
 
Paper no. P1341R0 
Date 2018-11-25 
Reply To Lewis Baker <lbaker@fb.com> 
Audience SG1, LEWG 

UNIFYING ASYNCHRONOUS APIS IN C++ STANDARD LIBRARY 
Unifying executors, sender/receiver, coroutines, parallel algorithms and networking. 

ABSTRACT 
The C++ language is currently at a unique junction point where we see the convergence of several major pieces of 
functionality related to concurrent and parallel programming potentially being merged into the language at the same time. 

We have the Executors proposal P0443 and the associated proposal for a Sender/Receiver-based executors API in P1194, 
the Coroutines TS, the Concurrency TS, Ranges and the Networking TS. Each of these pieces of functionality is in some way 
related to concurrency, parallelism and asynchronous programming and so these pieces would ideally all be designed to fit 
together nicely into a coherent design. 

Unfortunately, perhaps due in part to the history of the independent development of each of these features, we find that 
as they come together there are some incompatibilities that mean that these features do not work as well together as we 
would like them to. 

This paper seeks to sketch out a proposed vision for these components that ties their designs together with a unified 
asynchronous programming model for the C++ standard library. 

Please note that this paper is exploratory and concepts in here are still evolving. 

The key components of this design direction are: 

• Unifying coroutines and Sender/Receiver by creating a new Task concept that implements both Awaitable and 
SingleTypedSender concepts. This allows an asynchronous operation to be consumed either using callbacks 
or by using operator co_await from within a coroutine. 

• Defining a minimal interface for an Executor concept in terms of an executor.schedule() method that 
returns a TaskOf<SubExecutor>. 

• Defining generic algorithms that compose Executor and Task objects and that have default implementations 
that are defined in terms of the executor.schedule() method. 

• Allowing these algorithms to be customised for a given Executor type to provide more efficient 
implementations where appropriate/possible. 

• Defining bulk/parallel algorithms to be implemented in terms of Executor objects and that return Task objects 
that allow chaining units of parallel work with dependencies. 

• Allowing bulk/parallel algorithms to be customised by Executors for particular execution policies. 



• Modifying async methods from Networking TS that accept a CompletionHandler parameter to drop this 
parameter and instead return a Task object so that they can be more easily composed with Executors, used by 
generic parallel algorithms and be more efficiently consumed by coroutines. 

MOTIVATION 
In the upcoming versions of the C++ standard we are hoping to introduce a raft of new asynchronous programming facilities 
and APIs covering areas such as executors, coroutines, networking, parallel algorithms and async ranges. 

These asynchronous facilities should ideally all integrate well together to provide an efficient and composable foundation 
that applications can use to build asynchronous applications. However, there are some issues with the current designs that 
either limit the composability or that limit the efficiency of these asynchronous APIs. 

COMPOSABILITY OF ASYNCHRONOUS OPERATIONS 
The Sender/Receiver model for representing asynchronous operations as described in [P1194] provides a good basis for 
composable asynchronous operations, drawing on many years of experience from RxCpp and the reactive extensions 
community. 

By reifying an asynchronous operation as a Sender object and by providing a uniform interface for attaching a generalised 
callback to an asynchronous operation it allows us to write generic higher-order functions, such as when_all() from 
[P1316], that can compose arbitrary asynchronous operations. 

Also, by separating of the creation of the object representing the asynchronous operation from the step of attaching a 
continuation this allows these higher-order functions to compose lazy asynchronous operations together efficiently without 
introducing extra overhead for synchronising and storing intermediate results such as would be required with an eager 
std::experimental::future-based API. 

COMPOSABILITY OF NETWORKING TS ASYNCHRONOUS OPERATIONS 
The design of asynchronous APIs in the Networking TS requires that a continuation is passed in as the CompletionHandler 
parameter together with other parameters to the asynchronous operation. The operation is started immediatly and there is 
no opportunity to defer starting the operation until later without deferring the call to the initiating function itself. 

While this design does allow composition of lower-level asynchronous operations into higher-level asynchronous 
operations, doing so requires each composition of lower-level operations to be written separately in an imperative fashion. 
This style of API does not seem to easily support composition by using generic higher-order algorithms without first 
wrapping each initiating function in another function that returns an object that captures the parameters but defers calling 
the operation’s initiating function until a continuation is attached. 

For an example of this approach to wrapping the Networking TS APIs see Gor Nishanov’s talk “Naked coroutines live (with 
networking)” from CppCon 2017. 

We can potentially improve the composability of asynchronous APIs in the Networking TS if they are modified to return an 
asynchronous object that satisfies the Sender interface and that lazily starts execution when a continuation is later attached 
to the object rather than requiring a continuation to be provided immediately. 

COMPOSABILITY OF PARALLEL ALGORITHMS 



The C++17 standard introduced overloads of the standard library algorithms that accept an additional execution-policy 
parameter and that allow the algorithm to execute in parallel across multiple threads. 

These algorithms are natural extensions to the existing APIs and its blocking semantics makes it easy for existing 
synchronous applications to take advantage of the parallelism of their CPUs with the simple addition of an extra execution-
policy parameter to the existing standard-library algorithm calls. 

However, with the introduction of executors and executor-customised execution policies like std::par.on(e) it now 
becomes possible to specify that the algorithm should run on an execution context other than the current execution 
context. This means that to avoid blocking the current thread while waiting for the algorithm to complete the parallel 
algorithms should ideally be exposed as an asynchronous operation rather than a synchronous blocking operation. 

If the parallel algorithms can be exposed as asynchronous operations that have the same uniform interface used by other 
asynchronous operations then it becomes possible to use the same higher-order functions to compose parallel algorithms. 

EFFICIENCY GAINS POSSIBLE THROUGH INVERTED OWNERSHIP MODEL 
With the traditional callback-based asynchronous model used in both Networking TS and in the Sender/Receiver-based APIs 
the initiating function that accepts the callback cannot typically assume that the callback object passed to it will live beyond 
the call to the initiating function. This means that if the operation does not complete synchronously then the initiating 
function will typically need to take a copy of the callback object to ensure that it can be safely called when the operation 
does eventually complete. 

In this model, the producer of the asynchronous result owns the consumer state and is responsible for ensuring the 
consumer stays alive until the operation completes. This is often implemented by placing the consumer state along with 
other per-operation state in heap-allocated storage. While the cost of this heap-allocation can often be amortised by 
allowing the caller to provide a custom allocator (e.g. a recycling allocator), the current API design of P0443 executors and 
the Networking TS does not expose the required size of the allocation and so the caller cannot in general pre-allocate 
enough memory to guarantee the operation will succeed without additional knowledge about the implementation. 

However, there is an alternative model where the ownership model is inverted and instead, the consumer is made 
responsible for ensuring the producer remains alive until the operation completes. 

This inverted ownership model is naturally and safely expressible when writing the consumer of an operation as a 
coroutine. The producer and per-operation state can be placed as a local variables in the coroutine consuming the 
operation and so when the coroutine awaits the operation the coroutine is suspended until the operation completes, 
naturally keeping both the consumer state (the coroutine frame) and the producer state (local variables) alive until the 
operation completes and the coroutine is resumed. 

This model allows the compiler to statically guarantee that enough memory is reserved within the coroutine frame for the 
per-operation state required by an asynchronous operation and this can eliminate the need for an additional per-operation 
heap-allocation altogether in some cases. Note that there is often still a heap-allocaton present here, it’s just that it’s a 
single heap allocation for the coroutine frame which can then be reused for many individual operations initiated by that 
coroutine. 

With this inverted ownership model it is possible to implement executors that can schedule a coroutine onto another 
execution context without needing to perform any additional heap allocations. This in turn can allow these operations to be 
implemented as noexcept, an important property for implementing certain classes of algorithms. 



It is also possible to implement asynchronous networking APIs that make use of this inverted ownership model to avoid the 
need to heap-allocate per-operation state. 

WORKING TOWARDS A UNIFIED ASYNCHRONOUS MODEL FOR C++ 
There are potentially large benefits to adopting an asynchronous model that integrates executors, parallel algorithms and 
networking in a unified and composable way and that works efficiently with both callbacks and coroutines. 

This paper sketches out a proposed design direction that attempts to tie these aspects together. 

Please note that this paper is exploratory and concepts in here are still evolving. 

BACKGROUND 

SENDER/RECEIVER 
The “Compromise executors proposal” paper P1194R0 was presented at the ad-hoc Executors meetings in Bellevue as a 
formalization of the concept of callbacks.  
 
P1194R0 introduces the concepts of Sender and Receiver as fundamental building blocks of asynchronous operations. A 
Sender is a producer of a value and a Receiver is a generalisation of a callback that can receive a value, error or done signal. 

The consensus at the Bellevue meeting was that the Sender/Receiver design was preferred as the long-term direction for 
Executors. 

RECEIVERS 
A "receiver" is a concept that represents a callback or continuation that can be passed a value result, a done signal or an 
error result. 

A receiver has three possible operations you can perform on it: 

• void op::set_value(Receiver& r, Values&&... values); 
• void op::set_done(Receiver& r); 
• void op::set_error(Receiver& r, Error&& error) noexcept; 

A void value result can be sent by calling set_value() with zero value arguments. 

The protocol for calling these methods on a receiver is one of the following sequences: 

1. A call to set_value() which returns normally followed by a call to set_done() which returns normally (the 
success case) 

2. A call to set_done() which returns normally. 
3. A call to set_error() with an error value. 

A call to op::set_done() that returns, or a call to op::set_error(), which is always noexcept, terminates the 
sequence of calls to the receiver. 

Note also that it is the caller's responsibility to ensure that two calls to the receiver methods from different threads do not 
overlap. The caller must wait until one call returns before calling a subsequent method on the receiver. 



These operations are customisation points on the Receiver type. The default implementation of these methods will call 
onto the .value(), .done() and .error() member functions of the receiver. 

SENDERS 
A sender represents an asynchronous operation that produces either a single value result or an error result. The result of 
the asynchronous operation is obtained by attaching a receiver to the sender by calling op::submit(sender, 
receiver). 

The sender has a single customisation point: 

• void op::submit(Sender&& s, Receiver&& r) noexcept; 

The default implementation of op::submit() calls s.submit(r). Although this operation can be customised for 
particular senders or sender/receiver pairs. 

Once op::submit() has been called, the sender is responsible for ensuring that the op::set_value(), 
op::set_done() or op::set_error() method is called on the receiver passed to it once the result of the operation 
is available. The sender is also responsible for ensuring that the receiver passed to it remains alive until the operation is 
complete. This means that the sender may need to make a copy of the receiver by move/copy-construction if it will not be 
completed by the time the submit function returns. 

Note that the actual computation/operation associated with a sender may have already been eagerly started or may be lazy 
and only start execution once the continuation has been attached by a call to op::submit(). The only way generic client 
code can guarantee the operation has been started is to call op::submit(). 

CONCEPT DEFINITIONS 
concept Receiver = 
  MoveConstructible<T> && 
  requires (T& r) 
  { 
    op::set_done(r); 
  }; 
 
template<typename T, typename... Values> 
concept ValueReceiver = 
  Receiver<T> && 
  requires(T& r, Values&&... values) 
  { 
    op::set_value(r, static_cast<Values&&>(values)...); 
  }; 
 
template<typename T, typename Error> 
concept ErrorReceiver = 
  Receiver<T> && 
  requires(T& r, Error&& e) 
  { 
    { op::set_error(r, static_cast<Error&&>(e)) } noexcept; 
  }; 
 
template<typename T, typename Error, typename... Values> 
concept ReceiverOf = 
  ErrorReceiver<T, Error> && 



  ValueReceiver<T, Values...>; 
 
struct sender_tag {}; 
 
template<typename S> 
struct sender_traits; 
 
template<typename T> 
concept Sender = 
  MoveConstructible<std::remove_cvref_t<S>> && 
  requires { typename sender_traits<S>::sender_concept; } && 
  DerivedFrom<typename sender_traits<S>::sender_concept, sender_tag>; 
 
template<typename S, typename R> 
concept SenderTo = 
 Sender<S> && 
 requires(S&& sender, R&& receiver) 
 { 
   op::submit( 
     static_cast<S&&>(sender), 
     static_cast<R&&>(receiver)); 
 }; 

 
template<template<template<class...> class, 
                  template<class...> class> class> 
struct __value_types; 
template<template<template<class...> class> class> 
struct __error_types; 
 
template<typename T> 
concept TypedSender = 
 Sender<T> && 
 requires() 
 { 
   typename __value_types<sender_traits<T>::template value_types>; 
   typename __error_types<sender_traits<T>::template error_types>; 
 }; 

 
template<typename T> 
struct __one_value_only { using type = T; }; 
 
template<typename... Ts> 
struct __zero_or_one_value {}; 
template<> 
struct __zero_or_one_value<> { using type = void; }; 
template<typename T> 
struct __zero_or_one_value<T> { using type = T; }; 
 
template<typename T> 
concept SingleTypedSender = 
  TypedSender<T> && 
  requires() 
  { 
    typename sender_traits<T> 
      ::template value_types<__one_value_only, __zero_or_one_value> 
      ::type::type; 



  }; 
template<typename T> 
using sender_value_type_t = 
  typename sender_traits<T> 
    ::template value_types<__one_value_only, __zero_or_one_value> 
    ::type::type; 
 
template<typename... Ts> 
struct __is_exception_ptr_or_empty : std::false_type {}; 
template<> 
struct __is_exception_ptr_or_empty<std::exception_ptr> 
: std::true_type {}; 
template<> 
struct __is_exception_ptr_or_empty<> : std::true_type {}; 
 
// Query whether the sender sends only exceptions via error channel. 
template<typename T> 
concept ExceptionErrorSender = 
  TypedSender<T> && 
  sender_traits<T>:: 
    template error_types<__is_exception_ptr_or_empty>::value; 
 
 

AWAITABLE CONCEPTS AND COROUTINES 
With the coroutines language feature as specified in the Coroutines TS we can write asynchronous code that looks 
sequential. The coroutine body is divided up into parts that execute sequentially in-between suspension points. Suspension 
points are identified by the co_await and co_yield keywords. 

Whereas, with the Sender/Receiver concepts, the Receiver represents a callback or continuation, with coroutines, the 
coroutine itself represents the continuation. When a coroutine co_awaits some type that satisfies the Awaitable concept, 
the coroutine is suspended and it submits itself as the continuation to the operation by calling the await_suspend() 
method. 

For a deeper understanding of the Awaitable concepts please see paper P1288R0 or the blog post "Understanding operator 
co_await."1 

Paper P1288R0 proposes to add some new concept definitions and template meta-functions to the standard library which 
we will reference here. The important facilities from P1288R0 are: 

template<typename T> 
concept Awaitable = ...; // See P1288R0 for definition 
 
template<typename T> 
using await_result_t = ...; // See P1288R0 for definition 

 

A COMPARISON OF SENDER/RECEIVER AND AWAITABLE/COROUTINE 

                                                             
1 https://lewissbaker.github.io/2017/11/17/understanding-operator-co-await 



Both the Sender/Receiver and Awaitable/Coroutine abstractions can represent an asynchronous operation that eventually 
produces a result, but there are some differences in how they work. 

Sender/Receiver is explicitly a callback model where results are pushed to the consumer by calling the callback. 
Awaitable/Coroutine is a model that can operate in either a pull or a push model. From the consumer side, the code looks 
like a pull model. 

The Sender concept is more flexible in several aspects: 

• A sender can produce a variadic number of values rather than a single value whereas an awaitable would need to 
wrap up multiple values into a single return-type, e.g. using a std::tuple 

• A sender can produce different types of values and dispatch to different overloads of receiver.value() to handle 
different cases, whereas an awaitable would need to type-erase different types into a single return-type. e.g. using 
a std::variant. 

• The type of the value being produced does not need to be known a priori. We can construct a sender that defers 
instantiation of the calls to the receiver until later when some method is called and is given a concrete type. With 
an Awaitable, the result-type of the operation is equal to the return-type of the await_resume() method and so 
needs to be known statically ahead of time.  

This means that we need to further constrain the Sender concept if we are to find something that can be considered 
equivalent to an Awaitable type. The Sender needs to be able to report statically the type of value that it will send and the 
value either needs to have arity-0 (the void case) or arity-1 (the single-value case). We can define this refinement of the 
Sender concept to be a SingleTypedSender. 

A correspondence table comparing SingleTypedSender/Receiver and Awaitable/Coroutine: 

Sender/Receiver Awaitable/Coroutine 
SingleTypedSender Awaitable 
Receiver Coroutine 
sender_value_type_t<SingleTypedSender> await_result_t<Awaitable> 
op::submit(task, receiver); co_await task; 
op::set_error(receiver, e); coroutine_handle::resume() + 

T await_ready() { 
std::rethrow_exception(e); } 

op::set_value(receiver, v); 
 

coroutine_handle::resume() + 
T await_ready() { return v; } 

op::set_value(receiver, a, b, c); coroutine_handle::resume() + 
std::tuple<A, B, C> await_resume() { 
  return std::make_tuple(a, b, c); 
} 

if (cond) { 
  op::set_value(receiver, a); 
} else { 
  op::set_value(receiver, b); 
} 

coroutine_handle::resume() + 
std::variant<A, B> await_resume() { 
  if (cond) { return a; } 
  else { return b; } 
} 

Lifetime of consumer (receiver) owned by the 
producer (sender) 

Lifetime of producer (awaitable) owned by the 
consumer (coroutine) 

Execution context propagated from producer to 
consumer 

Execution context propagated from consumer to 
producer 

 



ADAPTING SINGLETYPEDSENDERS TO AWAITABLES AND AWAITABLES TO SINGLETYPEDSENDERS 
As SingleTypedSender and Awaitable types are effectively duals of each other, we can write adapters that convert between 
them. 

For example, we can write an operator co_await() for a SingleTypedSender that allows us to co_await the 
SingleTypedSender object from within the coroutine. 

This allows us to write a SingleTypedSender class and then consume that from within a coroutine. e.g. 

template<typename T> 
struct delayed { 
  std::chrono::milliseconds delay; 
  T value; 
 
  template<template<typename... Ts> class Variant, 
           template<typename... Ts> class Tuple> 
  using value_types = Variant<Tuple<T>>; 
 
  template<template<typename... Es> class Variant> 
  using error_types = Variant<std::exception_ptr>; 
 
  template<ReceiverOf<std::exception_ptr, T> R> 
  void submit(R&& receiver) && noexcept; 
}; 
 
task<> usage_example(delayed<std::string> op) 
{ 
  // Calls the default operator co_await() for SingleTypedSender args. 
  // This in turn calls op.submit(). 
  std::string s = co_await std::move(op); 
} 

 

And similarly, we can implement the op::submit() customisation point for an arbitrary Awaitable type that allows 
us to attach a Receiver to the Awaitable object as if it were a Sender. 

task<std::string> get_message(int messageId); 
 
struct cout_receiver { 
  template<typename T> 
  void value(T value) { std::cout << value << "\n"; } 
 
  void error(std::exception_ptr ePtr) { 
    try { 
       std::rethrow_exception(ePtr); 
    } 
    catch (const std::exception& e) { 
      std::cout << "error: " << e.what() << "\n"; 
    } 
    catch (...) { 
     std::cout << "error\n"; 



    } 
  } 

  void done() {} 

}; 
 
void usage_example() { 
  op::submit(get_message(123), cout_receiver{}); 
} 

 
See Appendix A for implementations of the Awaitable/Sender adapters. 

EXPLORING THE OWNERSHIP MODELS OF SENDERS AND AWAITABLES 
One of the key differences between Senders and Awaitables is their ownership model. 

When op::submit() is called with a sender and receiver it cannot assume that either the receiver or the sender objects 
will continue to exist after the call to submit() returns. This means it will generally need to take a copy of the Receiver 
object and of any state from the Sender object needed to perform the operation. 

This will often then be wrapped up in another Receiver object that is then passed to the next Sender in the pipeline. At 
the terminal nodes in the pipeline, a Sender will typically need to type-erase and heap-allocate the copy of the 
Receiver. In many cases, the terminal point in the pipeline is typically some sort of executor which schedules the 
operation and the executor needs to be able to add different types of Receiver objects into a single queue of pending work. 

This means that there is often only a single heap-allocation that is needed to store state for a given pipeline's continuation 
chain. 

However, when using a coroutine, the ownership model is reversed. An Awaitable object is typically allocated as a local 
variable within the coroutine frame of the consumer and so the coroutine frame keeps the Awaitable object alive while 
it is suspended waiting for the operation to complete. 

A pipeline of operations is typically represented within coroutines by calls to nested coroutine functions where the calling 
coroutine owns the lifetime of the called coroutine. In this model, assuming the compiler can elide2 the coroutine frame 
allocations of nested calls, the entire pipeline can be optimised to a single heap allocation for the top-level coroutine. 

In both cases, each pipeline ends up with a single heap allocation. With coroutines the single heap allocation is performed 
by the top-level consumer before starting the operation and with senders the heap allocation is performed by the leaf-level 
producer at the time the operation is started. 

As a result of these differences in ownership models, this means that every time we adapt from one model to the other 
model that we necessarily incur a heap allocation. 

• When adapting an Awaitable to a Sender we need to allocate a new coroutine frame that holds ownership of the 
Awaitable and Receiver. 

• When adapting a Sender as an Awaitable, the Sender will end up heap allocating a copy of the receiver because it 
cannot assume that the receiver will outlive the call to op::submit(), even though in this case the coroutine 

                                                             
2 P0981R0 - "Halo: coroutine Heap Allocation eLision Optimization" (Gor Nishanov, Richard Smith) 



frame awaiting the Sender will keep both the temporary Receiver and the Sender alive until the operation 
completes. 

UNIFYING AWAITABLE/SENDER INTO A TASK CONCEPT 
One of the issues with implementing asynchronous operations as either a Sender or an Awaitable is that regardless of 
which one you implement, you will require an adapter to use it in the opposite context and this adapter will incur an extra 
heap-allocation. 

However, this then leads us to ask the question, "Can we eliminate this overhead by implementing both the Awaitable and 
Sender interfaces on the same type?". The answer is "yes, we can!" 

We define a new concept, tentatively named Task, that requires the type to implement both SingleTypedSender and 
Awaitable. 

template<typename T> 
concept Task = 
  Awaitable<T> && 
  SingleTypedSender<T> && 
  ExceptionErrorSender<T> && 
  ConvertibleTo<sender_value_type_t<T>, await_result_t<T>>; 
 
template<typename T> 
using task_result_t = await_result_t<T>; 
 
template<typename T, typename Result> 
concept TaskOf = 
  Task<T> && 
  ConvertibleTo<task_result_t<T>, Result>; 

 

When this concept is used in conjunction with the default adapters from the previous section, this effectively means that 
we can define a Task type by either implementing the Awaitable concept (i.e. by defining an operator 
co_await()) or by implementing the SingleTypedSender concept (i.e. by defining a submit() method) or by 
implementing both. 

If the type defines only the Awaitable interface then when consuming the Task from a coroutine then its operator 
co_await() will be called and this should generally have minimal overhead. However, when consuming such a type using 
the Sender/Receiver interface, it would fall back to the default implementation of op::submit() for Awaitable types 
which uses an adapter (with some overhead). 

For example: A simple implementation of the ‘Transform’ adapter that applies a function to the result and yields the result. 

template<Awaitable Inner, Invocable<await_result_t<Inner>> Func> 
class transform_op { 
  Inner inner; 
  Func func; 
 
  std::task<std::invoke_result_t<Func, await_result_t<Inner>>> 
  operator co_await() && 
  { 
    co_return std::invoke( 



      static_cast<Func&&>(func), 
      co_await static_cast<Inner&&>(inner)); 
  } 
}; 

 

If we wanted to eliminate the overhead of the adapter when consuming this operation through the Sender/Receiver API 
then we can also implement the submit() method on this class. 

template<Task Inner, Invocable<task_result_t<Inner>> Func> 
class transform_op { 
  Inner inner; 
  Func func; 
 
  using value_type = 
    std::invoke_result_t<Func, task_result_t<Inner>>; 
 
  template<template<typename...> class Variant, 
           template<typename...> class Tuple> 
  using value_types = Variant<Tuple<value_type>>; 
 
  template<template<typename...> class Variant> 
  using error_types = Variant<std::exception_ptr>; 
 
  std::task<value_type> operator co_await() && { 
    co_return std::invoke( 
      static_cast<Func&&>(func), 
      co_await static_cast<Inner&&>(inner)); 
  } 
 
  template<ReceiverOf<std::exception_ptr, value_type> R> 
  void submit(R&& receiver) && noexcept { 
    struct wrapped_receiver { 
      Func func; 
      std::remove_cvref_t<R> receiver; 
 
      void value(sender_value_type_t<Inner> value) { 
        op::set_value( 
          receiver, 
          std::invoke(static_cast<Func&&>(func), 
                      static_cast<decltype(value)&&>(value))); 
      } 
 
      void done() { 
        op::set_done(receiver); 
      } 
 
      void error(std::exception_ptr e) noexcept { 
        op::set_error(receiver, std::move(e)); 
      } 
    }; 
 
    op::submit( 
      static_cast<Inner&&>(inner), 
      wrapped_receiver{std::move(func), std::forward<R>(receiver)}); 
  } 



}; 
 

This now allows this implementation of the transform adapter operation to have an efficient implementation regardless of 
whether the operation is consumed from a coroutine or consumed via op::submit(). 

It does mean that you need to provide two different implementations of the operation for the different async result 
delivery mechanisms, but in cases where performance matters, this could be an acceptable tradeoff. 

In cases where performance is not critical you can implement just one of these and the other variant will still be available 
through the adapters. 

SEPARABILITY FROM COROUTINES 
This design is also separable from the Coroutines TS in the case that adoption of coroutines into the language is delayed. 
Developers can initially write code in terms of SingleTypedSender and implement the op::submit() operation. 

Then later, when coroutines become available, we can define a default operator co_await() for all 
SingleTypedSender types and we can then start using the Task concept. All types that have implemented the 
SingleTypedSender concept will automatically become Task types since they will also be Awaitable. 

 

DESIGN TRADEOFFS 
Forcing a SingleTypedSender to be used pessimises use-cases of Sender that would otherwise allow handling of 
different types to be handled with inline code. E.g. having different overloads of value() for different types would allow 
static dispatch to the right code-path for handling each potential value type. 

It’s possible, with future evolution of the design of coroutines, that we could generalise a coroutine to allow a co_await 
expression to also resume with different types depending on the type of the value produced by the producer. This would 
reduce the impedence mismatch between a Receiver and a Coroutine but could require a non-trivial design extension to 
the Coroutines TS design to support it. 

 

EXECUTORS 
Recent discussions on the Executors calls and mailings have been centred around defining something like 
make_value_task(ex, predecessor, f) as being (one of) the fundamental primitives of an Executor. 

However, it seems cumbersome to have to pass in empty functions or ‘null_sender’ as predecessor to extract the desired 
behaviour. We realised that the make_value_task() operation can actually be decomposed into several individual 
pieces: waiting for a dependency to complete, switching execution contexts and applying a transform to the result. 

Ideally we could define a simpler (preferably single) fundamental primitive that executors can implement that could then be 
composed into these higher-level operations. 



We would also like to allow an executor to be able to efficiently schedule execution when used either under 
sender/receiver or under coroutines. It is possible to implement a zero-allocation, noexcept executor schedule operation 
when used under coroutines. See cppcoro::static_thread_pool, cppcoro::io_service for examples. It would be nice to come 
up with a design for executors that allows these kinds of executor implementations to be used within coroutines. 

THE SCHEDULE() OPERATION AS THE FUNDAMENTAL PRIMITIVE 
This paper proposes that the interface for an Executor should be to have a single .schedule() method that returns a 
TaskOf<Executor>. 

This is a change from the earlier model to make an Executor a factory of Sender/Task rather than being a Sender/Task itself. 

template<typename T> 
concept Executor = 
  CopyConstructible<T> && 
  std::is_nothrow_move_constructible_v<T> && 
  requires(T executor) 
  { 
    // Ideally TaskOf<Executor>. 
    // Unfortunately we can't define concepts to be recursive. 
    { executor.schedule() } -> Task; 
  }; 

 
This allows us to then simply context-switch a coroutine from one executor by co_awaiting the Task returned from 
executor.schedule(): 

template<Executor E> 
task<> foo(E executor) 
{ 
  // Initially executing on whatever execution context 
  // the caller co_awaited this task on. 
 
  // Switch executors 
  Executor subExecutor = co_await executor.schedule(); 
 
  // Now executing on subExecutor (possibly a different type than E) 
 
  // This will resume the coroutine that was awaiting 
  // foo() inline on subExecutor. 
} 

 

With the schedule() operation returning a Task that is able to support both coroutines and sender/receiver natively, it 
becomes possible to then implement an Executor that can reschedule a coroutine onto its execution context with no 
memory allocations and that is noexcept. 

See example code unifex.tar.bz attached to the LEWG wiki for a proof-of-concept of this design. See also 
cppcoro::static_thread_pool::schedule() and cppcoro::io_service::schedule() for coroutine 
implementations of zero-allocation, noexcept implementations of executor schedule() operations. 

WHY NOT MAKE EXECUTOR A TASK ITSELF? 



By making Executor a factory for Tasks rather than a Task itself, we open the door for extending the Executor 
concepts further to be factories of other kinds of tasks which take parameters. 

The op::submit() customization point does not currently take extra arguments (although it could potentially be 
extended to do so). However, the operator co_await() customization point cannot be extended to support 
additional arguments. By currying any additional arguments into a Task object via a factory method we allow the 
Executor concept to be later refined to add support for returning different kinds of scheduling operations which may 
require additional parameters while retaining a uniform interface for attaching continuations via either op::submit() or 
operator co_await(). 

For example, we can extend the Executor concept to a TimedExecutor concept that allows scheduling work at or 
after a specific time: 

template<typename T> 
concept TimedExecutor = 
  Executor<T> && 
  Regular<typename T::time_point> && 
  requires(T executor, typename T::time_point time) 
  { 
    { executor.now() } -> T::time_point; 
    { executor.schedule_at(time) } -> Task; // TaskOf<TimedExecutor> 
  }; 

 

We can imagine other executor concepts that may extend the scheduling parameters, eg. to include support for 
prioritization or cancellation. 

An Executor also has different semantics from Task with regards to copyability. A Task is only guaranteed to be move-
only and can only be submitted or awaited once (it only guarantees that the type Task&& is Awaitable, not that Task& 
is Awaitable). Whereas a single Executor is expected to be able to schedule and submit multiple units of work. 

BUILDING HIGHER-LEVEL OPERATORS 
Once we have the fundamental .schedule() primitive, we can build higher-level algorithms and/or operators on top of 
these. 

For example, the one-way execute operation: 

template<Executor E, Invocable Func> 
void oneway_execute(E&& executor, Func&& f) 
{ 
  std::invoke([](std::remove_cvref_t<E> executor, 
                 std::remove_cvref_t<Func> f) -> oneway_task { 
    co_await executor.schedule(); 
    std::invoke(std::move(f)); 
  }, static_cast<E&&>(executor), static_cast<Func&&>(f)); 
} 

 

This is implemented in terms of a coroutine. It could equivalently have been implemented in terms of the op::submit() 
interface. 



Other operators can also be implemented in terms of the executor.schedule() interface: 

• on(Executor, TaskOf<T>) -> TaskOf<T> 

• via(Executor, TaskOf<T>) -> TaskOf<T> 

• make_value_task(E executor, P predecessor, F func)  
  -> TaskOf<std::invoke_result_t<F, task_result_t<P>>>; 

See Appendix B for example implementations of some of these operations. 

Note that we are not suggesting that these operators are necessarily the set of operators that we should provide in the 
standard library – that should be up for discussion. Only that these operators are ones that have been discussed in Executor 
calls previously and that it is possible to provide default implementations of these operators in terms of an 
executor.schedule() primitive. 

ALGORITHMS AS CUSTOMISATION POINTS 
While we are able to define default implementations of these operators and algorithms in terms of 
Executor::schedule(), for some executors it may be possible to provide more efficient implementations of these 
operators. 

The idea of making algorithms customization points is also discussed in P1232. The general idea is for the standard library to 
provide default implementations of algorithms that accept executors (or an execution_policy) but allow specific executors 
to customize these to provide implementations that are more efficient. 

As some standard library algorithms may be implemented in terms of other standard library algorithms, executors may not 
need to customize all algorithms to benefit from more efficient implementations for that executor. eg. many algorithms 
may be implemented in terms of parallel-for-each or parallel-accumulate and so by customizing those algorithms for an 
executor, the other algorithms built on them would also benefit. 

It is still an open question which set of algorithms should be customizable here. Should all algorithms that accept an 
execution policy be a customization point? 

PARALLEL ALGORITHMS 
Key points for parallel algorithms: 

• Parallel algorithms parameterised on an executor or executor-bound execution policy should be asynchronous 
o This allows chaining and pipelining execution without needing a transition back to the host device 

between each algorithm invocation 
• Blocking versions of parallel algorithms should be defined in terms of sync_wait() on the asynchronous 

versions, when passed a ‘parallel’ execution policy with a bound executor. 
• Parallel algorithms should have default implementations that are defined in terms of executor.schedule() 

o This allows an author of an executor to only need to implement a single basis operation and still get the 
benefit of usability with all of the parallel algorithms. 

• Parallel algorithms should be customisable by executors that can provide more efficient implementations of an 
algorithm than the generic version in terms of executor.schedule() 

o For example, a GPU executor can very efficiently implement parallel-for_each using an GPU kernel 



• Consider adding a new std::unseq policy that allows unsequenced execution in a single thread without 
introducing parallelism. 

o This allows executor-specific implementations to still be able to leverage SIMD optimisations for intra-
thread concurrency while letting the executor customise inter-thread concurrency. 

DEFAULT IMPLEMENTATIONS OF PARALLEL ALGORITHMS IN TERMS OF EXECUTOR CONCEPT 
Once we have an Executor.schedule() operation, we can also use that as a basis operation to implement 
generic/default versions of parallel algorithms. 

Example: The following code snippet shows how you could implement a generic parallel for_each() in terms of an 
arbitrary executor object that implements the Executor concept. 

template< 
  Executor Ex, 
  RandomAccessIterator Iter, 
  Sentinel<Iter> EndIter, 
  Invocable<iter_value_type_t<Iter>> Func) 
std::task<void> 
for_each(Ex executor, Iter it, EndIter itEnd, Func func) 
{ 
  using difference_type = 
    typename std::iterator_traits<Iter>::difference_type; 
  const difference_type count = std::distance(it, itEnd); 
 
  // TODO: Query executor for max concurrency instead 
  auto workerCount = std::min( 
    std::thread::hardware_concurrency(),  
    count); 
 
  // Fall back to sequential if there is no concurrency possible. 
  if (workerCount < 2) { 
    std::for_each(it, itEnd, std::ref(func)); 
    co_return; 
  } 
 
  std::atomic<bool> interrupted = false; 
  std::atomic<difference_type> next = 0; 
  std::atomic<bool> startedParallel = false; 
 
  auto makeWorker = [&]() -> std::task<void> { 
    // Schedule execution onto the executor. 
    co_await executor.schedule(); 
 
    startedParallel.store(true, std::memory_order_relaxed); 
 
    try { 
      difference_type chunkSize = 1; 
      while (!interrupted.load(std::memory_order_relaxed)) 
      { 
        // Acquire a chunk of work. 
        auto offset = next.load(std::memory_order_relaxed); 
        do { 
          if (offset >= count) co_return; 
          const auto remaining = count – offset; 



          if (chunkSize > remaining) chunkSize = remaining; 
        } while (!next.compare_exchange_weak( 
                    offset, 
                    offset + chunkSize, 
                    std::memory_order_relaxed)); 
       
        // Time how long the chunk of work took so we can 
        // adjust our chunk size for next time. 
        auto start = std::chrono::high_resolution_clock::now(); 
 
        auto chunkIt = it + offset; 
        const auto chunkEnd = chunkIt + chunkSize; 
        std::for_each(chunkIt, chunkEnd, std::ref(func)); 
 
        auto end = std::chrono::high_resolution_clock::now(); 
 
        auto chunkTime = (end – start); 
 
        // Try to keep next chunk of work to about 10ms 
        if (chunkTime < 5us) { 
          chunkSize *= 100; 
        } else if (chunkTime < 1ms) { 
          chunkSize *= 10; 
        } else if (chunkTime > 15ms && chunkSize > 1) { 
          chunkSize /= 2; 
        } 
      } 
    } catch (...) { 
      interrupted.store(true, std::memory_order_relaxed); 
      throw; 
    } 
  }; 
 
  try { 
    std::vector<std::task<void>> workers; 
    workers.reserve(workerCount); 
    while (workerCount-- > 0) { 
      workers.emplace_back(makeWorker()); 
    } 
 
    co_await when_all(std::move(workers)); 
    co_return; 
  } catch (...) { 
    if (startedParallel.load(std::memory_order_relaxed)) throw; 
  } 
 
  // Failed to launch execution on specified executor. 
  // Fall back to sequential execution. 
  std::for_each(it, itEnd, std::ref(func)); 
} 

 

Note that even this representation of a parallel algorithm is still not ideal as it requires that the algorithm finish processing 
the entire input range before the next algorithm in the chain can start executing. Thus we expect that a more fundamental 
basis operation for parallel algorithms on ranges is possible that allows stream-processing of chunks of the input range in a 
pipeline of algorithms. This is an area of future research. 



Example: Parallel accumulate using recursive divide and conquer (example from P1316R0) 

template< 
  typename Executor, typename Iter, typename Sentinel, 
  typename T, typename BinaryOp> 
task<T> accumulate(Executor executor, Iter begin, Sentinel end, 
                   T init, BinaryOp op, bool schedule = false) 
{ 
  if (schedule) co_await executor.schedule(); 
 
  auto count = std::distance(begin, end); 
  if (count < 512) { 
    // Below some threshold just run single-threaded version 
    co_return std::accumulate(begin, end, init, op); 
  } else { 
    // Divide range into two halves 
    auto mid = begin + (count / 2); 
 
    auto [left, right] = co_await when_all( 
      accumulate(executor, begin, mid, init, op, true), 
      accumulate(executor, mid + 1, end, *mid, op, false)); 
 
    co_return op(left, right); 
  } 
} 
 

 

CUSTOMISING ALGORITHMS FOR AN EXECUTOR 
Algorithms such as parallel for_each() and accumulate() would then ideally be customized for execution on a GPU to make 
use of the GPU-specific APIs and programming models to provide the most-efficient implementation when passed a GPU 
execution policy. 

The GPU implementations of these algorithms would be free to return GPU-specific Task-types that allow the GPU executor 
to again provide a more efficient implementation when composing these tasks together into a pipeline. 

class cuda_executor { 
public: 
  struct schedule_task; 
 
  schedule_task schedule(); 
 
private: 
  ... 
}; 
 
template<typename T> 
class cuda_task { 
public: 
  cuda_awaiter operator co_await() &&; 
 
  template<ReceiverOf<T> R> 
  void submit(R receiver) &&; 
 



  friend T sync_wait(cuda_task t) 
  { 
    cudaStreamSynchronize(t.stream); 
    return std::move(*t.result); 
  } 
 
private: 
  cudaStream_t stream; 
  cudaEvent_t event; 
  T* result; 
}; 
 
template<typename T, typename F> 
cuda_task<std::invoke_result_t<F, T>> 
make_value_task( 
  cuda_executor ex, 
  cuda_task<T> predecessor, 
  F func) { 
  // - Create new cudaEvent_t 
  // - Create new cudaStream_t 
  //   - Add wait for new cudaEvent_t 

  //   - Add execution of make_kernel<<<1,1>>>(func, 
  //                                           &predecessor.result); 
  //   - Add signaling of new cudaEvent_t to predecessor.stream 
  // - Return new cuda_task wrapping new event/stream. 
} 
 
template<typename T, typename Func> 
cuda_task<void> for_each( 
  cuda_executor ex, 
  cuda_task predecessor, 
  T* iter, T* iterEnd, Func func) 
{ 
  // - Create new cudaEvent_t 
  // - Create new cudaStream_t 
  //   - Add wait for new cudaEvent_t 
  //   - Add execution of make_kernel<<<128, 128>>>(func) 
  //   - Add signalling of new cudaEvnet_t to predecessor.stream 
  // - return new cuda_task wrapping new event/stream 
} 
 

 

 

 

 

 



NETWORKING TS 
• The Networking TS design currently defines a “Universal Async Model” in terms of a generic CompletionHandler 

parameter to all async methods. 
• CompletionHandler represents a combination of: 

o The continuation 
o An allocator for allocating state for the operation 
o An executor to call the continuation on 

• When you call an async function the operation is started immediately and must be provided with a continuation. 
• If you don't have a final continuation yet then you still need to provide a continuation internally. There are 

mechanisms within the CompletionHandler design that allow you to pass a placeholder, like std::use_future that 
manufactures a continuation that stores the result into some shared state and returns a std::future. 

o This means it will often require a heap allocation for the shared state, and also require synchronisation to 
arbitrate the race between eventually attaching the final continuation to the std::future and the result 
becoming available. 

• If we were to build a similar std::use_await object we can pass into the CompletionHandler and have it return an 
Awaitable that could then be co_awaited then this would still need to heap-allocate and synchronise. 

• It's possible to wrap every async method in the Networking TS in an awaitable object that defers the call to the 
initiating method until await_suspend() is called. See Gor Nishanov's CppCon 2017 talk for more details. 

o This solution is functional but cumbersome and duplicates the APIs. 
o There must be a better way. 

• What if instead we had each of the xxx_async() functions in the Networking TS return an object that satisfied 
the Task concept instead? 

o Then it could be implemented to be synchronisation-free and allocation-free. 
o There would be no need to pass in an executor as a parameter to the function as the returned object can 

be adapted with the via() operator by the caller to schedule onto a particular execution context – the 
default would be to resume/execute the continuation on the io_context associated with the socket. 

o The async operations from the Networking TS would be composable with other operations/adapters built 
on top of Tasks and Executors using higher-level generic operators/algorithms like when_all(). 

o The async methods could then be consumed naturally from a coroutine with minimal overhead and 
without having to duplicate/wrap the APIs. 

o Existing callback-based code can still be accommodated by using the op::submit() extension point 
and building a Receiver that wraps the callback. This could be wrapped up in a helper function. eg. 
op::submit_callback() 

§ Example: 
op::submit_callback( 
  socket.read_some(buffer, size), callback); 

§ This would be just as efficient as the equivalent code that uses CompletionHandlers. 
Example: 
socket.read_some(buffer, size, callback); 

 

 



OPEN QUESTIONS 
• Is Sender the right corresponding concept for Awaitable? 

Sender represents a sequence of either 0 or 1 elements whereas Awaitable always yields exactly a single 
element. This presents somewhat of an impedence mismatch. There may be a simpler concept that omits the 
set_done() operation and just supports set_value() and set_error(). 

• Perhaps Sender, being a specialisation of the more-general ManySender concept, should have a correspondence 
to some kind of AsyncRange concept rather than to Awaitable. 

• What constraints should we put on the relationship between the types that a Sender sends and the result-type of 
the await_result_t of the awaitable code-path? 

o The return value of await_resume() can only support a single value of a single type. 
o A Sender can support a number of different kinds of arities: 

§ It can produce a variable number of values (in this case 0 or 1) 
§ It can produce different types of values (eg. either type T or type U) 
§ It can produce a value consisting of multiple parameter values 

o Should the Sender only support sending a single value argument? 
Or zero arguments for the void case. 

o Should the Sender only support sending a single value type? 
§ Should this type be the same as await_result_t? 
§ If we require it send a single value argument then perhaps we can just require that the value 

type it sends is convertible to the await_result_t type? 
• How should we allow the caller to customise heap allocations that may be needed by an executor/Task 

implementation? 

 

  



APPENDIX A – ADAPTING SENDER AND AWAITABLE 
An implementation of operator co_await() for an arbitrary TypedSender that calls op::submit() on the sender, stores the 
result in an Awaiter object and then results the coroutine and returns the result from await_resume(). 

// This type implements both Awaiter and Receiver interfaces 
template<SingleTypedSender S, typename T> 
class sender_awaiter { 
  S&& sender; 
  std::experimental::coroutine_handle<> continuation; 
  std::exception_ptr err; 
  std::optional<T> value; 
 
public: 
  explicit sender_awaiter(S&& sender) noexcept : sender(sender) {} 
 
  bool await_ready() noexcept { return false; } 
 
  void await_suspend(std::experimental::coroutine_handle<> h) { 
    continuation = h; 
    op::submit(static_cast<S&&>(sender), std::ref(*this)); 
  } 
 
  T await_resume() { 
    if (err) std::rethrow_exception(err); 
    else if (!value) throw operation_cancelled{}; 
    return std::move(*value); 
  } 
 
  template<typename U> 
  void value(U&& v) 
      noexcept(std::is_nothrow_constructible_v<T, U>) { 
    value.emplace(static_cast<U&&>(v)); 
  } 
 
  void error(std::exception_ptr e) noexcept { 
    err = std::move(e); 
    continuation.resume(); 
  } 
 
  void done() noexcept { 
    continuation.resume(); 
  } 
}; 
 
template<SingleTypedSender S> 
auto operator co_await(S&& sender) { 
  return sender_awaiter<S, sender_value_type_t<S>>{ 
    static_cast<S&&>(sender) 
  }; 
} 

 



An implementation of the op::submit() customisation point for arbitrary Awaitable types. It is implemented by 
co_awaiting the Awaitable object in a new oneway_task coroutine and then forwarding the result on to the receiver 
passed to submit(). 

// Fire-and-forget, eager coroutine type 
struct [[maybe_unused]] oneway_task { 
  struct promise_type { 
    oneway_task get_return_object() noexcept { return {}; } 
    suspend_never initial_suspend() noexcept { return {}; } 
    suspend_never final_suspend() noexcept { return {}; } 
    void return_void() noexcept {} 
    void unhandled_exception() noexcept { std::terminate(); } 
  }; 
}; 
 
template<Awaitable A, ReceiverOf<await_result_t<A>> R> 
void submit(A&& awaitable, R&& receiver) noexcept { 
  try { 
    // Take care to move/copy the awaitable and only if that 
    // succeeds do we try to then copy the receiver. This allows 
    // us to deliver the receiver 
    std::invoke([](std::remove_cvref_t<A> awaitable, 
                   R&& receiver) -> oneway_task { 
      try { 
        std::remove_cvref_t<R> receiverCopy{ 
          static_cast<R&&>(receiver) }; 
        try { 
          if constexpr (std::is_void_v<await_result_t<A>>) { 
            co_await std::move(awaitable); 
            op::set_value(receiverCopy); 
          } else { 
            op::set_value(receiverCopy, 
                          co_await std::move(awaitable)); 
          } 
          op::set_done(receiverCopy); 
        } catch (...) { 
          // Handle failures awaiting the result, calling 
          // set_value() or set_done(). 
          op::set_error(receiverCopy, std::current_exception()); 
        } 
      } catch (...) { 
        // Handle failures copying the receiver 
        op::set_error(receiver, std::current_exception()); 
      } 
    }, std::forward<A>(awaitable), std::forward<R>(receiver)); 
  } catch (...) { 
    // Handle failures creating the coroutine-frame or copying 
    // the awaitable object. 
    op::set_error(receiver, std::current_exception()); 
  } 
} 

 



APPENDIX B – EXECUTOR OPERATOR EXAMPLES 
Example implementation of the via(executor, task) operator using Executor.schedule() 

template<Executor E, Task T> 
class via_task { 
  E executor; 
  T task; 
 
  template<typename V, Receiver R> 
  struct value_receiver { 
    V value; 
    R receiver; 
 
    template<typename SubExecutor> 
    void value([[maybe_unused]] SubExecutor subExecutor) 
    { 
      op::set_value(receiver, std::forward<V>(value)); 
    } 
 
    void done() 
    { 
      op::set_done(receiver); 
    } 
 
    template<typename Error> 
    void error(Error&& err) noexcept 
    { 
      op::set_error(receiver, std::forward<Error>(err)); 
    } 
  }; 
     
  template<typename Error, Receiver R> 
  struct error_receiver { 
    Error error; 
    R receiver; 
 
    template<typename SubExecutor> 
    void value([[maybe_unused]] SubExecutor subExecutor) 
    { 
      op::set_error(receiver, std::move(error)); 
    } 
 
    void done() 
    { 
      op::set_done(receiver); 
    } 
 
    template<typename ScheduleError> 
    void error(ScheduleError&& scheduleError) noexcept 
    { 
      op::set_error(receiver, 
                    std::forward<ScheduleError>(scheduleError)); 
    } 
  }; 
 



  template<Receiver R> 
  struct done_receiver { 
    R receiver; 
 
    template<typename SubExecutor> 
    void value([[maybe_unused]] SubExecutor subExecutor) 
    {} 
 
    void done() 
    { 
      op::set_done(receiver); 
    } 
 
    template<typename ScheduleError> 
    void error(ScheduleError&& error) noexcept 
    { 
      op::set_error(receiver, static_cast<ScheduleError&&>(error)); 
    } 
  }; 
 
  template<Receiver R> 
  struct task_receiver { 
    E executor; 
    R receiver; 
    bool valueCalled = false; 
 
    template<typename Value> 
    void values(Value value) 
    { 
      op::submit(executor.schedule(), 
                 value_receiver<Value, R>{std::move(value), 
                                          std::move(receiver)}); 
      valueCalled = true; 
    } 
 
    void done() 
    { 
      if (!valueCalled) { 
        op::submit(executor.schedule(), 
                   done_receiver<R>{std::move(receiver)}); 
      } 
    } 
 
    template<typename Error> 
    void error(Error error) noexcept 
    { 
      try { 
        op::submit(executor.schedule(), 
                   error_receiver<Error, R>{std::move(error), 
                                            std::move(receiver)}); 
      } catch(...) { 
        op::set_error(receiver, std::current_exception()); 
      } 
    } 
  
  }; 
 



public: 
 
  via_task(E executor, T task) 
  : executor(std::move(executor)) 
  , task(std::move(task)) 
  {} 
 
  // Awaitable implementation for coroutines 
  std::task<await_result_t<T>> operator co_await() && 
  { 
    std::exception_ptr err; 
    bool scheduleAttempted = false; 
    try { 
      auto&& awaiter = get_awaiter(std::move(task)); 
      auto&& result = co_await awaiter; 
      scheduleAttempted = true; 
      co_await executor.schedule(); 
      co_return static_cast<decltype(result)&&>(result); 
    } catch (...) { 
      err = std::current_exception(); 
    } 
    if (!scheduleAttempted) { 
      // Try to deliver the error on the specified execution context. 
      co_await executor.schedule(); 
    } 
    std::rethrow_exception(err); 
  } 
 
  // op::submit() implementation 
  template<Receiver R> 
    requires SenderTo<T, R> 
  void submit(R receiver) && noexcept { 
    try { 
      op::submit(std::move(task), 
                 task_wrapper<R>{std::move(receiver)}); 
    } catch (...) { 
      op::set_error(receiver, std::current_exception()); 
    } 
  } 
}; 
 
template<Executor E, Task T> 
via_task<E, T> via(E executor, T task) { 
  return via_task<E, T>{ std::move(executor), std::move(task) }; 
} 

 

Example implementation of transform(task, func) 

template<Task T, Invocable<task_result_t<T>> F> 
struct transform_task { 
  T task; 
  F func; 
 
  std::task<std::invoke_result_t<F, task_result_t<T>>> 
  operator co_await() && { 



    co_return std::invoke(static_cast<F&&>(func), 
                          co_await static_cast<T&&>(task)); 
  } 
 
  template<Receiver R> 
  struct wrapped_receiver { 
    F func; 
    R receiver; 
 
    template<typename Value> 
    void value(Value&& v) { 
      op::set_value(receiver, 
                    std::invoke(std::move(func), 
                                static_cast<Value&&>(v))); 
    } 
 
    void done() { op::set_done(receiver); } 
 
    template<typename Error> 
    void error(Error&& error) noexcept { 
      op::set_error(receiver, static_cast<Error&&>(error)); 
    } 
  }; 
 
  template<Receiver R> 
  void submit(R receiver) noexcept { 
    try { 
      op::submit(std::move(task), 
                 wrapped_receiver<R>{ std::move(func), 
                                      std::move(receiver) }); 
    } catch (...) { 
      op::set_error(receiver, std::current_exception()); 
    } 
  } 
}; 
 
template<Task T, Invocable<task_result_t<T>> F> 
auto transform(T task, F func) 
{ 
  return transform_task<T, F>{std::move(task), std::move(func)}; 
} 

 

Finally, an example make_value_task() operation can be implemented by composing via() and transform() 

template<Executor E, Task T, Invocable<task_result_t<T>> F> 
auto make_value_task(E executor, T predecessor, F func) { 
  return transform( 
    via(std::move(executor), std::move(predecessor)), 
    std::move(func)); 
} 

 


