as a C++ exception included explicitly ignoring std::interrupted
and transporting std::interrupted.
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5.2.1 C++ exception

5.2.1.1 explicitly ignoring std::interrupted

[P0660R4] added this to std::thread.

An uncaught interrupted exception in the started thread of execution will silently be ignored. [Note: Thus,
an uncaught exception thrown by this_thread::throw_if_interrupted() will cause the started thread to end
silently. — end note]

This is an example of how existing error handling must change when cancellation is reported as an error.
std::interrupted requires that, in every function on the stack in the thread, at the time cancellation is reported,
the std::interrupted exception is explicitly ignored. std::interrupted was intended to be implicitly ignored,
and to help achieve this, std::interrupted was not derived from std::exception. Explicit handling of
std::interrupted is still required in that:

— noexcept functions cannot be on the stack to be unwound
— all functions that cross ABI boundaries, such as callbacks passed to C functions, like OS APIs, must

suppress std::interrupted
— all catch(...) must rethrow, just in case the exception is std::interrupted
— all catch(...) must be called for std::interrupted, since many catch(...) are used to cleanup and

some of those instances are in std lib implementations.
— all catch(const std::interrupted&) must rethrow.

It is interesting to note that the ABI boundary restriction conflicts with the catch restrictions. The ABI and the
catch restrictions also led to the second issue.

5.2.1.2 transporting std::interrupted

std::exception_ptr and std::current_exception() were introduced to support async facilities like
std::thread, Futures, Executors and Coroutines that must be able to transport exceptions from one thread to
another and facilities that transport exceptions across ABI boundaries. While this appears to satisfy the catch
restrictions by re-throwing a saved std::exception_ptr on a different thread, this adds even more instances of
code that need to be explicitly aware of std::interrupted.
void f(MyCallback out) {

try {
out(g());

}
catch(...) {

// should std::interrupted be forwarded to out or
// should it be used to unwind f()?
out.error(std::current_exception());

}
}

When std::interrupted is transported from thread A to thread B: - was std::interrupted intended to tear
down thread A? How is that determined? - does thread B support std::interrupted (it might be an OS thread)?
- does every function on the stack in thread B when the exception is re-thrown support std::interrupted?

5.2.2 non-cpp-exception

The issues of ignoring and transporting C++ exceptions for unwind has led to alternative designs that involve a
non-cpp-exception.

A non-cpp-exception can have different interactions with catch blocks than C++ exceptions. Three of these
potential interaction choices are explored here.
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5.2.2.1 non-cpp-exception that does not execute catch blocks

One option is to never run any catch block during unwind. This depends on destructors to do all cleanup and
restore all invariants.

Here is an example of code that would not be safe to have on the stack when catch blocks are not executed.

Example: unlock will not be called on unwind.
void f(Foo foo) {

try {
foo.lock();
g();
foo.unlock();

}
catch(...) {

// invariant violation
foo.unlock();

}
}

5.2.2.2 non-cpp-exception that will execute catch(. . . ) blocks normally

One option is to run each catch(...) block during unwind. This allows catch(...) blocks and destructors to
cleanup and restore all invariants.

Here are examples of code that would not be safe to have on the stack when catch(...) blocks are run normally.

Example: The unwind will be stopped and the result of std::current_exception() would be used even
though there is no valid value for it to return.
void f(Foo foo) {

Bar* bar = nullptr;
try {

bar = g();
}
catch(...) {

// what does current_exception() return for non-cpp-exception?
// what do other exception related functions return?
foo.error(std::current_exception());

// is it ok for this to suppress the non-cpp-exception thus stopping the unwind?
return;

}
foo(bar);

}

Example: The unwind would not run the catch and thus would not call unlock.
void f(Foo foo) {

try {
foo.lock();
g();
foo.unlock();

}
catch(const std::exception&) {

// invariant violation
foo.unlock();
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}
}

5.2.2.3 non-cpp-exception that will execute catch(. . . ) blocks and force a rethrow at the end of
the block

One option is to run each catch(...) block during unwind and then unconditionally rethrow at the end of the
catch block. This allows catch(...) blocks and destructors to cleanup and restore invariants.

Here are examples of code that would not be safe to have on the stack when catch(...) blocks are run and
then forced to rethrow.

Example: unlock will not be called on unwind.
void f(Foo foo) {

foo.lock();
try {

g();
}
catch(...) {
}
// invariant violation
foo.unlock();

}

Example: The result of std::current_exception() would be used even though there is no valid value for it
to return. Control-flow choices are ignored.
void f(Foo foo) {

Bar* bar = nullptr;
try {

bar = g();
}
catch(...) {

// what does current_exception() return for non-cpp-exception?
// what do other exception related functions return?
foo.error(std::current_exception());

// does not skip the rethrow
return;

}
foo(bar);

}

Example: The unwind would not run the catch and thus would not call unlock.
void f(Foo foo) {

try {
foo.lock();
g();
foo.unlock();

}
catch(const std::exception&) {

// invariant violation
foo.unlock();

}
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}

5.3 Algorithms that cancel

There are many algorithms for async functions. These algorithms must be able to trigger cancellation and stop
cleanly when cancelled.

Some examples:

— the when_any() (aka amb()) algorithm which cancels the other producers once one of them produced a
value (and in this case, emits no error).

— the when_all() (aka zip()) algorithm which cancels the other producers when one completes with an
error.

— the take_until() algorithm which cancels the source when the trigger completes and cancels the trigger
when the source completes.

— the timeout() algorithm which cancels the source when it does not produce a value before the timeout
and then emits timeout_error (which is defined as part of the timeout() algorithm).

5.3.1 when_any()

One expression of the when_any() algorithm takes a set of async functions that have a common return type and
returns the result of the first async function to complete with a value or error and cancels the rest and emits the
value or error.
void foo() {

common_type_t<invoke_result_t<f>, invoke_result_t<g>> v = wait(when_any(f, g));
// ..

}

when_any() must have a way to know when an async function completed. when_any() is interested in knowing
when an async function has completed with a value, with an error and with serendipitous-success. When all the
async functions complete with serendipitous-success, then when_any() must complete with serendipitous-success.

NOTE: For the purpose of comparison this paper will use the Callback naming specified in [P1660R0] as an
example of multiple function style. The names chosen for a particular expression of the multiple function
style do not affect this proposal.
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Table 1: generic when_any() algorithm example (simplified for
clarity)

function pipe operator

namespace when_any_alg {

template<class C>
struct result {

C c_;
atomic<int> remain_ = 2;
function<void(C)> r_;
stop_source stop_;
void defer() {

if (--remain_ == 0) {
if (!r_) {

c_.done();
} else {

r_(c_);
}

}
}

};

namespace when_any_alg {

template<class C>
struct result {

C c_;
atomic<int> remain_ = 2;
function<void(C)> r_;
stop_source stop_;
void defer() {

if (--remain_ == 0) {
if (!r_) {

c_.done();
} else {

r_(c_);
}

}
}

};

template<class R>
struct when_any_callback {

R r_;
void operator()(auto... vn) {

if (stop_.request_stop()) {
r_->r_ = [t=make_tuple(vn...)]

(auto c) {apply(c, t);};
}
r_->defer();

}
void error(auto e) noexcept {

if (stop_.request_stop()) {
r_->r_ = [e]

(auto c) {c.error(e);};
}
r_->defer();

}
void done() noexcept {

r_->defer();
}

};

template<class R>
struct when_any_callback {

R r_;
void operator()(auto... vn) {

if (stop_.request_stop()) {
r_->r_ = [t=make_tuple(vn...)]

(auto c) {apply(c, t);};
}
r_->defer();

}
void error(auto e) noexcept {

if (stop_.request_stop()) {
r_->r_ = [e]

(auto c) {c.error(e);};
}
r_->defer();

}
void done() noexcept {

r_->defer();
}

};
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function pipe operator

template<class S0, class S1>
struct when_any_sender {

S0 s0_;
S1 s1_;
void submit(Callback auto c) {

auto r = make_shared<
result<decltype(c)>{c};

s0_.submit(
when_any_callback<decltype(r)>{

r});
s1_.submit(

when_any_callback<decltype(r)>{
r});

}
};

template<class S0, class S1>
struct when_any_sender {

S0 s0_;
S1 s1_;
void submit(Callback auto c) {

auto r = make_shared<
result<decltype(c)>{c};

s0_.submit(
when_any_callback<decltype(r)>{

r});
s1_.submit(

when_any_callback<decltype(r)>{
r});

}
};

// --->
// --->
// --->
// --->
// --->
// --->
// --->
// --->

struct fn {
auto operator()(

Sender auto s0, Sender auto s1) {
return when_any_sender<

decltype(s0), decltype(s1)>{s0, s1};
}

};

}
constexpr inline when_any_alg::fn when_any{};

template<class S1>
struct pipe_fn {

S1 s1_;
auto operator()(Sender auto s0) {

return when_any_sender<
decltype(s0), S1>{s0, s1_};

}
};

struct fn {
auto operator()(Sender auto s1) {

// <---
return pipe_fn<decltype(s1)>{s1};
// <---

}
};

}
constexpr inline when_any_alg::fn when_any{};

When some errors are supposed to terminate the operation early and others are not supposed to terminate the
operation early, then an additional predicate is needed to select when to terminate early. If S0 calls error()
with cancelled_error then S1 may still complete with a value. If S0 completes with timeout_error then it
does not matter what S1 will complete with.
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Table 2: generic when_any() algorithm example - done() vs. inspect
error()

done() inspect error()

namespace when_any_alg {

// --->
// --->
template<class C>
struct result {

// --->
C c_;
atomic<int> remain_ = 2;
function<void(C)> r_;
stop_source stop_;
void defer() {

if (--remain_ == 0) {
if (!r_) {

c_.done();
} else {

r_(c_);
}

}
}

};

namespace when_any_alg {

struct when_any_stopped {
};
template<class P, class C>
struct result {

P p_;
C c_;
atomic<int> remain_ = 2;
function<void(C)> r_;
stop_source stop_;
void defer() {

if (--remain_ == 0) {
if (!r_) {

c_.error(when_any_stopped{});
} else {

r_(c_);
}

}
}

};

template<class R>
struct when_any_callback {

R r_;
void operator()(auto... vn) {

if (stop_.request_stop()) {
r_->r_ = [t=make_tuple(vn...)]

(auto c) {apply(c, t);};
}
r_->defer();

}
void error(auto e) noexcept {

// --->
if (stop_.request_stop()) {

r_->r_ = [e]
(auto c) {c.error(e);};

}
// --->
r_->defer();

}
void done() noexcept {

r_->defer();
}

};

template<class R>
struct when_any_callback {

R r_;
void operator()(auto... vn) {

if (stop_.request_stop()) {
r_->r_ = [t=make_tuple(vn...)]

(auto c) {apply(c, t);};
}
r_->defer();

}
void error(auto e) noexcept {

if (r_->p_(e)) {
if (stop_.request_stop()) {

r_->r_ = [e]
(auto c) {c.error(e);};

}
}
r_->defer();

}
// <---
// <---
// <---

};
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done() inspect error()

template<class S0, class S1>
struct when_any_sender {

// --->
S0 s0_;
S1 s1_;
void submit(Callback auto c) {

auto r = make_shared<
result<decltype(c)>{c};

s0_.submit(
when_any_callback<decltype(r)>{

r});
s1_.submit(

when_any_callback<decltype(r)>{
r});

}
};

template<class P, class S0, class S1>
struct when_any_sender {

P p_;
S0 s0_;
S1 s1_;
void submit(Callback auto c) {

auto r = make_shared<
result<P, decltype(c)>{p_, c};

s0_.submit(
when_any_callback<decltype(r)>{

r});
s1_.submit(

when_any_callback<decltype(r)>{
r});

}
};

template<class S1>
struct pipe_fn {

// --->
S1 s1_;
auto operator()(Sender auto s0) {

return when_any_sender<
decltype(s0), S1>{s0, s1_};

}
};

struct fn {
// --->
auto operator()(Sender auto s1) {

return pipe_fn<decltype(s1)>{s1};
}

};

}
constexpr inline when_any_alg::fn when_any{};

template<class P, class S1>
struct pipe_fn {

P p_;
S1 s1_;
auto operator()(Sender auto s0) {

return when_any_sender<
P, decltype(s0), S1>{p_, s0, s1_};

}
};

struct fn {
template<class P>
auto operator()(P p, Sender auto s1) {

return pipe_fn<P, decltype(s1)>{p, s1};
}

};

}
constexpr inline when_any_alg::fn when_any{};

The additional complexity of the predicate impacts each algorithm that cancels. The complexity also impacts
each use of algorithms that cancel.

A predicate that filters the errors would have some essential complexity and overhead.
struct should_fail {

bool operator()(std::error_code e) {
//..

}
bool operator()(std::exception_ptr e) {

try {
std::rethrow_exception(e);
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} // support for specific exceptions..
catch(...) { // default to failure

return true;
}
return false;

}
// support for other error types..

};

With done() the error filtering concern can be extracted from when_any() and the rest of the algorithms that
cancel. A filter_error() algorithm would take the predicate and forward the error() if the predicate returned
true.

Table 3: using when_any to compose async (get_data)

done() inspect error()

auto foo() {
return get_data(server0) |

filter_error(should_fail{}) |
when_any(get_data(server1) |

filter_error(should_fail{}));
}

auto foo() {
return get_data(server0) |

// <---
when_any(should_fail{},

get_data(server1));
}

Observe that the should_fail predicate is unable to distinguish which source it is filtering when it is mixed into
when_any. Separating the filter concern into filter_error() provides each source with a different filter.

Notice also, that introducing the when_any_stopped error type indicates that other algorithms will need to
include that type in their predicates when they wish to filter it out.

When cancellation is not an error, algorithms that cancel are not concerned with errors and can pass through the
value and error calls unchanged. The separation of concerns provided by the when_any() and filter_error()
algorithms depend on cancellation not being an error.

5.4 Algorithms that respond to errors

One way to explore cancellation as separate from error is to show how treating cancellation as an error affects
algorithms that respond to errors.

5.4.1 a generic retry() algorithm

retry() responds to errors by submitting the work again and again until it completes with success or is cancelled.

NOTE: For the purpose of comparison this paper will use the Callback naming specified in [P1660R0] as an
example of multiple function style. The names chosen for a particular expression of the multiple function
style do not affect this proposal.

When done() and error() are separate, the code for retry() does not need to inspect errors.
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Table 4: generic retry() algorithm example (simplified for clarity)

function pipe operator

namespace retry_alg {

template<class S, class C>
struct retry_callback {

S s_;
C c_;
void operator()(auto... vn) {

c_(vn...);
}
void error(auto) noexcept {

s_.submit(*this);
}
void done() noexcept {

c_.done();
}

};

template<class S>
struct retry_sender {

S s_;
void submit(Callback auto c) {

s_.submit(
retry_callback<S, decltype(c)>{s_, c});

}
};

// --->
// --->
// --->
// --->
// --->

struct fn {
auto operator()(Sender auto s) {

return retry_sender<decltype(s)>{s};
}

};

}
constexpr inline retry_alg::fn retry{};

namespace retry_alg {

template<class S, class C>
struct retry_callback {

S s_;
C c_;
void operator()(auto... vn) {

c_(vn...);
}
void error(auto) noexcept {

s_.submit(*this);
}
void done() noexcept {

c_.done();
}

};

template<class S>
struct retry_sender {

S s_;
void submit(Callback auto c) {

s_.submit(
retry_callback<S, decltype(c)>{s_, c});

}
};

struct pipe_fn {
auto operator()(Sender auto s) {

return retry_sender<decltype(s)>{s};
}

};

struct fn {
auto operator()() {

return pipe_fn{};
}

};

}
constexpr inline retry_alg::fn retry{};

When some errors are supposed to retry and others are not supposed to retry then an additional predicate is
needed to select when to retry.
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Table 5: generic retry() algorithm example with done() vs. in-
specting error()

done() inspect error()

namespace retry_alg {

template<class S, class C>
struct retry_callback {

// --->
S s_;
C c_;
void operator()(auto... vn) {

c_(vn...);
}
void error(auto) noexcept {

// --->
s_.submit(*this);
// --->
// --->
// --->

}
void done() noexcept {

c_.done();
}

};

template<class S>
struct retry_sender {

// --->
S s_;
void submit(Callback auto c) {

s_.submit(
retry_callback<S, decltype(c)>{s_, c});
// --->

}
};

// --->
struct pipe_fn {

// --->
auto operator()(Sender auto s) {

return retry_sender<decltype(s)>{s};
// --->

}
};

struct fn {
// --->
auto operator()() {

return pipe_fn{};
}

};

}
constexpr inline retry_alg::fn retry{};

namespace retry_alg {

template<class P, class S, class C>
struct retry_callback {

P p_;
S s_;
C c_;
void operator()(auto... vn) {

c_(vn...);
}
void error(auto e) noexcept {

if (p_(e)) {
s_.submit(*this);

} else {
c_.error(e);

}
}
// <---
// <---
// <---

};

template<class P, class S>
struct retry_sender {

P p_;
S s_;
void submit(Callback auto c) {

s_.submit(
retry_callback<P, S, decltype(c)>{

p_, s_, c});
}

};

template<class P>
struct pipe_fn {

P p_;
auto operator()(Sender auto s) {

return retry_sender<P, decltype(s)>{
p_, s};

}
};

struct fn {
template<class P>
auto operator()(P p) {

return pipe_fn<P>{p};
}

};

}
constexpr inline retry_alg::fn retry{};
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done() inspect error()

The additional complexity of the predicate impacts each algorithm that responds to errors. The complexity also
impacts each use of algorithms that respond to errors.

A predicate that filters the errors would have some essential complexity and overhead.
struct should_retry {

bool operator()(std::error_code e) {
//..

}
bool operator()(std::exception_ptr e) {

try {
std::rethrow_exception(e);

} // support for specific exceptions..
catch(...) { // default to retry

return true;
}
return false;

}
// support for other error types..

};

With done() the error filtering concern can be extracted from retry() and the rest of the algorithms that respond
to errors. A filter_error() algorithm would take the predicate and forward the error() if the predicate
returned true and emit done() when the predicate returned false.

Table 6: using retry to compose async (get_data)

done() inspect error()

auto foo() {
return get_data() |

filter_error(should_retry{}) |
retry();

}

auto foo() {
return get_data() |

// <---
retry(should_retry{});

}

When cancellation is not an error, algorithms that respond to errors are only concerned with errors and can
pass through the value and done calls unchanged. The separation of concerns provided by the retry() and
filter_error() algorithms depend on cancellation not being an error.

5.5 Callbacks

As the most common pattern for expressing async, callbacks also need to be called with serendipitous-success.
There is a lot to be said about callbacks and ([P1678R1], latest) is focused on callbacks. The following will cover
only some of that larger topic.

Examples of callbacks can be found in the networking TS [N4771]. The completion signature for async_accept()
is void(error_code ec, socket_type s). This signature clearly displays that the first argument is used for
the error channel and that the second argument is used for the value channel. Perhaps, if the completion is an
object, the destructor of that object might be a signal that there was a serendipitous-success.
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5.5.1 destructor style

There are reasons not to use the destructor to signal that there was serendipitous-success.

The primary reason is that the compiler calls the destructor for end-of-lifetime which includes exception unwind
and success unwind and unwind of a moved-from object. If the destructor is considered a signal to the Callback,
then the meaning for exception unwind is ignore and success unwind is serendipitous-success and moved-from
object unwind is ignore. This would force Callback destructors to handle the two cases explicitly by maintaining
state; “was error() called?”, “was value() called?”, “is the object moved-from?”. Also, using the destructor to
signal serendipitous-success leaves blocking as the only option for holding the lifetime of the current object for
the end of some other nested or dependent async function. The state and blocking implications are both great
reasons to avoid using the destructor for the serendipitous-success signal. But there is another, async vs object
lifetime.

5.5.2 value and error arguments style

Using separate arguments to a callback to represent error and value channels involves some unfortunate tradeoffs.
The completion signature void(error_code ec, socket_type s) for async_accept() in [N4771] implies that
the socket_type must support an invalid or empty state when ec contains an error. This style requires that all
the parameters used in a completion signature support invalid or empty states, because the same function will be
called for error and success. This requires all implementations of callbacks to check the arguments for validity
before using the arguments. These checks introduce branches, which can be particularly expensive instructions.

Another way to represent this is to use std::optional explicitly on all the args so that the value types used as
callback arguments are not required to support an invalid or empty state.

NOTE: The error_code supports an empty state. The empty state for an error_code is the success code.

5.5.3 std::expected style

Another callback pattern is to combine the value and error into one argument. The completion signature for
the async_accept() example might change to look something like void(expected<error_code, socket_type>
e).

This style does not require socket_type to support an invalid or empty state because it does not need to be
constructed when there is an error. The branches required by the value and error arguments style are still
required in this style, because the same function will be called for error and success.

There is also an additional cost in the codegen for packing and unpacking std::expected. The cost for
std::expected is not as bad as when the value is a std::tuple or a std::variant of std::tuples, but still
worse than when it is an plain argument to the function. For instance, something that transforms the value
from one type to another has to check the error, unpack the value or error and repack the transformed value or
original error into the outgoing expected type.

5.5.4 multiple function style

Some of the tradeoffs encountered when mixing errors and values into the same ‘channel’ (where function
arguments and function return values are both channels for communication with a function), motivated the
creation of the C++ exception channel. C++ exceptions do not require the implementation of a function to
check for the validity of function return values before using them and do not require that function return values
support invalid or empty states (basically re-implementing std::optional in each type) nor require the use of
types that combine error/value alternatives like std::expected.

Using multiple functions for error and value is equivalent to the separation of return value and throw/catch
in the language. Using multiple functions for error and value produces very different tradeoffs than when mixing
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error and value together in one function. The [std::promise type:] is an example of using multiple functions for
error and value that already exists.

A challenge with the [std::promise type:] is that it is a type with only one implementation, whereas callbacks
are intended to be a concept or signature with many implementations. There are several examples of concepts
that use multiple functions for error and value. These concepts primarily differ only in the names of the concepts
and the names of the functions.

— Reactive Extensions defines the Observer concept which has been implemented in many different
languages including C++. The rxcpp implementation uses the names Observer::on_next(T),
Observer::on_error(std::exception_ptr) and Observer::on_completed()

— [P1055R0] defines the Single concept using the names Single::value(T), Single::error(E) and
Single::done()

— [P1341R0] defines the Receiver concept using the names Receiver::value(Tn...), Receiver::error(E)
and Receiver::done(). The pushmi library has an implementation of the Receiver concept.

— [P1660R0] defines the Callback concept that subsumes the Invocable and Fallback concepts resulting in
the names Invocable::operator()(Tn...), Fallback::error(E) and Fallback::done(). [P1660R0]
includes an example implementation.

The Callback concept defined in [P1660R0] has been gaining support in SG1 recently. A completion object for
the async_accept() example might change to look something like:
struct async_accept_completion {

void operator()(socket_type s) && noexcept;
void error(error_code) && noexcept;
void error(exception_ptr) && noexcept;
void done() && noexcept;

};

Where:

— operator() is only called for success
— error() is only called for failure
— done() is only called for serendipitous-success

Provides:

— each function can be specified to be called on a different execution agent
— value types do not need to represent invalid or empty states
— none of the functions are required to add branches and checks for errors or validity
— all types are passed as function arguments with no required packing/unpacking
— overloads of each method allow different types to be supported without use of std::variant
— overloads of each method allow different numbers of arguments to be supported without use of

std::optional or std::variant<std::tuple<>...>

5.5.5 gratuitous

Note: This is for those that object to named methods on an Invocable object.

In an imaginary world these could be renamed as operators in the language. Say that:

— void error(E) became void operator catch(E)
— void done() became void operator break return()
— where catch(callback, std::current_exception()); called callback.operator catch(std::current_exception());
— where break return (callback); called callback.operator break return();

Staying with the async_accept example async_accept_completion might look like this:
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struct async_accept_completion {
void operator()(socket_type s) && noexcept;
void operator catch(error_code) && noexcept;
void operator catch(exception_ptr) && noexcept;
void operator break return() && noexcept;

};

other capabilities of break return are imagined in scope_success, scope_fail, scope_done blocks

5.6 Exception noise

Cancellation is very common when using async functions. Reporting cancellations as exceptions creates a lot of
noise because cancellation is expected to occur frequently.

This noise affects logging and debugging and other forms of analysis. exceptions used to report cancellation have
to be filtered or categorized in many different tools and libraries to control for that noise.

5.7 sync functions (not a typo)

sync functions also need to complete with serendipitous-success.

The clearest expression of this involves coroutines and generators. Another example is std::optional.

5.7.1 coroutine generator

This example is also made clearer by avoiding Iterators.
template<class T>
struct generator {

T next() {..}
};

generator<int> fortyTwos() {
for (int i = 0; i < 5; ++i) {

// the g.next()
// resumes with the int 42
co_yield 42;

}

// the g.next()
// resumes with?
co_return;

}

// assumes that g.next()
// completes with serendipitous-success
void foo() {

auto g = fortyTwos();
for(;;) {

auto fortyTwo = g.next();
}

}
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Notice that generator is a channel that connects two loops, the producer loop and the consumer loop. Each
loop may independently break to exit. When break is used in one loop, the channel must have a way to cause the
other loop to break as well. This signal is not an error, throw is not a good way to represent break. The iterator
concept encodes break into the value by allowing end() to represent an empty iterator.

Another way to say the same thing, is that types like generator<int> actually create a coroutine whose body is
allowed to produce two different value types. co_yield 42; resolves the matching g.next() with an int while
co_return; resumes the matching g.next() with void.

Obviously next() returning int and void does not work in C++ today, which is why generator must model
something more complicated like a Range where begin() and operator++() both produce iterators that are
either a proxy to the yielded value or compare equal to end() when void is returned.

While this value encoding seems natural for Range, it is not so palatable for std::optional.

5.7.2 std::optional

Range (with size 0|1), std::optional and even std::variant<std::monostate,..> are ways to model optional
values in C++. They are themselves values that provide access to a value or nothing.

It might seem that if cancellation is not an error that std::optional would allow cancellation to be composed
into the return value rather than as an exception. This path was rejected previously because of the impact that
it would have on code. all return values for all functions that could be cancelled or would use functions that
could be cancelled would have to return std::optional. All callers of functions that returned std::optional
would have to explicitly check, extract the value or forward on the empty std::optional. This wrapping and
unwrapping is expensive at runtime and messy in the code and very error prone (the cancellation may not
propagate when it should). These are all reasons that C++ exceptions have a separate channel and the same
reasons motivate a separate channel for serendipitous-success.

5.8 Examples

An imaginary world, where a sync function can complete with serendipitous-success, would have cleaner code.
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Table 7: op() that produces an empty value when a feature is not
supported vs. imaginary op() that emits serendipitous-success

Real Imaginary

std::optional<int> op() {
if (!has_feature()) {

return std::nullopt; // <--->
}
return feature();

}

void foo() {
// ..
auto i = op();
if (!i) {

return;
}
// use *i.. <--->

} // jumps here when the feature is
// not supported

int op() {
if (!has_feature()) {

break return;
}
return feature();

}

void foo() {
// ..
auto i = op();
// <---
// <---
// <---
// use i..

} // jumps here when the feature is
// not supported

Table 8: op() that produces an error when a feature is not supported
vs. imaginary op() that emits serendipitous-success

Real Imaginary

int op() {
if (!has_feature()) {

throw unsupported_error(); // <--->
}
return feature();

}

void foo() {
// ..
try {

auto i = op();
// use i..

} catch(const unsupported_error&) {
return;

}
} // jumps here when the feature is

// not supported

int op() {
if (!has_feature()) {

break return;
}
return feature();

}

void foo() {
// ..
// <---
auto i = op();
// use i..
// <---
// <---
// <---

} // jumps here when the feature is
// not supported
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5.8.1 f(g(h()))

Given a simple composition of the functions f(), g(), h(), demonstrate various forms of cancellation within
their implementations.

— h() will return a task that produces a void result each time it is invoked (unless it has been cancelled)
— g() will return a task that that calls the task argument 9 times then cancels
— f() will wait for the task argument to complete and print the results

These first implementations are sync functions that use optional<> to compose f(), g(), and h().

Table 9: composition - explicit vs. lazy

Explicit Lazy

// usage
int main() {

f();
}

// usage
int main() {

f(g(h()));
}

using void_value = tuple<>;
auto h(stop_token stop) // <--->

// --->
-> optional<void_value> {
if(stop.stop_requested()) {

return nullopt;
}
return void_value{};
// --->

}

using void_value = tuple<>;
auto h() {

return [](stop_token stop)
-> optional<void_value> {
if(stop.stop_requested()) {

return nullopt;
}
return void_value{};

};
}

auto g(stop_token stop) // <--->
// ---->
-> optional<int> {
int count = 0;
stop_source stopInner;
for (;;) {

if (stop.stop_requested()) {
stopInner.request_stop();

}
if (!h(stopInner.get_token())) {

break;
}
if (++count >= 9) {

stopInner.request_stop();
}

}
return count;
// --->

}

auto g(auto h) {
return [h](stop_token stop)

-> optional<int> {
int count = 0;
stop_source stopInner;
for (;;) {

if (stop.stop_requested()) {
stopInner.request_stop();

}
if (!h(stopInner.get_token())) {

break;
}
if (++count >= 9) {

stopInner.request_stop();
}

}
return count;

};
}
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Explicit Lazy

void f() { // <--->
exception_ptr ex;
stop_source stop;
optional<int> count;
thread t{[&](){

this_thread::sleep_for(100ms);
stop.request_stop();

}};
try {

count = g(stop.get_token());
} catch(...) {

ex = current_exception();
}
auto w = (

!!count ? "completed" :
!!ex ? "failed" :
!count ? "stopped" : "invalid");

printf("which %s, count %d", w, *count);
t.join();

}

void f(auto g) {
exception_ptr ex;
stop_source stop;
optional<int> count;
thread t{[&](){

this_thread::sleep_for(100ms);
stop.request_stop();

}};
try {

count = g(stop.get_token());
} catch(...) {

ex = current_exception();
}
auto w = (

!!count ? "completed" :
!!ex ? "failed" :
!count ? "stopped" : "invalid");

printf("which %s, count %d", w, *count);
t.join();

}

The Explicit composition demonstrates one level of composition, Lazy demonstrates another level of composition
that is needed to allow functions to be chained in an expression. This is similar to the difference between
std::transform and std::views::transform.

The rest of these implementations have been structured to support the Lazy form of composition.

This demonstrates an async implementation with a Library composition model that has cancellation support.

NOTE: For the purpose of comparison this paper will use the Callback naming specified in [P1660R0] as an
example of multiple function style. The names chosen for a particular expression of the multiple function
style do not affect this proposal.

struct h_task {
void submit(Callback auto c) {

try {
thread t([c]() mutable {

if(c.get_stop_token().stop_requested()) {
c.done();

} else {
c();

}
});
t.detach();

} catch(...) {
c.error(std::current_exception());

}
}

};
h_task h() {
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return {};
}

template<class H, class C>
struct g_callback {

H h_;
C c_;
int count_ = 0;
stop_source stop_;
stop_token get_stop_token() {

return stop_.get_token();
}
void operator()() {

if (c_.get_stop_token().stop_requested()) {
stop_.request_stop();

}
++count_;
try {

if (count_ < 9) {
h_.submit(*this);

} else {
stop_.request_stop();
h_.submit(*this);

}
} catch(...) {

c_.error(std::current_exception());
}

}
void error(auto e) noexcept {

if (c_.get_stop_token().stop_requested()) {
stop_.request_stop();

}
c_.error(e);

}
void done() noexcept {

if (c_.get_stop_token().stop_requested()) {
c_.done();
return;

}
try {

c_(count_);
} catch(...) {

c_.error(std::current_exception());
}

}
};
template<class H>
struct g_task {

H h_;
void submit(Callback auto c) {

try {
h_.submit(g_callback<H, decltype(c)>{

h_, c});
} catch(...) {
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c.error(std::current_exception());
}

}
};
auto g(Sender auto h)

-> g_task<decltype(h)> {
return {h};

}

struct f_callback {
stop_token stop_;
atomic<int>& which_;
atomic<int>& count_;
stop_token get_stop_token() {

return stop_;
}
void operator()(int count) {

count_.exchange(count);
which_.exchange(1);

}
void error(auto e) noexcept {

which_.exchange(2);
}
void done() noexcept {

which_.exchange(3);
}

};
void f(auto g) {

stop_source stop;
atomic<int> which{0};
atomic<int> count{0};
thread t{[&](){

this_thread::sleep_for(100ms);
stop.request_stop();

}};
f_callback r{stop.get_token(), which, count};
g.submit(r);
stop.request_stop();
while(which.load() == 0);
auto w = (

which.load() == 1 ? "completed" :
which.load() == 2 ? "failed" :
which.load() == 3 ? "stopped" : "invalid");

printf("which %s, count %d", w, count.load());
t.join();

}

This implementation demonstrates a sync implementation with a Library composition model that uses the return
value to support cancellation.
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Table 10: serendipitous-success - return value vs. imaginary language
feature

Real Imaginary

using void_value = tuple<>;
auto h() {

return [](stop_token stop)
-> optional<void_value> {
if(stop.stop_requested()) {

return nullopt; // <--->
}
return void_value{}; // <--->

};
}

// <---
auto h() {

return [](stop_token stop) {
// <---
if(stop.stop_requested()) {

break return;
}
return;

};
}

auto g(auto h) {
return [h](stop_token stop)

-> optional<int> { // <--->
int count = 0;
stop_source stopInner;
for (;;) {

if (stop.stop_requested()) {
stopInner.request_stop();

}
// --->
if (!h(stopInner.get_token())) { // >

break; // <-->
}
if (++count >= 9) {

stopInner.request_stop();
}

}
return count;

};
}

auto g(auto h) {
return [h](stop_token stop)

-> int {
int count = 0;
stop_source stopInner;
for (;;) {

if (stop.stop_requested()) {
stopInner.request_stop();

}
{

scope_done {break;}
h(stopInner.get_token());

}
if (++count >= 9) {

stopInner.request_stop();
}

}
return count;

};
}
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Real Imaginary

void f(auto g) {
exception_ptr ex;
stop_source stop;
optional<int> count; // <---->
thread t{[&](){

this_thread::sleep_for(100ms);
stop.request_stop();

}};
auto print = [&]() {

t.join();
auto w = (

!!count ? "completed" :
!!ex ? "failed" :
!count ? // <---->

"stopped" : "invalid");
printf("which %s, count %d", w, *count);

};
scope_guard {print();}
try {

count = g(stop.get_token());
} catch(...) {

ex = current_exception();
}

}

void f(auto g) {
exception_ptr ex;
stop_source stop;
int count = 0;
thread t{[&](){

this_thread::sleep_for(100ms);
stop.request_stop();

}};
auto print = [&]() {

t.join();
auto w = (

!!count ? "completed" :
!!ex ? "failed" :
stop.stop_requested() ?

"stopped" : "invalid");
printf("which %s, count %d", w, count);

};
scope_guard {print();}
try {

count = g(stop.get_token());
} catch(...) {

ex = current_exception();
}

}

This implementation demonstrates a sync implementation with a Library composition model that uses throw to
support cancellation.

Table 11: serendipitous-success - throw vs. imaginary language
feature

Real Imaginary

struct stopped_exception : exception {};
auto h() {

return [](stop_token stop) {
if(stop.stop_requested()) {

throw stopped_exception{}; // <--->
}
return ;

};
}

// <---
auto h() {

return [](stop_token stop) {
if(stop.stop_requested()) {

break return;
}
return;

};
}
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Real Imaginary

auto g(auto h) {
return [h](stop_token stop)

-> int {
int count = 0;
stop_source stopInner;
for (;;) {

if (stop.stop_requested()) {
stopInner.request_stop();

}
try {

// --->
h(stopInner.get_token());

} catch (const stopped_exception&) {
break;

}
if (++count >= 9) {

stopInner.request_stop();
}

}
return count;

};
}

auto g(auto h) {
return [h](stop_token stop)

-> int {
int count = 0;
stop_source stopInner;
for (;;) {

if (stop.stop_requested()) {
stopInner.request_stop();

}
{

scope_done {break;}
h(stopInner.get_token());
// <---
// <---

}
if (++count >= 9) {

stopInner.request_stop();
}

}
return count;

};
}

void f(auto g) {
exception_ptr ex;
stop_source stop;
optional<int> count;
thread t{[&](){

this_thread::sleep_for(100ms);
stop.request_stop();

}};
auto print = [&]() {

t.join();
auto w = (

!!count ? "completed" :
!!ex ? "failed" :
!count ? "stopped" : "invalid");

printf("which %s, count %d", w, *count);
};
scope_guard {print();}
try {

count = g(stop.get_token());
} catch (const stopped_exception&) {
} catch(...) {

ex = current_exception();
}

}

void f(auto g) {
exception_ptr ex;
stop_source stop;
optional<int> count;
thread t{[&](){

this_thread::sleep_for(100ms);
stop.request_stop();

}};
auto print = [&]() {

t.join();
auto w = (

!!count ? "completed" :
!!ex ? "failed" :
!count ? "stopped" : "invalid");

printf("which %s, count %d", w, *count);
};
scope_guard {print();}
try {

count = g(stop.get_token());
// <----

} catch(...) {
ex = current_exception();

}
}
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6 Conclusions

The cancellations, covered in Motivation above, are not errors and the functions that were cancelled should
complete with serendipitous-success.

Further, cancellation is not the only case covered in Motivation above, where a function would benefit from
completing with serendipitous-success.

Finally, serendipitous-success is a signal that does not have a good representation using the existing forms of
function output.

6.1 Function output

Here is a short description of the options currently in the language for functions to return values. These options
boil down to three channels; return value, out-parameter arguments, and throwing exceptions.

6.1.1 Values

In C, there are three ways to communicate a result:

— return a value
— set value(s) into out-parameter(s)
— call a parameter, that is a function, with arguments(s)

6.1.2 Exceptions

C++ added a third mechanism for communicating a result - throwing exceptions. Adding exception throwing as
a separate communication channel allowed code to focus on the path of success and delegate the responsibility
for exception handling to the caller by default. C++ made support for exceptions implicit. Functions do not
have a mechanism to opt-in to exception support. Functions can opt out of emitting exceptions using noexcept,
but the compiler still is responsible for ensuring that an attempt to throw an exception in a noexcept function
will result in a call to std::terminate.

6.1.3 Multiplexing

These mechanisms can be multiplexed and de-multiplexed, with additional overhead in code size and runtime.

Examples of mux for return values and out-parameters:

— optional<T> allows return without a value.
— expected<E, T> allows an error to be returned without an exception.
— expected<E, optional<T>> allows an error to be returned without an exception and for nothing to be

returned.
— expected<optional<variant<tuple<Tn0...>, tuple<Tn1...>, ..>>, E> allows the parameters that

are supported by one of an overload set of callback functions to be returned as a value and an error to be
returned without an exception and for nothing to be returned.

Potential syntax to simplify the code that needs to be written to demux these values can be found in the proposal
for pattern matching [P1371R0].

NOTE: while expected, variant and tuple all correspond to C++ language features (exception & return
value expected, overload set of functions variant, and multiple arguments to a function tuple), optional
does not have a language representation. Pointer is not a language representation asoptional is a super-set
of Pointer, because optional stores the value when it is valid, while Pointer does not.
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6.2 Contrast function-taking-a-callback with function

— A function-taking-a-callback is invoked from a stack frame that may not exist when return-value|exception
is emitted

— The only remaining fragment of the stack frame that invoked the function-taking-a-callback is the callback
argument

— The signals return-value|exception that would be delivered to the stack frame that invoked a function-
taking-a-callback must be delivered to the callback argument

7 Proposals

There are designs that can support value and error and serendipitous-success for both library and language.

7.1 Library

When adding async functions to the library there must be a way to represent a value and an error and
serendipitous-success.

Currently the ways to represent value and error were covered in std::optional, f(g(h())), coroutine generator,
Callbacks and stack unwinding above. Of these, the only one with a working solution for a value and an error
and serendipitous-success is the multiple function style in Callbacks. The async_accept_completion example is
reproduced here for convenience:
struct async_accept_completion {

void operator()(socket_type s) && noexcept;
void error(error_code) && noexcept;
void error(exception_ptr) && noexcept;
void done() && noexcept;

};

Where:

— operator() is only called for success
— error() is only called for failure
— done() is only called for serendipitous-success

Provides:

— each function can be specified to be called on a different execution agent
— value types do not need to represent invalid or empty states
— none of the functions are required to add branches and checks for errors or validity
— all types are passed as function arguments with no required packing/unpacking
— overloads of each method allow different types to be supported without use of std::variant
— overloads of each method allow different numbers of arguments to be supported without use of

std::optional or std::variant<std::tuple<>>

7.2 Language

As noted in std::optional above, there is no language feature that supports serendipitous-success. Here are
some thoughts on what this might look like in the language.
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7.2.1 co_done & catch_co_done

One option is to tie this to coroutines, and add co_done to emit the signal, operator co_done() to customize
the signal and try {} catch_co_done() {} to intercept the signal.

Pros: familiar to coroutines

Cons:

— limits usage to coroutines
— explicit scope
— requires adding try blocks to intercept a signal that is not an error

7.2.2 scope library

Another option is to provide a new model for handling implicit signals in a scope.

There is a library that is adding a new model for handling implicit signals in a scope. The scope library [P0052R10]
introduces scope_exit, scope_fail and scope_success. These are used to introduce new implicit scopes (no
braces required) and invoke a function at the end of that scope.

The paper contains a simple example:
void grow(vector<int>& v){

scope_success guard([]{ cout << "Good!" << endl; });
v.resize(1024);

}

Pros:

— familiar library
— implicit scope
— not limited to coroutines

Cons:

— function has some restrictions since it is called from a destructor
— depends on TLS state to detect success and fail, which may not be available on all platforms. Also, the

detection can be confused when exceptions are transported or continuations resumed within the scope of an
instance of the scope_success and scope_fail types.

— there is no support for serendipitous-success and adding it would require adding more of the fragile TLS
dependencies or a language feature.

7.2.3 cancel_if

A different approach is to represent the cancellation as a boolean condition that evaluates to true when the
desired result has been achieved and this will trigger the stack to unwind. Here is a syntax for a cancellable
effort that uses a boolean condition:
try

{
// cancellable effort...
}

cancel_if ( condition )
{
// code to execute if the effort is cancelled
// due to this condition...
}
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And for a cancellation point:

cancel_if_possible(); // A library function. Another option would be to make it a statement and lose the
parentheses.

“I’m not particularly attached to any of the keywords here. I’m only reusing “try” out of parsimony. Bjarne has
said that “try” wasn’t in the original design for exceptions, but just added because people felt uncomfortable
introducing a block without a keyword to head it." Lisa Lippincott

A simplistic approximation of the behavior could be expressed with setjmp/longjmp if longjmp respected
destructors:
jmp_buf buf;
const auto cancel_if_possible = [&]()

{
try

{
if ( condition ) longjmp( buf, 1 );
}

catch ( ... )
{}

};

if ( !setjmp( buf ) )
{
// cancellable effort...
}

else
{
// code to execute if the effort is cancelled
// due to this condition...
}

Here’s the detailed behavior: each cancel_if block associates a “cancellation condition” and a handler block
with a cancellable effort. The lifetime of the cancellation condition is the duration of the cancellable effort.
If more than one cancellation condition is associated with the same effort, the lifetime of an earlier-declared
condition starts before and ends after the lifetime of a later-declared condition. [This ordering is arbitrary.]

During some parts of its lifetime, a cancellation condition may be “suspended.” During its lifetime, when not
suspended, a cancellation condition is “active.” A cancellation condition is active at the start of its lifetime.

The cancel_if_possible statement evaluates the active cancellation conditions, from eldest to youngest. If
evaluation of a condition produces a true result, no further conditions are evaluated, the stack is unwound to the
end of the associated cancellable effort, and control is transferred to the corresponding handler. [Eldest-to-youngest
because when a larger effort may be cancelled that includes all the younger cancellable efforts.] If evaluation of a
cancellation condition exits with an exception, the exception is handled, and the condition is treated as if it had
produced false. If no cancellation produces true, execution continues with the following statement.

For each of the following events, each cancellation condition that is active at the start of the event is suspended
for the duration of the event; after the event, such conditions are reactivated if their lifetime has not ended.

— Stack unwinding
— The evaluation of a cancellation condition
— The execution of a noexcept function

[Here “noexcept” should be taken to mean “no early exit” — this will cause noexcept function to never be
cancelled. This is preferred to introducing “nocancel” because the guarantee callers need doesn’t distinguish
between exceptions and cancellation. This assumes that there is no use for guarantees of “no cancellation but
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maybe exceptions” or “no exceptions but maybe cancellation.” The name “noexcept” is unfortunate in this
regard.]

[Alternatively, terminate when a noexcept function is cancelled, and provide an explicit way to suspend all
cancellation conditions]

Just like we need exception_ptr to sneak exceptions across noexcept boundaries, we need a mechanism to sneak
cancellation conditions across noexcept boundaries, but in the opposite direction. I think a library class will do
the trick:
class cancellation_test_functor

{
cancellation_test_functor() noexcept;

// Constructs a functor representing the cancellation conditions
// active at the time of construction.

cancellation_test_functor( const cancellation_test_functor& s ) noexcept;
// Constructs a functor representing the cancellation conditions
// represented by s.

bool operator() const noexcept;
// Evaluates the represented cancellation conditions, from eldest
// to youngest, stopping when one produces true.
// If the lifetime of any represented condition has ended,
// this function has undefined behavior.
// If any evaluated condition exits with an exception,
// it is treated as returning false.
// Returns true if any condition produces true; otherwise false.

};

It is expected that this class can be implemented with just a pointer or two — it can just remember the point on
the stack where it’s constructed (and use exception tables), or point to a range in a data structure tracking the
stack of active conditions.

This class doesn’t solve the synchronization issues of moving conditions from one thread to another. Since
these conditions essentially use lambda-capture, that would be dangerous. A mechanism to actively signal a
cancellation request seems better than polling a condition across thread boundaries. Perhaps an “I don’t need
the answer to this” signal should be added to the future class.

7.2.4 scope_success, scope_fail, scope_done blocks

A language feature based on the scope_guard pattern would be another way to introduce support for
fail/success/done interception.

bikeshedding aside..

Imagine that break return is a statement that returns from the current function with serendipitous-success.

Imagine that scope_success, scope_fail and scope_done were keywords that introduced statements that
started an implicit scope (same rules as variable declarations) and introduced a block to run at the end of that
scope. The scope_.. blocks introduce a new scope within the current scope of the current function and can
participate in the control flow of the current scope of the current function (using goto, return, break return,
break and continue).

Finally, imagine that any type is allowed to implement operator break return(). operator break return()
will be called when an object instance goes out of scope with serendipitous-success in flight.

Here is the example from the scope paper [P0052R10] with this proposal:
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void grow(vector<int>& v){
scope_success { cout << "Good!" << endl; };
v.resize(1024);

}

Here is the example from std::optional in this paper with this proposal:
int op() {

if (!has_feature()) {
break return; // emits serendipitous-success

}
return feature();

}

void foo() {
// ..
scope_done { cout << "feature unsupported!" << endl; };
auto i = op();
// use i..

} // jumps here, when the feature is
// not supported, runs scope_done and
// emits serendipitous-success

void bar() {
// ..
scope_done { return; };
auto i = op();
// use i..

} // jumps here, when the feature is
// not supported in op(), runs the
// scope_done block which uses return
// to exit bar() normally. bar() does
// not emit serendipitous-success

Pros:

— implicit scope
— not limited to coroutines
— safer than library solutions because the compiler+runtime owns the semantics
— no restrictions on the block contents since they are not run in the context of a destructor.

Cons:

— composition with existing functions that do not support serendipitous-success need the compiler+runtime
to call ‘std::terminate()

7.2.5 Afterthought: converting undefined behaviour to defined behaviour

Something that has occurred only after imagining a language solution, is how language support for serendipitous-
success would allow converting undefined-behaviour into defined-behaviour in a new and clean way. A method that
could not return a value and should not throw an exception can use break return to return serendipitous-success.
serendipitous-success can propagate up until handled without requiring any explicit code for serendipitous-success
in the intermediate functions.

Some cooperation between compiler and runtime would be required to turn an unhandled serendipitous-success
into std::terminate(). One example of an unhandled serendipitous-success would be when a calling function
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was compiled without support for serendipitous-success and a callee returned serendipitous-success. This case
would need to result in std::terminate() and this would need to be enforced by the compiler+runtime of the
callee not the caller.
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