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Coroutines TS Simplifications 
Abstract 
The paper P0973R0 raised a concern about the perceived size and complexity of the language/library 
interaction and the number of customisation points defined by the Coroutines TS. 
 
The paper P1342R0 lists some potential simplifications we could make to the interface defined by the 
Coroutines TS that would reduce the number of customisation points and simplify some of the rules for other 
customisation points. 
 
This paper explains in more detail some of the proposed simplifications from P1342R0. 
 
The simplifications proposed by this paper are: 

• Merge initial_suspend() into get_return_object() 

• Simplify final_suspend() to accept and return a coroutine_handle instead of returning an awaitable 
object. 

• Rename await_transform() to make naming consistent with other methods 
 
Note that all of these simplifications are functionality-preserving and the net result of these changes are to 
reduce the amount of code required to implement coroutine promise_types. However, this also means that 
each of these changes is a breaking change for existing code written against the Coroutines TS. 
 
Implementation of these simplifications in Clang was not yet complete in time for the mailing deadline. 

Simplifying initial_suspend() and get_return_object() 
 
The proposed change is to simplify the semantics of the coroutine startup by: 

• Removing the need to define an initial_suspend() method 

• Specifying that the coroutine frame is always created in a suspended state. 

• Modifying the call to promise.get_return_object() to pass the initial coroutine handle as a parameter. 
 
// Coroutines TS promise_type interface 
struct promise_type 
{ 
  T get_return_object(); 
 
  Awaitable<void> initial_suspend(); 
  ... 
}; 

// Proposed TS promise_type interface 
struct promise_type 
{ 
  T get_return_object(coroutine_handle<promise_type> h); 
  ... 
}; 

 



 
 

Reducing boiler-plate in initial_suspend() and get_return_object() 
 
The initial_suspend() method is currently required to return an awaitable object. Most implementations 
typically return std::suspend_never (if the coroutine should start executing immediately) or 
std::suspend_always (if the coroutine should not start executing immediately). However, there are some use-
cases where the coroutine may want to conditionally start executing immediately – eg. an actor-model task 
that immediately starts executing if no other methods are currently executing on the actor and otherwise 
suspends and enqueues itself onto a list of pending calls. In these cases, the promise_type must define a 
custom awaiter type with implementations of the await_ready(), await_suspend() and await_resume() 
methods. 
 
The result of the call to await_resume() of the initial_suspend() awaitable is always discarded and in all known 
coroutine-types has an empty body. Having to define this empty method for non-trivial initial_suspend() 
methods adds to the boiler-plate needed to implement a promise_type. 
 
By creating the coroutine in an initially suspended state and passing the coroutine_handle of the suspended 
coroutine to get_return_object() this allows the decision of whether or not to immediately launch the 
coroutine or defer its launch to be implemented inline in get_return_object() without needing to define a 
custom Awaiter type. 
 

RAII objects and exception-safety 
A common pattern is for the get_return_object() method to return a RAII object that takes ownership of the 
lifetime of the coroutine frame and is responsible for calling .destroy() on the coroutine_handle. There are a 
few minor issues that result from this. 
 
As the coroutine_handle for the current coroutine is not provided to the get_return_object() method, 
implementations will typically need to call the static factory function 
std::coroutine_handle<promise_type>::from_promise(*this) to reconstruct the coroutine_handle from the 
promise object. Other than being a verbose way of getting hold of the coroutine handle (an intentional design 
decision) the promise_type author needs to be careful what they do with the handle as the coroutine is not 
yet suspended and so it is undefined behaviour to call .resume() or .destroy(). 
 
If we pass this coroutine_handle to a RAII object its destructor will typically call .destroy() on the handle. So 
if the RAII object were to be destructed before the coroutine reached the initial-suspend-point then we could 
end up deleting a coroutine that was not yet suspended – leading to undefined-behaviour. If the RAII object is 
returned from get_return_object() and then an unhandled exception is thrown from the initial_suspend() 
call then the coroutine frame will be implicitly destroyed by compiler-generated code in additon to the RAII 
object destructor attempting to destroy the coroutine frame, leading to a double free. 
 
  



Example: A thread-pool coroutine type with a subtle double-free bug 
struct tp_task { 
  struct promise_type { 
    tp_task get_return_object() { 
      return tp_task{ std::coroutine_handle<promise_type>::from_promise(*this) }; 
    } 
 
    auto initial_suspend() { 
      struct awaiter { 
        static void CALLBACK callback(PTP_CALLBACK_INSTANCE instance, void* data) { 
          coroutine_handle<promise_type>::from_address(data).resume(); 
        } 
        bool await_ready() { return false; } 
        void await_suspend(std::coroutine_handle<promise_type> h) { 
          // Use Windows Thread Pool API to schedule resumption onto thread pool. 
          if (!TrySubmitThreadpoolCallback(&awaiter::callback, h.address(), nullptr)) { 
            throw std::system_error{(int)GetLastError(), std::system_category()}; 
          } 
        } 
        void await_resume() {} 
      }; 
      return awaiter{}; 
    } 
    ... 
  }; 
 
  std::coroutine_handle<promise_type> coro; 
 
  explicit tp_task(std::coroutine_handle<promise_type> h) : coro(h) {} 
 
  ~tp_task() { if (coro) coro.destroy(); } 
  ... 
}; 

 
In the above example, the tp_task object is returned from get_return_object() and then ‘co_await 
p.initial_suspend()’ is evaluated. However, if it fails to schedule the coroutine onto the thread-pool then an 
exception is thrown and this will propagate back out to the caller of the coroutine, destroying the coroutine 
frame and also destroying the tp_task object returned from get_return_object(), which then also tries to 
destroy the coroutine frame. 
 
Issue #24 captured in the Coroutines TS Issues paper (P0664) discusses placing all or part of the ‘co_await 
p.initial_suspend()’ expression inside the implicit try/catch around the coroutine body. This would cause the 
exception to be caught and processed by p.unhandled_exception() instead of it propagating out to the caller. 
 
Without this resolution to issue #24 we would instead need to return a proxy object that was implicitly 
convertible to tp_task but that does not call .destroy() in the destructor. Thus we only transfer ownership of 
the handle to the RAII object if the ‘co_await p.initial_suspend()’ expression does not throw and so avoid 
double-deletion of the frame if it does throw. 
 
 



With the simplifications proposed in this paper this task type can be implemented more simply and safely: 
template<typename T> 
struct tp_task { 
  struct promise_type { 
    static void CALLBACK callback(PTP_CALLBACK_INSTANCE instance, void* data) { 
      coroutine_handle<promise_type>::from_address(data).resume(); 
    } 
 
    tp_task get_return_object(std::coroutine_handle<promise_type> h) { 
      // Use Windows Thread Pool API to schedule resumption onto thread pool. 
      if (!TrySubmitThreadpoolCallback(&promise_type::callback, h.address(), nullptr)) { 
        throw std::system_error{(int)GetLastError(), std::system_category()}; 
      } 
      // Only construct RAII object once we know we will complete successfully. 
      return tp_task{h}; 
    } 
    ... 
  }; 
 
  std::coroutine_handle<promise_type> coro; 
 
  tp_task(std::coroutine_handle<promise_type> h) : coro(h) {} 
 
  ~tp_task() { if (coro) coro.destroy(); } 
  ... 
}; 

 
There is an outstanding question of whether we should define the semantics of get_return_object() such that 
if an exception is thrown from get_return_object() that the coroutine is not implicitly destroyed. ie. that the 
call passes ownership to the promise_type. 
 
This would allow the coroutine creation to be implemented as: 
task<T> some_function(int arg) 
{ 
  auto* frame = new __frame{arg}; 
  return frame->promise.get_return_object( 
    coroutine_handle<promise_type>::from_promise(frame->promise)); 
} 

 
  



Examples of merged get_return_object() and initial_suspend() 
Existing Coroutines TS With the proposed changes 
// Lazily-started task<T> promise_type 
struct promise_type { 
  task<T> get_return_object() { 
    return task<T>{ 
      std::coroutine_handle<promise_type>:: 
        from_promise(*this) }; 
  } 
  std::suspend_always initial_suspend() { 
    return {}; 
  } 
  ... 
}; 
 

 
struct promise_type { 
  template<typename Handle> 
  task<T> get_return_object(Handle coro) { 
    return task<T>{ coro }; 
  } 
  ... 
}; 

 

 

// Eager, oneway_task promise_type 
struct promise_type { 
  oneway_task get_return_object() { 
    return {}; 
  } 
  std::suspend_never initial_suspend() { 
    return {}; 
  } 
  ... 
}; 
 

 
struct promise_type { 
  template<typename Handle> 
  oneway_task get_return_object(Handle coro) { 
    coro.resume(); // Start coroutine 
    return {}; 
  } 
  ... 
}; 

// std::optional promise_type 
struct promise_type { 
  std::optional<T>* result = nullptr; 
 
  struct optional_proxy { 
    std::optional<T> result; 
    optional_proxy(promise_type* p) { 
      p->result = &result; 
    } 
    operator std::optional<T>() && { 
      return std::move(result); 
    } 
  }; 
 
  optional_proxy get_return_object() { 
    return optional_proxy{ this }; 
  } 
 
  std::suspend_never initial_suspend() { 
    return {}; 
  } 
 
  template<ConvertibleTo<T> U> 
  void return_value(U&& value) { 
    result->emplace(static_cast<U&&>(value)); 
  } 
 
  template<typename U> 
  auto await_transform(const std::optional<U>& value) { 
    struct awaiter { 
      const std::optional<U>& value; 
      bool await_ready() { return value.has_value(); } 
      void await_suspend(coroutine_handle<>) {} 
      const T& await_resume() { return *value; } 
    }; 
    return awaiter{value}; 
  } 
 
  ... 
}; 

 
struct promise_type { 
  std::optional<T>* result = nullptr; 
 
  std::optional<T> get_return_object( 
      coroutine_handle<promise_type> h) { 
    scope_guard g{[h] { h.destroy(); }}; 
    std::optional<T> result; 
    h.promise().result = &result; 
    h.resume(); // Start coroutine 
    return result; // Permits NRVO 
  } 
 
  template<ConvertibleTo<T> U> 
  void return_value(U&& value) { 
    result->emplace(static_cast<U&&>(value)); 
  } 
 
  template<typename U> 
  auto await_transform(const std::optional<U>& value) { 
    struct awaiter { 
      const std::optional<U>& value; 
      bool await_ready() { return value.has_value(); } 
      void await_suspend(coroutine_handle<>) {} 
      const T& await_resume() { return *value; } 
    }; 
    return awaiter{value}; 
  } 
 
  ... 
}; 

 



Simplifying final_suspend() 
 
The proposed change is to: 

• Change final_suspend() from 
o a method taking no arguments and returning an Awaitable type to; 
o a method taking a coroutine_handle and returning  coroutine_handle. 

ie. the equivalent of the await_suspend() method of the awaitable returned from 
final_suspend() under the current Coroutines TS design. 

• No longer implicitly destroy of the coroutine frame if execution runs off the end of the coroutine. 
 

Changing the signature of final_suspend() 
The current specification of the Coroutines TS requires the final_suspend() method to return an Awaitable 
object. The compiler will insert the statement ‘co_await promise.final_suspend()’ at the end of the coroutine 
body. 
 
For non-async coroutines the final_suspend() method typically returns std::suspend_always so that execution 
suspends and returns to the caller. For detached/one-way tasks that do not have a continuation and that must 
self-destroy they will typically return std::suspend_never which means the coroutine will not suspend at the 
final-suspend point and will continue to run to completion and implicitly destroy the coroutine frame before 
then returning execution to the caller/resumer. 
 
However, for most asynchronous coroutine-types this Awaitable needs to suspend the current coroutine and 
resume its continuation. As this is something that is promise_type-specific this means that each promise_type 
will generally need to implement its own Awaitable object. 
 
For example, the implementation for a lazy task<T> type (see P1056) would typically have a final_suspend() 
method that looks like this: 
template<typename T> 
struct task { 
  struct promise_type { 
    std::coroutine_handle<> continuation; 
    std::variant<std::monostate, T, std::exception_ptr> result; 
    ... 
    auto final_suspend() noexcept { 
      struct awaiter { 
        bool await_ready() noexcept { return false; } 
        auto await_suspend(std::coroutine_handle<promise_type> h) noexcept { 
          return h.promise().continuation; 
        } 
        void await_resume() noexcept {} 
      }; 
      return awaiter{}; 
    } 
  }; 
  ... 
}; 

 



Part of the reason why the final-suspend point was defined in terms of co_await was for uniformity of 
specification and symmetry with the initial_suspend() method. It is relatively straight-forward to explain and 
teach that a coroutine simply has an implicit ‘co_await promise.initial_suspend();’ at the open brace and an 
implicit ‘co_await promise.final_suspend();’ at the close brace. 
 
However, the final-suspend point is special. It is not permitted to call .resume() a coroutine suspended at the 
final-suspend point - you can only call .destroy(). This means that you cannot typically just reuse arbitrary 
Awaitable types (std::suspend_never/suspend_always are exceptions since they do not call .resume() on the 
coroutine_handle). 
 
If the proposed removal of initial_suspend() is adopted then the motivation for maintaining symmetry with 
initial_suspend() is no longer present. 
 
Also, a co_await expression can potentially have a result. The await_resume() method is called to produce the 
value of a co_await expression. However, the result of the ‘co_await promise.final_suspend()’ method is 
always discarded and so in all practical implementations of final_suspend(), the await_resume() method 
returns void and has an empty body. It is only ever executed if the coroutine does not suspend at the final-
suspend point. 
 
The proposed change simplifies the final_suspend() method to the essential component. ie. the 
await_suspend() method. 
 

With Coroutines TS With proposed changes 
// Always suspend – eg. generator<T>::promise_type 
std::suspend_always final_suspend() { 
  return {}; 
}  

 
auto final_suspend(std::coroutine_handle<promise_type>) { 
  return std::noop_coroutine(); 
} 

// Never suspend – eg. detached_task::promise_type 
std::suspend_never final_suspend() { 
  return {}; 
} 

auto final_suspend(std::coroutine_handle<promise_type> h) { 
  h.destroy(); 
  return std::noop_coroutine(); 
} 

// Execute continuation. eg. task<T>::promise_type 
auto final_suspend() { 
  struct awaiter { 
    bool await_ready() { return false; } 
    auto await_suspend( 
        std::coroutine_handle<promise_type> h) { 
      return h.promise().continuation; 
    } 
    void await_resume() {} 
  }; 
  return awaiter{}; 
} 

 
auto final_suspend(std::coroutine_handle<promise_type>) { 
  return this->continuation; 
} 



// Conditionally execute continuation or destroy 
// eg. eager_task<T>::promise_type 
auto final_suspend() { 
  struct awaiter { 
    bool await_ready() { return false; } 
    std::coroutine_handle<> await_suspend( 
        std::coroutine_handle<promise_type> h) { 
      auto oldState = 
        h.promise().state.exchange(state::finished); 
      if (oldState == state::awaiting_coroutine) { 
        return h.promise().continuation; 
      } else if (oldState == state::detached) { 
        h.destroy(); 
        return std::noop_coroutine(); 
      } else { 
        assert(oldState == state::started); 
        return std::noop_coroutine(); 
      } 
    } 
    void await_resume() {} 
  }; 
  return awaiter{}; 
} 

 
 
std::coroutine_handle<> final_suspend( 
    std::coroutine_handle<promise_type> h) { 
  auto oldState = state.exchange(state::finished); 
  if (oldState == state::awaiting_coroutine) { 
    return continuation; 
  } else if (oldState == state::detached) { 
    h.destroy(); 
    return std::noop_coroutine(); 
  } else { 
    assert(oldState == state::started); 
    return std::noop_coroutine(); 
  } 
} 

 

Removing the implicit destroy when execution runs off the end 
Under the Coroutines TS, if a coroutine does not suspend at the final suspend-point and execution runs off the 
end of the coroutine then the coroutine frame is implicitly destroyed. 
 
The fact that we spell “destroy the current coroutine frame” as returning std::suspend_never from 
final_suspend() is subtle and can be surprising. If instead, we were to treat the coroutine frame as a resource 
that must always be explicitly destroyed the the code becomes easier to reason about because you can see 
the explicit call to h.destroy() in the final_suspend() method. 
 
It can also be counter-productive efficiency-wise to destroy the coroutine-frame from within final_suspend(). 
The compiler is more likely to be able to apply the HALO optimisation1 to elide the heap allocation of the 
coroutine frame if the destroy() method is called by the caller (eg. in the destructor of a RAII object) rather 
than in final_suspend(). This is because the compiler can more easily prove that the lifetime of the coroutine 
frame is strictly nested within the lifetime of the caller. Providing explicit special behaviour (implicit coroutine 
destroy) for something that is a performance anti-pattern seems counter-productive. 
 
In N4557 11.4.4(9) the Coroutines TS states: 

The coroutine state is destroyed when control flows off the end of the coroutine or the destroy member 

function (21.11.2.4) of an object of type std::experimental::coroutine_handle associated with this coroutine is 

invoked. 

 
The phrase “when control flows off the end of the coroutine” is unclear whether this applies to the case when 
execution exits the coroutine with an unhandled exception. The uncertainty here is captured as issue #25 in 
P0664R6 – C++ Coroutine TS Issues and has a proposed resolution that would require final_suspend(), 

                                                      
1 See P0981R0 - Halo: coroutine Heap Allocation eLision Optimization: the joint response by Gor Nishanov and 
Richard Smith 
 



operator co_await() and the await_ready(), await_suspend() and await_resume() methods to all be declared 
noexcept. 
 
This proposed change to final_suspend() would be an alternative solution to issue #25. Namely that the 
coroutine is considered suspended at the final-suspend point before the call to final_suspend() and that any 
exceptions that propagate out of the call to final_suspend() will be rethrown to the caller/resumer and that 
the coroutine frame will not be implicitly destroyed. This would also make the behaviour of final_suspend() 
consistent with the behaviour of unhandled_exception() suggested in the proposed resolution for issue #25.  
 

Making method names on promise_type consistent 
This paper proposes renaming the await_transform() method on the promise_type to await_value() to 
improve consistency with the other method names on the promise_type interface. 
 
The current interface defines: 

• co_await <expr>’ to map to ‘co_await promise.await_transform(<expr>)’ if there is any 
await_transform identifier found in the scope of the promise_type, 
otherwise it maps to `co_await <expr>' 

• ‘co_yield <expr>’ to map to ‘co_await promise.yield_value(<expr>)’ 
• ‘co_return <expr>’ to map to ‘promise.return_value(<expr>)’ 

 
By renaming await_transform() to await_value() the naming of the methods becomes more consistent and 
therefore easier to teach. ie. the co_xxx keyword is translated into a call to the promise.xxx_value() method. 
 
 
An alternative naming scheme suggested by Richard Smith was to name these methods as operators. I.e. 

• 'co_yield <expr>' maps to 'co_await promise.operator co_yield(<expr>)' 

• 'co_await <expr>' maps to 'co_await promise.operator co_await(<expr>)' 

• 'co_return <expr>;' maps to 'promise.operator co_return(<expr>)' 

• 'co_return;' maps to 'promise.operator co_return()' 
 

Making await_transform()/await_value() mandatory 
The other inconsistency between the co_await and co_yield/co_return keywords is that with the co_await 
keyword the await_transform() method is currently optional whereas yield_value() and 
return_value()/return_void() are mandatory to be able to use co_yield/co_return keyword within a coroutine. 
 
This makes the co_await keyword supported by default in coroutines and a promise_type needs to explicitly 
declare await_transform() overloads as deleted to opt-out of supporting the co_await keyword (eg. like in 
generator<T>). Whereas a promise_type needs to explicitly opt-in to supporting the co_yield/co_return 
keywords by defining the yield_value/return_value/return_void methods. 
 



The rationale here is that a co_await operand typically has a suitable default operator co_await() defined 
which can be forwarded to. Whereas a co_yield/co_return typically needs to interact with the promise_type 
and so can have no suitable default implementation. 
 
If we were to define a user-authored co_await expression to always map to 'co_await 
promise.await_value(<expr>)' then we would be making the rules for co_await consistent with the 
co_yield/co_return keywords. ie. that all keywords need to be explicitly opted-in to. 
 
This would have the effect of async coroutine types, like task<T>, that did want to support co_await to 
needing to explicitly define an identity template await_value() method. It would also mean that coroutine 
types that did not want to support co_await, like generator<T>, would no longer need to explicitly declare 
deleted await_transform() methods on the promise_type. 
 
Finally, the current rules for await_transform() make it difficult to build a template metafunction that can 
deduce what the type of a co_await expression will be within a given coroutine type. To be able to deduce the 
semantics of a co_await expression within a given coroutine type it is necessary to determine whether or not 
there is any await_transform() overloads defined on the promise_type. There is currently no known library 
solution that can reliably detect the presence of an await_transform identifier within a class in all situations. 
 
By making await_transform() mandatory we can more simply define concepts that can check for the validity of 
a given call to the promise.await_transform() method. 
 
Note that the alternative is to provide these queries as part of the standard library and require compiler magic 
to answer them. This compiler magic could later be replaced by the facilities proposed in the Reflection TS. 
 
 

  



Examples of combined simplifications 
Example: A lazy task<T> coroutine type 

With current Coroutines TS With the proposed changes 
template<typename T> 
struct task { 
  struct promise_type { 
    std::coroutine_handle<> continuation; 
    std::variant<std::monostate, T, std::exception_ptr> 
      result; 
 
    task<T> get_return_object() { 
      return task<T>{ 
        std::coroutine_handle<promise_type>::from_promise( 
          *this) }; 
    } 
 
    std::suspend_always initial_suspend() { 
      return {}; 
    } 
 
    auto final_suspend() { 
      struct awaiter { 
        bool await_ready() { return false; } 
        auto await_suspend( 
            std::coroutine_handle<promise_type> h) { 
          return h.promise().continuation; 
        } 
        void await_resume() {} 
      }; 
      return awaiter{}; 
    } 
 
    void unhandled_exception() { 
      result.template emplace<2>( 
        std::current_exception()); 
    } 
 
    template<ConvertibleTo<T> U> 
    void return_value(U&& value) { 
      result.template emplace<1>(static_cast<U&&>(value)); 
    } 
  }; 
  ... 
}; 

template<typename T> 
struct task { 
  struct promise_type { 
    std::coroutine_handle<> continuation; 
    std::variant<std::monostate, T, std::exception_ptr> 
      result; 
 
    task<T> get_return_object( 
        coroutine_handle<promise_type> h) { 
      return task<T>{ h }; 
    } 
 
    auto final_suspend(coroutine_handle<promise_type>) { 
      return continuation; 
    } 
 
    void unhandled_exception() { 
      result.template emplace<2>( 
        std::current_exception()); 
    } 
 
    template<typename U> 
    U&& await_value(U&& value) { 
      return static_cast<U&&>(value); 
    }  
 
    template<ConvertibleTo<T> U> 
    void return_value(U&& value) { 
      result.template emplace<1>(static_cast<U&&>(value)); 
    } 
  }; 
  ... 
}; 

 
 
  



Example: A generator<T> implementation 
With current Coroutines TS With the proposed changes 
template<typename T> 
struct generator { 
  struct promise_type { 
    std::add_pointer_t<T> value; 
 
    generator<T> get_return_object() { 
      return generator<T>{ 
        std::coroutine_handle<promise_type>::from_promise( 
          *this) }; 
    } 
    std::suspend_always initial_suspend() { 
      return {}; 
    } 
    std::suspend_always final_suspend() { 
      return {}; 
    } 
 
    // Prevent use of ‘co_await’ within coroutine. 
    template<typename U> 
    void await_transform(U&& value) = delete; 

 
    template<typename U> 
    std::suspend_always yield_value(U&& value) { 
      this->value = std::addressof(value); 
      return {}; 
    } 
 
    void return_void() {} 
 
    void unhandled_exception() { 
      throw; 
    } 
  }; 
  ... 
}; 

template<typename T> 
struct generator { 
  struct promise_type { 
    std::add_pointer_t<T> value; 
 
    generator<T> get_return_object( 
        coroutine_handle<promise_type> h) { 
      return generator<T>{ h }; 
    } 
 
    auto final_suspend(coroutine_handle<promise_type>) { 
      return std::noop_coroutine(); 
    } 
 
    template<typename U> 
    std::suspend_always yield_value(U&& value) { 
      this->value = std::addressof(value); 
      return {}; 
    } 
 
    void return_void() {} 
 
    void unhandled_exception() { 
      throw; 
    } 
  }; 
  ... 
}; 

 
Example: A detached-task type  

With current Coroutines TS With the proposed changes 
struct detached_task { 
  struct promise_type { 
    detached_task get_return_object() { return {}; } 
    std::suspend_never initial_suspend() { return {}; } 
    std::suspend_never final_suspned() { return {}; } 
    void return_void() {} 
    void unhandled_exception() { std::terminate(); } 
  }; 
}; 

struct detached_task { 
  struct promise_type { 
    auto get_return_object(coroutine_handle<> h) { 
      h.resume(); 
      return detached_task{}; 
    } 
    auto final_suspend(coroutine_handle<> h) { 
      h.destroy(); 
      return std::noop_coroutine(); 
    } 
    void return_void() {} 
    void unhandled_exception() { std::terminate(); } 
  }; 
}; 

Proposed Wording Changes 
A subsequent revision of this paper will provide proposed wording changes prior to the meeting in Kona. 
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