The Concept of Extending Argument and a

Support Library

Document number: P1648RO
Date:

Project:

Audience:
Authors:
Reply-to:

2019-06-16

Programming Language C++

LEWG, LWG

Mingxin Wang (Microsoft (China) Co., Ltd.)

Mingxin Wang <mingxwa@microsoft.com>

Table of Contents

The Concept of Extending Argument and a SUPPOTt LiDIaryccocveiiieiiieiirieriesieeie ettt e e

1
2
3

3.1

32

4.1
4.2

43
4.4
4.5
4.6

T 0o 18115 (o) o WU

MOtIVALION AN SCOPEveenvienieeiieeiieeiteeteete et et e et e e tte bt et e eteesaeseeesseesseasseesseanseessaassenseenseensesnsesnsesnnesseasseenseensenns

DICSIGN DECISIONS. ... eeuvieuiieniieie et eeteettett et eeteetteettestee st esseesseessesaeesseesseanseasseanseassaesseseenseensesnsesnsessnesseanseenseensenns

EXtending ATGUIMIETIEccviriiriiitertietietet ettt ettt ettt sae bt et ebt et et et s et b e s bt ebe et et e be st e sbesbeebeeaeennenee

3.1.1
3.1.2
3.1.3

Representing In-place CONSIUCTIONeeviiierieriieiieieeieeteeee sttt eae e seeesaeeseenseenseesaessaesseensens
EXPDT@SSIONS. .. tentientieit et eite ettt et eteetesetesetesaeesseesseanseesseessensaeseenseenseensesseesseenseanseenseanseensenseenseensenn

Storing EXtended ATGUMENLScccveiiviiierieriieit ettt e st et e e esseenaessaesseesseensesnsesnneses

TYPICAL USAZE ...ttt ettt ettt ettt b e bbbt ettt e bbbt bt ebe et s

Technical

SPECITICALION ...ttt ettt et et e e ta e b e e bt esseesbesnaessee st enseenseensessaenseenseenseensesnnennes

Header SULIIEY™ SYNOPSIS 1.uveeuvieererieriierierteesteetesteseteseteteesteesaesstesseesseesseensesssesssesssesseenseenseansesssesseenseenses

Class template alias @ XTENAE . i iuiiiiiiieiie ettt et e et e e teesbeeebeesbeeesbeessseeenseesnseeenseennns

4.2.1
422
423

Class template extending construction
extending construction creation functions

Extending argument resolution utilities

FOT VAIUC TYPES ..ottt ettt sttt ettt esteeat e s s e s sa e seesseensesnsesnaesseenseenseenseensennsenssensanns
FOT REfEIENCE TYPES ...vieuvieiiieiieeiietieieeie ettt et ettt et eet e et et ebeesseessessaesseesseesseenseenseensennsenssensanns
FOT V0T TYPES...ttetieniieii ettt te ittt ettt e st e st este et e et e eateesaenseeseesseensessaesseesseenseenseenseensennsenssensanns

extended Creation FUNCHIONcc.uvviiiii e ee et e e e e e et e e e e e e e eeeaaaaeeeeeeesesaaaaeeeeessennaannes

Summary

1 Introduction

When designing template libraries, I found it difficult to extend the lifetime of an argument without copy/move
construction or implicit type conversion, especially when a function template accepts multiple arguments with different
semantics. The proposed library is a solution for template library API design, enabling them to have elegant APIs while
making it easy to extend the lifetime of arguments with potentially lower overhead even if they are not convertible from
any other type or not move constructible themselves.

I think this library has the potential for simplifying the API of several facilities in the standard. Meanwhile, it was
already used in the API of PFA [P0957R2] and the concurrent invocation library [P0642R2].

2 Motivation and Scope

Let us take std: : tuple as an example. When constructing a value of std: : tuple with its constructors or the
function template std: :make_tuple, a copy/move operation or probably a type conversion (with constructors only)
is inevitable for each input argument.

Consider the following scenario:

struct X {
X (int, double) ;
X (X&&) ;
X& operator=(X&&) ;
};
std: :tuple<X, int>{ X{1, 0.37}, 123 };

In the sample code above, the move constructor of X is always invoked, no matter we use std: :make_tuple or
directly use the constructor of std: : tuple. There is currently no standard way to construct X in-place and therefore
the move construction is inevitable.

Actually, there are many other facilities in the standard other than std: : tuple that have the same issue, e.g., the
constructor of std::function/std::thread/std::packaged task and the function template
std: :async/std: :make_pair. It will be even worse if the input type is not move constructible at all. For example,
when the input value is a concurrent data structure that holds mutexes or atomic variables, these mentioned facilities will
not work unless extra runtime overhead is introduced (e.g., the data is managed with extra pointers to additional allocated
memory).

The issue was mitigated when it comes to std: :any/std: :variant/std: :optional, as they all have two
variable parameter constructors with the type of the first parameter being std: :in_place_ type_ t. However, this
approach is not applicable to std: : tuple and some other facilities as they need to accept multiple arguments with
different semantics.

Among all the mentioned facilities, std: :pair is the only one that support in-place construction without variable

parameter constructor.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0957r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0642r2.pdf

template <class T1l, class T2>
template <class... Argsl, class... Args2>
constexpr pair<T1l, T2>::pair(piecewise_ construct_t,

tuple<Argsl...> first args, tuple<Args2...> second_args);

Inspired by the constructor, I think it could be a good idea to use std: :tuple as an intermedium to hold the
arguments for in-place construction, and this is a part of the design direction of the proposed library.
However, since there should be more considerations in compatibility, this proposal only aims to provide a reusable

solution rather than updating existing APIs in the standard.

3 Design Decisions

3.1Extending Argument

When designing a template library, it is usually easy to tell if the lifetime of an argument shall (potentially) be extended.
For example, when the input value shall be processed in another thread of execution, the lifetime shall always be
extended; when the input value is only used within the scope of a function template, it is usually not necessary to extend
the lifetime. Therefore, it is the responsibility for library designers to determine whether/where/when shall the lifetime of
an argument be extended. To simplify illustration, an argument whose lifetime shall (potentially) be extended is described
as "extending argument” in the rest of the paper.

The type or semantics of an extending value depends on concrete template library design. Typically, a value of any type
has a chance to be extended, including references or void. As far as I am concerned, extending void is useful in

concurrent programming when a shared context is optional.

3.1.1 Representing In-place Construction

One of the most important things is to find a way to represent in-place construction without variable parameters other
than copy/move construction or type conversion. As inspired from the piecewise constructor of std: :pair, I think
std: : tuple is a good choice. However, there should be extra "type" information to carry by the in-place construction
expression. To make the semantics clear, I think it could be a good idea to design a facility named
extending construction, not only does it carry the type information, but also stores the argument for in-place
construction. Meanwhile, to increase usability, another helper function template make_extending construction

is proposed.

3.1.2 Expressions

Referring to the standard, when an extending argument is intended to be passed by reference,
std: :reference_wrapper is generally acceptable, e.g., in the constructor of std: : thread or function template
std: :make_pair, std: :make_tuple. However, as an extending argument could potentially be any type including
void, I suggest to use in_place_type t to represent void and other types that are intended to be default

constructed.

In this way, there should be four categories of expression for extending argument (suppose its type is T&&):

l. if std: :decay_ t<T>is std::reference_wrapper of U, it shall be regarded as a reference;

2. if std::decay_t<T> is std::in_place_type t of U, it shall be regarded as an in-place default
construction, or a placeholder for void type;

3. if std: :decay_t<T> is extending construction mentioned earlier, it shall be regarded as an in-place
construction;

4. otherwise, a "decay copy" is expected.

3.1.3 Storing Extended Arguments

There should be an extra type to store extending arguments, since "construction from tuple" and "void type" shall be
supported. Therefore, the type template extended is proposed with "extended values" constructible from
std: :tuple and "decay copy", and "extended references" constructible from corresponding references. Because
"extended value", "extended reference" and even "extended void" have different construction strategy, the type template
extended shall be an alias. The implementation shall be selected referring to the category of the type of the value to

extend, and may use the "Applicable Template" library [P1649R0].

3.2 Typical Usage

T (&

extended<T&&>

extended<extending t<T>>

Figure 1

Figure 1 indicates the lifetime evolution paths for an extending argument arg of type T. Each of circled numbers

indicates an evolution operation in specific contexts:

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1649r0.pdf

1. Decay copy of an extending argument is recommended when the extending argument is not used in the current
context and will potentially be used in another context.

2. When an extending argument is initially used in a function scope, it is usually efficient to use it with the
proposed function template make extended view (forward<T>(arg)).

3. When an extending argument is initially used as a member variable of a type, we may design the type of the
variable as extended<extending_ t<T>> and construct it with
extending arg(forward<T>(arg)).

4. When it is required to transfer the extended variable from function scope to type scope, we could construct a
value of type extended<extending t<T>> with the return value of prior call to
make_ extended_view.

5. When transferring the extended variable among type scope, copy/move constructors/assignments of instantiated
extended type could also be used.

For example, if an extending argument is only for repeatedly usage and does not cross context, the value does not need
to be copy/move constructible. In this case, library designers will need to deduce the concrete type for construction and
corresponding argument. For example, if the type of the extending value is const extending construction<X>,
the concrete type for construction shall be X; if the type of the extending value is reference_ wrapper<Y>, the
concrete type for construction shall be Y&.

To help figuring out the type and argument for construction, a type template extending_t and a function template
extended_arg are proposed. For example, when it is required to construct a value with a function template library, the

library could be designed like:

template <class T, class U>
struct foo {
template <class _T, class _U>
foo(_T&& vl, _U&& v2)
vl (std::forward<_T>(vl)), v2_(std::forward< U>(v2)) {}

extended<T> vl_;
extended<U> v2_;

};

template <class E T, class E U>
auto make foo(E_T&& vl, E U&& v2) {
return foo<extending t<E_T>, extending t<E_U>>{
extended arg(std::forward<E_T>(vl)),
extended arg(std::forward<E_U>(v2))};

With the sample library above, users are able to pass any extending arguments to the library if the concrete constructed

type is supported by the library:

// construct foo<int, double> with decay copy
make foo(l, 3.4);

int bar = 2;

// construct foo<int, int&> with decay copy and std::reference_wrapper

make foo(bar, std::ref(bar));

// construct foo<any, vector<int>> with in place_ type t and extending construction
make foo(

std::in_place_type<std::any>,

make_extending construction<std::vector<int>>({1, 2, 3}));

4 Technical Specification

4.1 Header <utility> synopsis
The following content is intended to be merged into [utility.syn].
namespace std {

template <class T>

using extended = see below;

template <class T, class... E_Args>

class extending construction;

template <class T, class... E_Args>

auto make extending construction(E_Argsé&é&... args);

template <class T, class U, class... Args>

auto make extending construction(std::initializer 1list<U> il, Argsé&é&... args);

template <class T>

using extending t = see below;

template <class T>

see below extended arg(T&& value);

template <class T>

auto make extended view(T&& value);

4.2Class template alias extended

template <class T>

using extended = see below;

4.2.1 For Value Types

If T is not a reference type or void, extended<T> shall be a type that meets the CopyConstructible,
MoveConstructible, CopyAssignable or MoveAssignable requirements if T meets any of the requirements,
respectively. The following expressions shall be well-formed and have the specified semantics. In the expressions,

- E denotes the type referred by extended<T>;

- le denotes an expression of type E&;

- cle denotes an expression of type const E§&;

- re denotes an expression of type E&&;

- cre denotes an expression of type const E&§&;

- E_Args denotes a parameter pack;

-t denotes an expression of type std: : tuple<E_Args...>;
- Udenotes a type;

- udenotes an expression of type U;

- wvdenotes an expression of type extended<T&&>&&.

E(t)
Requires: std: :is_constructible v<T, extending t<E Args>...>is true.
Effects: Initializes the extended value of type T with arguments of type extending t<E_Args>&&. ..
obtained with forwarding the elements of t, and for each element arg in t performing

make extended_view(arg) .get().

E (u)
Requires: std: :is_constructible v<T, U>is true.

Effects: Initializes the extended value of type T with u.

E(v)
Effects: Initializes the extended value of type T with v.get ().

le.get()
Return type: T&.

Returns: An lvalue reference to the extended value.
cle.get()
Return type: const T&.

Returns: A const lvalue reference to the extended value.

re.get()

Return type: T&&.

Returns: An rvalue reference to the extended value.

cre.get()
Return type: const T&&.

Returns: A const rvalue reference to the extended value.

4.2.2 For Reference Types

If T is a reference type, regardless it is an lvalue reference or an rvalue reference, extended<T> shall be a type that
meet the CopyConstructible and CopyAssignable requirements. The following expressions shall be
well-formed and have the specified semantics. In the expressions,

- E denotes the type referred by extended<T>;
- cle denotes an expression of type const E§;

-t denotes an expression of type T;

E(t)

Effects: Construct the extended reference with t.

cle.get()
Return type: T.

Returns: The extended reference.

4.2.3 For Void Types

If T is a void type, regardless if it has any cv-qualifiers, extended<T> shall be a type that meet the
CopyConstructible and CopyAssignable requirements. The following expressions shall be well-formed and
have the specified semantics. In the expressions,

- E denotes the type referred by extended<T>;
- cle denotes an expression of type const Eg;

-t denotes an expression of type std: : tuple<>;

E(t)
Effects: Construct the extended void.

cle.get()
Return type: void.

4.3Class template extending construction

template <class T, class... E_Args>

class extending construction {

public:

template <class... _E Args>

constexpr explicit extending construction(_E_Argsé&é&... args);

constexpr extending construction(extending construction&&) = default;
constexpr extending construction(const extending constructioné&) = default;

constexpr extending construction& operator=(extending construction&&) = default;
constexpr extending constructioné& operator=(const extending construction&)
= default;

constexpr std::tuple<E Args...> get args() consté;
constexpr std::tuple<E Args...>&& get_args() && noexcept;
}i

template <class... _E_Args>
constexpr explicit extending construction(_E_Argsé&é&... args);

Effects: Initializes the arguments with the corresponding value in std: : forward<_E_Args>(args).

constexpr std::tuple<E Args...> get _args() consté;

Returns: A copy of the stored arguments tuple.

constexpr std::tuple<E Args...>&& get_args() && noexcept;

Returns: An rvalue reference of the stored arguments tuple.

4.4extending construction creation functions

template <class T, class... E_Args>
auto make extending construction(E_Args&&... args);
Returns: A value of extending construction<T, std::decay t<E_Args>...> constructed with

std: :forward<E_Args>(args)....

template <class T, class U, class... Args>
auto make extending construction(std::initializer 1list<U> il, Argsé&&... args);
Returns: A value of extending construction<T, std::initializer list<U>,

std: :decay_ t<E_Args>...>constructed withil, std::forward<E_Args>(args)....

4.5Extending argument resolution utilities

template <class T>
using extending t = see below;
Definition:
- Usifstd::decay_ t<T>is aninstantiation of std: : reference_wrapper<U> of some type U, or

- Uifstd: :decay_t<T>is an instantiation of std: :in_place_ type t<U> of some type U, or

9

U if std: :decay_t<T> is an instantiation of extending construction<U, E_Args...> of some
typeUand E_Args...,or
otherwise, std: :decay t<T>.

template <class T>

see below extended arg(T&& value);

Returns:

value.get() if std: :decay t<T> is an instantiation of std: : reference_wrapper<U> of some
type U, or

std: :tuple<>{} if std: :decay_ t<T> is an instantiation of std: :in_place_type_ t<U> of some
type U, or

std: :forward<T>(value) .get_args() if std::decay t<T> is an instantiation of
extending construction<U, E_Args...>ofsometypeUandE_Args...,or

otherwise, std: : forward<T> (value).

4.6extended creation function

template <class T>

auto make extended view(T&& value) ;

S

Returns: A value of extended<T&é&> constructed with std: :move (value) if

std::is_same_v<extending t<T>, T> is true and std::is_reference_ v<T> is false, or a

value of extended<extending t<T>> constructed with extended arg(std: :forward<T>(value))

otherwise.

Summary

I think this library could be useful in template library design with nice maintainability and potentially higher

performance than "decay copy", since it provides a standard way to pass arguments to a function template in 4 manners,

and users could determine which to use depending on concrete requirements.

I have also used it in another two proposals of mine to simplify the API design, the "PFA" [P0957R2] and the

"Concurrent Invocation" library [P0642R2]. Please find the tested implementation of this library with this link, which
compiles with latest GCC, LLVM and MSVC.

10

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0957r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0642r2.pdf
https://github.com/wmx16835/my-stl/blob/9e62a8f6e643878df516c94bcab9880256348cc4/src/main/p1648/extended.h

	The Concept of Extending Argument and a Support Library
	1 Introduction
	2 Motivation and Scope
	3 Design Decisions
	3.1 Extending Argument
	3.1.1 Representing In-place Construction
	3.1.2 Expressions
	3.1.3 Storing Extended Arguments

	3.2 Typical Usage

	4 Technical Specification
	4.1 Header <utility> synopsis
	4.2 Class template alias extended
	4.2.1 For Value Types
	4.2.2 For Reference Types
	4.2.3 For Void Types

	4.3 Class template extending_construction
	4.4 extending_construction creation functions
	4.5 Extending argument resolution utilities
	4.6 extended creation function

	5 Summary

