
Package Ecosystem Plan
Rene Rivera – grafikrobot@gmail.com – P1177R0, 2018-10-06 | Initial

Table of Contents
1. Abstract

2. Introduction
3. Terminology
4. Current Landscape
5. The Future

5.1. Package Index
5.2. Interfaces

6. Plan

6.1. Compiler API
6.1.1. Standard Options

6.2. Build System API
6.3. PDM API

6.3.1. Package Dependency
6.3.2. Packages Description
6.3.3. Universal Package Identi�er

6.4. Package Index API

6.4.1. Package Query
6.4.2. Package List

6.5. Package Index Authority
7. Acknowledgements

Document number ISO/IEC/JTC1/SC22/WG21/P1177R0

Date 2018-10-06

Reply-to Rene Rivera, grafikrobot@gmail.com

Audience Tooling (SG15)

1. Abstract
A plan for a cohesive ecosystem of package production and consumption among all C++ tools.

2. Introduction
We’ve reached a point in C++ where our success has trapped us in a conundrum. The C++ Language and the standard library is a
popular and high quality platform upon which to program for many domains. As such it is a popular vehicle for extensions for
narrower and narrower domains. Which brings the unfortunate problem of making the management of those additions take
more and more effort. The well known solution to this problem is to adopt package and dependency management as an extension
to the built-in platform capabilities. Unfortunately for C++ the package and dependency management solutions to date are not
interoperable nor interchangeable and hence cause confusion for users. As not only do they have to choose a compiler and
environment, but now they also get to choose a package manager.

This paper intends to define a general structure of a package ecosystem wherein users can expect to consume and produce
libraries with whatever C++ tools they choose in an interchangeable manner.

This paper does not propose to create a single standard build system, dependency manager, package manager, nor packages.

3. Terminology
Some of the terms used herein have historically varied meanings. In this paper here are what we intend when we refer to the
terms.

Library

The group of code, compiled or as source, that you use directly. For example: libz, Boost MP11, and QtCore.

Package

An object that defines, and possibly implements, everything a user needs to use a library in your project. It can be a
combination of some or all of: source for a library, pre-built binaries for a library, instructions for building the library,
instructions for downloading binaries, enumeration of dependencies of the library.

Dependency Manager

Controls how the use of libraries in your project correlates to corresponding packages that provide those libraries to you
project and how to arrange those package libraries to make them usable by your project.

mailto:grafikrobot@gmail.com
mailto:grafikrobot@gmail.com

Package Manager

Takes references to packages your project wants and delivers them such that the dependency manager can instruct your
project to use those packages. This can include downloading from a non-local resource and building for the use case of your
project.

Package and Dependency Manager

It is common, because of the close dependence between them, to combine both the dependency manager and the package
manager. In this paper this is the form which we consider as it simplifies the discussion and is the form generally found in the
wild.

4. Current Landscape
At this time we have three key components to our package ecosystem:

Compiler

Build System

Package and Dependency Manager (PDM), and related packages

Below is a simplified view of the data flow between those components. As depending on the build system and PDM they may use
additional data including source files.

Compiler

srcs

Build
System

P.D.M.

bins cmd

??

Process

X Produces Y
Y Accepts X

X Uses YY X

Data

YX

5. The Future

5.1. Package Index
One key problem with the current situation is that users consume packages from a restricted universe. When you decide to use
PDM A you also decide to use the packages available only from A. Hence if there is a package P only available from PDM B you
are back to some uncomfortable choices for your development.

That is not the only problem; There is also the issue that discovering what packages, from which PDMs, would involve going
through each PDM and searching for what they have.

To resolve these we see the need for a global "Package Index". The index would contain data for each library in the C++ ecosystem.
It would contain canonical information for each library such as: available packages (and the PDM of each), library name,
description, license, and so on. What it would not contain would be the packages themselves. Having this would allow users to
determine quickly where to get the one library they are interested in, hopefully with minimal effort.

Compiler

srcs

Build
System

P.D.M.

bins cmd

Package
Index

?

?

?

?

5.2. Interfaces
There is one glaring problem with the above future structure: Users are now not only dealing with how to interact with multiple
compilers and build systems, but now would also have to deal with multiple PDMs. Thankfully, they might be spared having to
deal with multiple package indices. We need to create standard interfaces to all our tools such that we gain the varied benefits
from the common understanding they bring. What does it mean to create such standard interfaces? In terms of packages it means
defining standards for:

Invoking compilers

Compiler responses

Build system consumption and production of packages

Communicating with a Package Index

We need to define all the data flow connections in our ecosystem in a standard and interchangeable manner:

P.D.M.

Package Index API

Build System API

Compiler API

Build
System

bins

Package
Index

PDM API

sopts

Compiler

pquery

pdep

sopts

UPID

sopts

UPID

sopts

srcs

pdesc

cmd

plist

In the diagram the following are used as shorthands:

bins General output from compilers, might not be just binaries

cmd Compiler commands

srcs Language source we feed our tools with

sopts Standard Options

pdep Package Dependency

pdesc Package Description

UPID Universal Package Identifier

pquery Package Query

plist Package List

6. Plan
Note that this is a simplified view of the breadth of what such interfaces would need to specify. It is limited to the minimal
interactions for using packages. Proposals for the individual components would be sufficiently detailed to handle the varied use
cases of the tools ecosystem as a whole.

6.1. Compiler API
Goal

Define standard interfaces to control and communicate with compilers to produce data required for build systems, PDMs,
source editors, and so on.

Given that compilers are at the core of our data needs we would expect this API to expand over time to address the various needs
of the tools that need it.

6.1.1. Standard Options

Currently build tools, and users, need to deal with a differing set of APIs to communicate with compilers. This makes it difficult to
define consistent build descriptions not just in the build system but throught any tooling that needs reproducible builds.

In an ideal ecosystem all compilers would use a well known single options API that the whole ecosystem would use to
interoperate between different compilers, build systems, PDMs, and other tools.

The std::compile proposal (P1178) covers this topic.

6.2. Build System API
Goal

Define minimal standard interface to build and define software build requirements.

6.3. PDM API
Goal

Define standard interfaces to control and communicate with PDMs to both consume and produce packages.

6.3.1. Package Dependency

Currently when using a PDM one uses a package reference particular to that PDM to indicate your dependency on a package. This
makes using different PDMs difficult. It means that if you ever want to share your project with someone who uses a different PDM
they need to rewrite all those package references, assuming equivalents even exist in that other PDM.

We need to define a single syntax to describe the packages we depend on. Having that would allow build systems to use PDMs
interchangeably openning the entire collection of packages to users.

6.3.2. Packages Description

Like with the package dependency, we currently use different ways of describing the packages we need for any particular build of
our software depending on the PDM we are using. We can’t write a tool, like a build system, to communicate with PDMs one time.
And like compilers we end up needing to write synthetic interfaces to each PDM on every tool.

Like having the common standard options, having common package description among PDMs allows us to write interchangeable
tools on top of such an API. This API would combine the standard options and a package dependency to ask PDMs for the specific
build variation we need to use. What happens behind the scenes to get you a package that matches your requirements is, as we
are fond of saying, implementation defined. This API would: allow tool makers to "write once" to use PDMs, allow users to migrate
from one PDM to another, it could even allow use of multiple PDMs simultaneously if such a need arrises.

6.3.3. Universal Package Identi�er

To be able to support interchangeability between different PDMs we can’t be tied to their individual package references. We need
a single universal package identifier (UPID) to use in our projects that can refer to the components.

6.4. Package Index API
Goal

Define standard interfaces to query and publish package records for PDMs, and users.

6.4.1. Package Query

Having a package index is no good without a consistent way of asking for packages. A standard package query that tools can use
to interrogate available packeges is just one of the many interface points we need in an index.

6.4.2. Package List

At minimum a package index needs to respond to queries with the set of packages available. The package list defines a standard
response to that query.

6.5. Package Index Authority
Goal

Create a process for assigning a single authoritative source of package index information.

There is a key question that arises from having a package index.. Should we have one or many such indices? There are pros and
cons for such a choice but there is one overwhelming concern.. Having multiple indices causes fragmentation and confusion for
users. Assuming that there will be multiple parties interested in providing the index service we need to define who will be the
authoritative source of this data. Hence we need to define a process that includes selection criteria, review, and official
designation of who is the universal package index authority.

7. Acknowledgements

Thanks to CppCon 2017 for providing the environment for "arguments" about build systems, package managers, and dependency
managers that created the impetus for this idea.

Thanks to Breno Rodrigues Guimarães, Steve Downey, and others in the CppLang Slack community who provided feedback to the
draft version of this document.

