
Document Number: p1184r0
Date: 2018-10-05
To: SC22/WG21 SG15
Reply to: Nathan Sidwell

nathan@acm.org / nathans@fb.com

A Module Mapper
Nathan Sidwell

The modules-ts specifies no particular mapping between module names (dotted identifier sequences or
legacy header unit names), their interface source file and their Binary Module Interface. This leads to
toolchains developing their own schemes. This paper describes an interface implemented as a serial
protocol by which compilation tools may interrogate an entity encoding this mapping. This interface
allows a compiler to be agnostic about the mapping.

1 Background
Compiling a module interface unit is expected to generate an intermediate file of no particular specified
form. This intermediate form, a BMI, is read when processing import declarations (and module
implementation units). The intent here is to speed compilation, and although the TS does not mandate
this approach, known compiler implementations are taking this direction. Static analysis tools may do
something different though.

Thus when compiling:

export module foo;

The compiler needs to determine where to write foo’s BMI. Similarly when processing:

import foo;

The compiler needs to know where foo’s BMI was placed.

More complex cases arise. In the second case, what if foo’s BMI has not yet been generated? Is that a

case that should be handled, or must we require build systems to have predetermined a dependency
graph and build it in the correct order?1

With the addition of (some parts of) ATOM, we now also have legacy header units. These are
(sufficiently modular) header files compiled in an implementation-defined legacy header mode. They
may be imported using a new kind of module name:

1 Nothing here precludes a BMI being multiply built for different importers. This increases overall work, but may reduce
the need for dependency analysis. Of course each such build must produce equivalent BMIs.

p1184r0:A Module Mapper - 1 - Nathan Sidwell

import "foo.h";
import <baz.h>;

As such legacy header units export macros visible it is now longer to preprocess the source in isolation
from reading in BMIs. This essentially makes it impossible for the dependency graph to be determined
up front, before any module compilation. Preprocessing requires reading in the macro tables at each
legacy import before continuing.

A further issue is that during legacy header compilation, one may encounter:

#include "foo.h"

That of course textually includes the body of foo.h into the current compilation. But if foo.h itself

is a legacy header we can end up with two instances in our compilation. Apart from inviting ODR

violations, it is inefficient – why parse foo.h twice? Thus the introduction of include directive

translation, where the above may be rewritten to:

import "foo.h";

Determining whether to perform this translation complex.

Thus we reduce to three questions:

• When exporting a module, where should the BMI be placed?

• When importing a module, where should the BMI be found?

• When including a header, should it be translated to an import?

2 Experimentation
The GCC modules implementation began with a fixed mapping of module name to BMI filename, and
a search path to look for them. This answered the loading question at the cost of forcing a particular
naming scheme. When producing a BMI, the fixed mapping was used to write into the current
directory. Options were added to manipulate the search path.

When searching for a BMI failed, the compiler spawned a user-provided wrapper program. That was
tasked with making sure a repeated search would succeed (or return a failure). Options were added to
control the wrapper program.

These met initial modest needs, but failed with the first customer, Boris Kolpackov, who wanted to
have an arbitrary mapping and per-compilation control of the output file. Options were added to control
mapping files and output names.

The addition of an include translation scheme indicated the implementation was on a path to a myriad
of options, each a special case.

p1184r0:A Module Mapper - 2 - Nathan Sidwell

Conversations with Richard Smith & David Blaikie moved towards providing a distinct component in
the compiler to handle these questions. In particular having some way of finding the dependency graph
during compilation, because of the above mentioned interdependence of preprocessing and legacy
header unit compilation. Fundamentally, the questions can be too complex to be solvable by a block of
data given to the compiler before starting.

Initially a plugin was considered, but that could mean different plugins for each compiler/build system
combination. In considering how a plugin might work, a client/server architecture suggested itself.

3 Client/Server
The idea of a client-server scheme has the build system providing a server, and compilations may
interact with that as clients. The build system acts as a cache of module-name/BMI-location tuples, and
has more global visibility of the system. Compilations are simply concerned with processing a source
file. This is not a general-purpose compile server.

If adopted by multiple compilers, it would provide a uniform way in which module-aware build
systems could interact with them.

A default scheme will be needed, and one is provided by a default server. Whether the defaults are
correct, or whether it would be better implementing that directly in the compiler is an open question.
Having it separated out does allow experimentation by non-compiler experts. The compiler itself is
now agnostic about mappings.

4 The Protocol
The protocol is a simple text-based query/response scheme. It is intended for use on systems sharing, or
duplicating, a file system, and large objects (such as source or BMIs) are accessed via that. Connections
are expected to be local, there is no encryption layer, or DOS defense – beyond the above-mentioned
cookie. In order to reduce round trips, a batching mechanism is employed, which can take advantage
of some ATOM features.

The compiler initiates connection and queries, the server responds. It is line based and consists of
space-separated words, where the final item on a line may contain embedded whitespace.

Protocol completeness is not claimed.

4.1 Handshake
The first query is a handshake:

HELLO $ver $kind $cookie

p1184r0:A Module Mapper - 3 - Nathan Sidwell

The protocol version number, $ver, is currently 0. The tool $kind is ‘GCC’, and I expect other tools to
uniquely identify themselves. The current server implementation ignores this field as it has no need for
it. The final item, $cookie, is the user-provided cookie given to the compiler invocation. If none was
given the source pathname is used.

The response is either:

OK $ver $repopath

to indicate successful handshake. Again $ver is currently 0, responding with it will allow systems to use
a highest common denominator protocol, should this be extended. The $repopath value is a file system
location against which all non-absolute BMI names are to be interpreted. If connection fails the
response is:

ERROR $msg

Where $msg is user-meaningful text.

4.2 BMI Mappings
Two queries determine the name of a BMI given a module name:

IMPORT $module
EXPORT $module

The specified module needs to be imported, or is being exported. A module implementation unit issues
an IMPORT for the implemented module. The response is either:

OK $bmipath

or

ERROR $msg

When exporting a module, the completion of the export is via:

DONE $module

There is no response. Note that the compilation may not have completed the object-file generation of
the interface unit. This permits a build system to launch compilations depending on this module before
the interface itself has completed compilation.

Clearly, this query gives the server dependency information between the source being compiled and the
module being imported or exported.

p1184r0:A Module Mapper - 4 - Nathan Sidwell

4.3 Include Translation
When processing an include directive during legacy header compilation (and possibly other
compilations), it is necessary to know whether to textually include the header or translate to an import
declaration. The query is:

INCLUDE $header

where $header is the to-be included header. The response is one of:

INCLUDE

to textually include it, or

IMPORT [$module]

to import as a module. The latter can provide a module name to import, otherwise it is the header
name. Although not implemented, it may be that the query should also contain the location of the

source containing the #include directive, and possibly other information. Likewise, perhaps the

INCLUDE response could contain the resolved pathname to include – allowing the build system to act

as a cache of header file lookups. A third response is postulated:

SEARCH

where the intent is to have the compiler resolve the header location and retry the query with a full path.
This saving the build system from duplicating header search path algorithm. It seems fragile to force
that algorithm to be in two places.

4.4 Batched Queries
To avoid multiple round trips, when processing an ATOM preamble in particular, requests may be

batched using a ‘+’ prefix on each non-final line, and either a ‘-’ or omitted prefix on the final line

(which may be otherwise empty).

Responses to a batched set of requests must be in order, and might or might not be batched themselves.
If they are batched, the batch must contain the complete set of responses – there can be no split-batch
responses.

4.5 Sample Implementation
This is currently implemented in the GCC modules compiler, which requires you Build Your Own
Compiler. The options are documented in the GCC manual, but are subject to change due to the
experimental nature of this development.

p1184r0:A Module Mapper - 5 - Nathan Sidwell

The -fmodule-mapper=$val option controls the mapper, allowing it to be invoked in one of the

following ways:

• a file of tuples, or

• a local domain unix socket, or

• an ipv6 domain socket & port, or

• a program to spawn using stdin/stdout communication.

The tuple file is the least flexible scheme, requiring all potential questions to be answered before
starting compilations. The default is to spawn a provided program, with in-built mapping capability. It
is expected that the ipv6 socket case will not make the server socket world-accessible.

A cookie may be provided, which is used when initiating connection, this defaults to the source file
name.

One may inspect the communication by invoking the default mapper in verbose server mode
communicating over a port:

cxx-mapper -n :12345
g++ -fmodules-ts -fmodule-mapper=:12345

4.6 Future Directions
This protocol has been developed on a compilation system. Static analysis systems may want source
rather than BMI locations. Experimentation might suggest such a use should be by a modal setting or
new request kinds.

Non-ASCII names have not been considered in detail. Perhaps a UTF8 encoding will suffice.

p1184r0:A Module Mapper - 6 - Nathan Sidwell

	1 Background
	2 Experimentation
	3 Client/Server
	4 The Protocol
	4.1 Handshake
	4.2 BMI Mappings
	4.3 Include Translation
	4.4 Batched Queries
	4.5 Sample Implementation
	4.6 Future Directions

