

Document No. P1288R0

Date 2018-10-07

Reply To Lewis Baker <lbaker@fb.com>

Audience SG1, LEWG

Coroutine concepts and metafunctions

Abstract
The Coroutines TS introduces the ability to ​co_await ​ a value from within a coroutine.

When building generic functions and types that interact with coroutines you will often want to constrain a
generic function to only accept parameters to which you can apply the ​co_await ​ operator. You may
also want to query the result-type of a ​co_await ​ expression so that you can use it to construct the
correct return-type of a coroutine.

This can be quite common when building adapters for awaitable types such as those that save/restore
context across coroutine suspend-points, perform logging or that schedule execution of an awaitable onto
a different execution context. Other usage examples include sync_wait() from P1171R0 and
when_all()/when_all_ready().

It would be much simpler to write correct generic coroutine code if this could be written in terms of
concepts and type-traits that were available in the standard library:
template ​<Executor E, Awaitable A>
auto ​ schedule_on(E executor, A awaitable) -> task<await_result_t<A>>
{

 ​co_await ​executor.schedule();
 ​co_return co_await ​ std::move(awaitable);
}

Currently, it is not possible to write this sort of constrained generic code without writing a number of
subtly complicated trait types that emulate the logic the compiler applies when compiling a ​co_await
expression.

This paper proposes to add:

● New concept definitions to the standard library that allow functions to be constrained to accepting
only awaitable types: ​Awaiter ​, ​AwaiterOf<R> ​, ​Awaitable ​, ​AwaitableOf<R>

● New trait types to the standard library that allow generic code to query the result-type of a
co_await ​ expression and to query the type of the intermediate awaiter object returned from
calling ​operator co_await() ​: ​await_result_t<T> ​, ​awaiter_type_t<T>

● A ​get_awaiter() ​ helper function that lets library code simulate the same rules as the compiler
for obtaining an ‘awaiter’ object from an ‘awaitable’ object. This helper is useful in building
awaitable adapters.

Background
One of the limitations of ​operator co_await ​ that is specified in N4760 8.3.8(2) is that it may only
appear in a potentially evaluated context. This means that we cannot simply use ​decltype(co_await
foo) ​ to determine the result-type of a ​co_await ​ expression.

The reason this restriction exists is because the result of a ​co_await ​ expression is context-dependent.
The validity of a ​co_await ​ expression and its resulting type depends on the ​promise_type ​ of the
specific coroutine in which it is evaluated and whether there is an ​await_transform() ​ member on the
promise_type ​.

A type that is awaitable in one coroutine context may not be awaitable in another coroutine context if
those coroutines have different promise types. Further, the result-type of a ​co_await ​ expression in one
coroutine-context may be different from the result-type of a ​co_await ​ of the same expression in a
different coroutine-context due to the promise-types having different ​await_transform()
implementations, even though the operand type is the same.

This means that when asking a question about whether or not a given type is awaitable or asking what
the result-type of a ​co_await ​ expression will be, you need to qualify the question with the context in
which the ​co_await ​ expression will be evaluated. You can either ask whether a type is awaitable within
a specific context (eg. within a coroutine that has a specific/known promise_type) or you can ask whether
a type is awaitable within a general context where you assume certain properties about the
promise_type ​ (eg. assuming the ​promise_type ​ does not define an ​await_transform()
member).

Further, when determining the result of a ​co_await ​ expression, we need to handle three different
cases:

● Where the awaitable object has a member ​operator co_await() ​.
● Where the awaitable object has a non-member ​operator co_await() ​.
● Where the awaitable object does not have an​ operator co_await() ​.

In this case the ​await_ready() ​, ​await_suspend() ​and ​await_resume() ​ methods are
found directly on the awaitable object.

The semantics of a ‘​co_await <expr> ​’ expression can be (roughly) summarised by the following
pseudo-code:
{

 ​auto ​&& awaitedValue = <expr>;
 ​auto ​&& awaitable = get_awaitable(
 promise, ​static_cast ​< ​decltype ​(awaitedValue)>(awaitedValue));
 ​auto ​&& awaiter = get_awaiter(
 ​static_cast ​< ​decltype ​(awaitable)>(awaitable));
 if (!awaiter.await_ready())

 {

 <suspend-coroutine>

 ​using ​ handle_type = std::experimental::coroutine_handle<promise_type>;
 handle_type coro = handle_type::from_promise(promise);

 ​using ​ await_suspend_result = decltype(awaiter.await_suspend(coro));
 ​if constexpr ​ (std::is_void_v<await_suspend_result>)
 {

 awaiter.await_suspend(coro);

 <return-to-caller-or-resumer>

 }

 ​else if constexpr ​ (std::is_same_v<await_suspend_result, ​bool ​>)
 {

 ​if ​ (awaiter.await_suspend(coro))
 {

 <return-to-caller-or-resumer>

 }

 }

 ​else
 {

 ​static_assert ​(__is_coroutine_handle_v<await_suspend_result>);
 awaiter.await_suspend(coro).resume(); ​// tail-call
 <return-to-caller-or-resumer>

 }

 <resume-point>

 }

 awaiter.await_resume();

}

Assuming that following helper functions are defined:
template ​< ​typename ​ Promise, ​typename ​ Value>
decltype(auto) ​ get_awaitable(Promise& promise, Value&& value)

{

 ​if constexpr ​ (__has_await_transform_member_v<Promise>)
 {

 ​return ​ promise.await_transform(​static_cast ​<Value&&>(value));
 }

 ​else
 {

 ​return static_cast ​<Value&&>(value);
 }

}

template ​< ​typename ​ Awaitable>
decltype(auto) ​ get_awaiter(Awaitable&& awaitable)
{

 ​if constexpr ​ (__has_member_operator_co_await_v<Awaitable>)
 {

 ​return static_cast ​<Awaitable&&>(awaitable). ​operator co_await ​();
 }

 ​else if constexpr ​ (__has_free_operator_co_await_v<Awaitable>)
 {

 ​return operator co_await ​(​static_cast ​<Awaitable&&>(awaitable));
 }

 ​else
 {

 ​return static_cast ​<Awaitable&&>(awaitable);
 }

}

Terminology
This section defines some placeholder terminology that we can use when talking about different parts of
a ​co_await ​ expression. For a more in-depth discussion of the semantics of ​operator co_await ​ see
the blog-post ​Understanding operator co_await . 1

Natural coroutine context ​​- A coroutine context where the ​promise_type ​ of the coroutine does not
have an ​await_transform() ​ method and so ​co_await ​ expressions within that context have their
natural meaning/semantics.

1 ​https://lewissbaker.github.io/2017/11/17/understanding-operator-co-await

https://lewissbaker.github.io/2017/11/17/understanding-operator-co-await
https://lewissbaker.github.io/2017/11/17/understanding-operator-co-await

Modified coroutine context ​​- A coroutine context where the behaviour and/or result-type of a
co_await ​ expression may be affected by the presence of an ​await_transform() ​ method on the
coroutine’s ​promise_type ​.

Awaited value​​ - The result of evaluating the sub-expression in the operand position of the ​co_await
expression.

Awaitable​​ - Something that you can apply the ‘co_await’ operator to. If the promise type defines an
await_transform() member then the awaitable is obtained by calling
promise.await_transform(value) ​, passing the awaited value. Otherwise, if the promise type
does not define an​ await_transform() ​ member then the awaitable is the awaited value itself.

Awaiter​​ - An awaiter object is an object that implements the await_ready(), await_suspend() and
await_resume() methods. If the awaitable object implements either a member or non-member ​operator
co_await() ​ then the awaiter object is the result of calling ​operator co_await() ​. Otherwise, the
awaiter object is the same as the Awaitable object.
Note that in P1056R0, the proposed name for this concept was SimpleAwaitable.

The Awaitable/Awaiter terminology has precedent in the .NET Framework. 2

The C# await keyword maps to a call to awaitable.GetAwaiter() to obtain an Awaiter object. The Awaiter
object has an ​IsCompleted ​ property, ​OnCompleted() ​ method that takes a continuation, and a
GetResult() ​ method for obtaining the final result. These three components of the interface of an
Awaiter object in .NET have direct mappings, respectively, to the ​await_ready() ​,
await_suspend() ​ and ​await_resume() ​ methods described in ​N4760 . 3

2 https://weblogs.asp.net/dixin/understanding-c-sharp-async-await-2-awaitable-awaiter-pattern
3 https://wg21.link/N4760

https://wg21.link/N4760

API Synopsis

Concepts
// <experimental/coroutine> header

namespace ​ std::experimental
{

 ​// A type, T, matches this concept if it implements valid overloads
 // for await_ready(), await_suspend() and await_resume() in _any_

 // natural coroutine context (ie. await_suspend() accepts an argument

 // of type coroutine_handle<void>)

 ​template ​< ​typename ​ T>
 ​concept ​ Awaiter;

 // A type, T satisfies AwaiterOf<T, R> if a value of type T& implements

 // the await_ready(), await_suspend() and await_resume() methods and the

 // result of await_resume() is convertible to type R.

 ​template ​< ​typename ​ T, ​typename ​ R>
 ​concept ​ AwaiterOf;

 // A type, T, is Awaitable if, given an expression, E, of type, T, then

 // the expression ‘co_await E’ is a valid expression within _any_

natural

 // coroutine context. Such a type must either have a member or

non-member

 // operator co_await() or must be an Awaiter.

 ​template ​< ​typename ​ T>
 ​concept ​ Awaitable;

 // A type T, is AwaitableOf<T, R> if it is Awaitable and the result of

 // the co_await expression is convertible to R.

 ​template ​< ​typename ​ T, ​typename ​ R>
 ​concept ​ AwaitableOf;
}

Trait Types
// <experimental/coroutine> header

namespace ​ std::experimental
{

 // Query the result-type of a co_await expression with an operand of

 // type T.

 ​template ​< ​typename ​ T>
 ​struct ​ await_result
 {

 ​using ​ type = ...;
 };

 ​template ​< ​typename ​ T>
 ​using ​ await_result_t = ​typename ​ await_result<T>::type;

 // Query the type returned from calling member or non-member

 // operator co_await() on a value of type, T, if operator co_await()

 // is defined, otherwise yields the type T&&.

 ​template ​< ​typename ​ T>
 ​struct ​ awaiter_type
 {

 ​using ​ type = ...;
 };

 ​template ​< ​typename ​ T>
 ​using ​ awaiter_type_t = ​typename ​ awaiter_type<T>::type;
}

Functions
// <experimental/coroutine> header

namespace ​ std::experimental
{

 // Returns the result of applying operator co_await() to the function’s

 // argument, if the operator is defined, otherwise returns a reference

 // to the input argument.

 ​template ​<Awaitable T>
 ​auto ​ get_awaiter(T&& awaitable) -> awaiter_type_t<T>;
}

Design Discussion

Awaiter​ Concept
The ​Awaiter ​ concept is used to refer to types that implement the trio of methods; ​await_ready() ​,
await_suspend() ​ and ​await_resume() ​ that are called by a coroutine when evaluating a
co_await ​ expression.

The concept requires that these methods be callable on an lvalue-reference to a value of the type. This
mirrors the requirement from the wording within ​N4760​ 8.3.8(3) which states that these methods are
called on an lvalue-reference to the awaiter object.

This concept is restricted to matching types that can be awaited from an arbitrary ​natural coroutine
context​. This is implemented by checking that the ​await_suspend() ​ method is callable with a single
parameter of type ​coroutine_handle<void> ​ type. If the ​await_suspend() ​ method is able to
accept a ​coroutine_handle<void> ​ type then it will also be able to accept a
coroutine_handle<P> ​ type for an arbitrary promise type, ​P, ​ as ​coroutine_handle<P> ​ inherits
from ​coroutine_handle<void> ​ and thus is implicitly convertible.

The rationale here is that for an awaiter object to be able to support being awaited in an arbitrary natural
coroutine context it will generally need to type-erase the ​coroutine_handle<Promise> ​ to
coroutine_handle<void> ​ so that it can store the continuation for an arbitrary coroutine-type. If the
await_suspend() ​ method overload-set only has overloads that accept specific types of
coroutine_handle<P> ​ then it is only awaitable within specific contexts and thus we don’t consider it
to satisfy the ​Awaiter ​ concept.

Awaitable​ Concept
The awaitable concept simply checks whether the type supports applying the ​co_await ​ operator to a
value of that type.

If the object has either a member or non-member ​operator co_await() ​ then its return value must
satisfy the ​Awaiter ​ concept. Otherwise, the ​Awaitable ​ object must satisfy the ​Awaiter ​ concept
itself.

AwaiterOf<T>​ Concept
This concept subsumes ​Awaiter ​ and places the additional constraint that the result of the ​co_await
expression (ie. the return-value of ​await_resume() ​) is convertible to type, ​T ​.

https://wg21.link/N4760

AwaitableOf<T>​ Concept
This concept subsumes ​Awaitable ​ and places the additional constraint that the result of the ​co_await
expression is convertible to type, ​T ​.

await_result<T>​ Type Trait
This type trait is used to compute the result-type of a co_await expression where the operand has type,
T. If type, T, satsifies the Awaitable concept then ​await_result<T> ​ will contain a nested ‘​type ​’
typedef that will be equal to the result-type of the ​co_await ​ expression. Otherwise, if ​T ​ does not satisfy
the ​Awaitable ​ concept then ​await_result<T>::type ​ will not be defined.

Example:
template ​<Awaitable A>
task<await_result_t<A>> make_task(A awaitable)

{

 ​co_return co_await ​ ​static_cast ​<A&&>(awaitable);
}

awaiter_type<T>​ Type Trait
This type trait computes the return-type of the ​get_awaiter() ​ function when passed a value of type,
T ​.

This is typically used when building awaitable/awaiter types that adapt other awaitable types.

Example:
template ​<Awaitable A>
struct ​ logging_awaitable
{

 A awaitable;

 ​auto ​ ​operator co_await ​() &&
 {

 ​struct ​ logging_awaiter
 {

 awaiter_type_t<A> awaiter; ​// <- Usage example here
 ​bool ​ suspended = ​false ​;

 awaiter(A&& awaitable)

 :

awaiter(std::experimental::get_awaiter(​static_cast ​<A&&>(awaitable)))

 {}

 ​decltype ​(​auto ​) await_ready() { ​return ​ awaiter.await_ready(); }

 ​decltype ​(​auto ​) await_suspend(std::experimental::coroutine_handle<>
h)

 {

 ​LOG ​(“Suspended”);
 suspended = ​true ​;
 ​return ​ awaiter.await_suspend(h);
 }

 ​decltype ​(​auto ​) await_resume()
 {

 if (suspended) { ​LOG ​(“Resumed”); }
 ​return ​ awaiter.await_resume();
 }

 };

 ​return ​ logging_awaiter{ ​static_cast ​<A&&>(awaitable) };
 }

};

get_awaiter()​ Function
The get_awaiter() function is useful for building new operators, when passed an object that has an
associated operator co_await() defined for that type then it returns the result of calling operator
co_await(), otherwise it returns the argument unmodified.

Note that this function does not constrain the argument to have to satisfy the Awaitable concept as we
also want this function to be usable to obtain the awaiter object for types that are only awaitable within
specific coroutine contexts.

Asking whether a type is awaitable within a specific context
The Background section of this proposal mentions that there are two kinds of questions we could be
asking about whether a type is awaitable. The above concepts and trait types allow you to answer the
first question; “is this type awaitable within an arbitrary natural coroutine context?”.

The other question not covered by this proposal is asking “is this type awaitable within this specific
coroutine context?”. It was an intentional decision to leave this out for now for a couple of reasons.

Firstly, the use case for asking this question is not as clear as for a general coroutine context. Typically, if
you know that you will be awaiting a type within a specific type of coroutine then you often also have
knowledge of what is or is not allowed to be awaitable within that coroutine. For example, a generator<T>
coroutine type is known to not allow any use of co_await within the body.

Secondly, there is no currently known implementation of a concept that can reliably answer this question
for any combination of promise type and awaitable type without resorting to compiler intrinsics.

The main difficulty here centers around detecting whether or not the promise type contains an
await_transform ​ member.

The wording from N4760 8.3.8(3.2) states:

… Otherwise, the ​unqualified-id​ ​await_transform ​ is looked up within the scope of ​P​ by class
member access lookup (6.4.5), and if this lookup finds ​at least one declaration​​, then ​a​ is
p​.await_transform(​cast-expression​); ​ otherwise, ​a​ is the ​cast-expression​.

The best approach so far for detecting whether there is at least one declaration of await_transform on the
promise type is a technique suggested by Eric Niebler. This technique involves creating a class that
multiply inherits from both the promise type and from another type that defines an await_transform
member. If taking the address of the await_transform member of the derived class is ill-formed then this
must be because the promise type also defines an await_transform member, making the identifier
ambiguous in the derived class.

Example: Detecting the presence of await_transform in a promise type ​https://godbolt.org/z/50SVO3
struct ​ __check_await_transform {
 void ​ await_transform() {}
};

template ​ < ​class ​ Promise>
struct ​ __check : __check_await_transform, Promise {};

template ​ < ​class ​ Promise>
concept ​ HasAwaitTransform =
 ! ​requires ​ { &__check<Promise>::await_transform; };

The only limitation of this approach found so far is that it fails when the promise type is marked as final.
However, it is not uncommon to mark a promise_type as final to limit the risk of accidentally introducing 4

UB if a type inherits from the promise_type and forgets to override get_return_object() to construct a
coroutine_handle using the most-derived promise type.

4
https://github.com/lewissbaker/cppcoro/blob/fc76dadcd058a6d74d3c6586eb4973921e226b49/include/cppcoro/task.
hpp#L122

https://godbolt.org/z/50SVO3

A compiler intrinsic may be necessary to reliably detect the presence of the ​await_transform()
method in all cases. Alternatively, it may be possible to use the proposed features from the Reflection TS
to detect the existence of the ​await_transform() ​ member. This is an area of future research.

Wording
Formal wording can be provided pending an initial review of the concepts.

For now, there is a definition of the proposed concepts and metafunctions in the Reference
Implementation section which can be used in place of formal wording.

Acknowledgements
Thanks to Eric Niebler for assistance with the concept definitions.
And thanks to Gor Nishanov for providing feedback on early drafts.

Appendix A - Reference Implementation
See reference implementation under Compiler Explorer: ​https://godbolt.org/z/9dapP6

// <experimental/coroutine>

#include ​ ​<type_traits>
#include ​ ​<concepts>

namespace ​ std::experimental
{

 ​template ​< ​typename ​ _Tp>
 ​struct ​ __is_valid_await_suspend_return_type : false_type {};

 ​template ​<>
 ​struct ​ __is_valid_await_suspend_return_type< ​bool ​> : true_type {};

 ​template ​<>
 ​struct ​ __is_valid_await_suspend_return_type< ​void ​> : true_type {};

 ​template ​< ​typename ​ _Promise>
 ​struct ​ __is_valid_await_suspend_return_type<coroutine_handle<_Promise>>
 : true_type {};

https://godbolt.org/z/9dapP6

 template ​< ​typename ​ _Tp>
 ​concept ​ _AwaitSuspendReturnType =
 __is_valid_await_suspend_return_type<_Tp>::value;

 ​template ​< ​typename ​ _Tp>
 ​concept ​ Awaiter =
 ​requires ​(_Tp&& __awaiter, coroutine_handle< ​void ​> __h)
 {

 ​// await_ready() result must be contextually convertible to bool.
 __awaiter.await_ready() ? ​void ​() : ​void ​();
 __awaiter.await_suspend(__h);

 ​requires ​ _AwaitSuspendReturnType< ​decltype ​(
 __awaiter.await_suspend(__h))>;

 __awaiter.await_resume();

 };

 ​template ​< ​typename ​ _Tp, ​typename ​_Result>
 ​concept ​ AwaiterOf =
 Awaiter<_Tp> &&

 ​requires ​(_Tp&& __awaiter)
 {

 { __awaiter.await_resume() } -> _Result;

 };

 ​template ​< ​typename ​ _Tp>
 ​concept ​ _WeakHasMemberCoAwait =
 ​requires ​(_Tp&& __awaitable)
 {

 ​static_cast ​<_Tp&&>(__awaitable). ​operator co_await ​();
 };

 ​template ​< ​typename ​ _Tp>
 ​concept ​ _WeakHasNonMemberCoAwait =
 ​requires ​(_Tp&& __awaitable)
 {

 ​operator co_await ​(​static_cast ​<_Tp&&>(__awaitable));
 };

 ​template ​<_WeakHasMemberCoAwait _Tp>
 ​decltype ​(​auto ​) get_awaiter(_Tp&& __awaitable)
 ​noexcept ​(​noexcept ​(​static_cast ​<_Tp&&>(__awaitable). ​operator

co_await ​()))
 {

 ​return ​ ​static_cast ​<_Tp&&>(__awaitable). ​operator co_await ​();
 }

 ​template ​<_WeakHasNonMemberCoAwait _Tp>
 ​decltype ​(​auto ​) get_awaiter(_Tp&& __awaitable)
 ​noexcept ​(​noexcept ​(​operator co_await ​(​static_cast ​<_Tp&&>(__awaitable))))
 {

 ​return operator co_await ​(​static_cast ​<_Tp&&>(__awaitable));
 }

 ​template ​< ​typename ​ _Tp>
 ​requires ​ !_WeakHasNonMemberCoAwait<_Tp> && !_WeakHasMemberCoAwait<_Tp>
 _Tp&& get_awaiter(_Tp&& __awaitable) ​noexcept
 {

 ​return static_cast ​<_Tp&&>(__awaitable);
 }

 ​template ​< ​typename ​ _Tp>
 ​struct ​ awaiter_type
 {

 ​using ​ type = ​decltype ​(
 std::experimental::get_awaiter(std::declval<_Tp>()));

 };

 ​templat ​e< ​typename ​ _Tp>
 ​using ​ awaiter_type_t = ​typename ​ awaiter_type<_Tp>::type;

 ​template ​< ​typename ​ _Tp>
 ​concept ​ Awaitable =
 Movable<_Tp> &&

 ​requires ​(_Tp&& __awaitable)
 {

 { std::experimental::get_awaiter(​static_cast ​<_Tp&&>(__awaitable)) }
 -> Awaiter;

 };

 ​template ​< ​typename ​ _Tp, ​typename ​ _Result>
 ​concept ​ AwaitableOf =
 Awaitable<_Tp> &&

 ​requires ​(_Tp&& __awaitable)
 {

 { std::experimental::get_awaiter(​static_cas ​t<_Tp&&>(__awaitable)) }
 -> AwaiterOf<_Result>;

 };

 ​template ​< ​typename ​ _Tp>
 ​struct ​ await_result {};

 ​template ​<Awaitable _Tp>
 ​struct ​ await_result<_Tp>
 {

 ​using ​ type = ​decltype ​(
 std::declval<awaiter_type_t<_Tp>&>().await_resume());

 };

 ​template ​< ​typename ​ _Tp>
 ​using ​ await_result_t = ​typename ​ await_result<_Tp>::type;
}

Usage examples:
#include ​ ​<experimental/task>
#include ​ ​<experimental/coroutine>

using namespace ​std;
using namespace ​std::experimental;

template ​<Awaitable A, Awaitable B>
task<await_result_t> sequence(A a, B b)

{

 ​co_await ​ std::move(a);
 ​co_return co_await ​ std::move(b);
}

template ​<Awaitable A, Invocable<await_result_t<A>> Func>
struct ​ transform_awaitable
{

 A awaitable;

 Func func;

 ​auto operator co_await ​() &&
 {

 ​struct ​ awaiter
 {

 awaiter_type_t<A> inner;

 Func&& func;

 awaiter(A&& awaitable, Func&& func)

 : inner(std::experimental::get_awaiter(​static_cast ​<A&&>(awaitable)))
 , func(​static_cast ​<Func&&>(func))
 {}

 ​decltype ​(​auto ​) await_ready()
 {

 return inner.await_ready();

 }

 ​template ​< ​typename ​ Handle>
 ​auto ​ await_suspend(Handle h) -> ​decltype ​(inner.await_suspend(h))
 {

 return inner.await_suspend(h);

 }

 ​decltype ​(​auto ​) await_resume()
 {

 ​return ​std::invoke(
 ​static_cast ​<Func&&>(func), inner.await_resume());
 }

 };

 ​return ​awaiter{ ​static_cast ​<A&&>(awaitable),
static_cast ​<Func&&>(func)};
 }

 ​auto operator co_await ​() &
 ​requires ​Awaitable<A&> && Invocable<Func&, await_result_t<A&>>
 {

 ​struct ​awaiter
 {

 awaiter_type_t<A&> inner;

 Func& func;

 awaiter(A& awaitable, Func& func)

 : inner(std::experimental::get_awaiter(awaitable))

 , func(func)

 {}

 ​decltype ​(​auto ​) await_ready() { ​return ​inner.await_ready(); }

 ​template ​< ​typename ​ Handle>
 ​auto ​ await_suspend(Handle handle)
 -> ​decltype ​(inner.await_suspend(handle))
 {

 ​return ​inner.await_suspend(handle);
 }

 ​decltype ​(​auto ​) await_resume()
 {

 ​return ​ std::invoke(func, inner.await_resume());
 }

 };

 ​return ​ awaiter{ awaitable, func };
 }

};

