Document No. P1171R0

Date 2018-10-07
Reply To Lewis Baker <lbaker@fb.com>
Audience SG1, LEWG

Synchronously waiting on asynchronous operations

Overview

The paper P1056R0 introduces a new std: :experimental: : task<T> type. This type represents an
asynchronous operation that requires applying operator co_await to the task retrieve the result. The task<T>
type is an instance of the more general concept of Awaitable types.

The limitation of Awaitable types is that they can only be co_awaited from within a coroutine. For example,
from the body of another task<T> coroutine. However, then you still end up with another Awaitable type that

must be co_awaited within another coroutine.

This presents a problem of how to start executing the first task and wait for it to complete.
task<int> f();

task<int> g () {

int a = co_await f();

co_return a + 1;

int main() {
task<int> t = g{();

int x = ?2?27?;

http://wg21.link/P1056R0
http://wg21.link/P1056R0

return x;

This paper proposes a new function, sync_wait (), that will allow a caller to pass an arbitrary Awaitable type
into the function. The function will co_await the passed Awaitable object on the current thread and then block
waiting for that co_await operation to complete; either synchronously on the current thread, or
asynchronously on another thread. When the operation completes, the result is captured on whichever thread
the operation completed on. Then, if necessary, the waiting thread is woken up and it moves the captured
result into the sync_wait () return value.

With the sync_wait () function the main () function in the above example becomes:
int main () {

int x = sync wait(g());
return Xx;

API Synopsis

You can think of the interface as basically the following, with the added ability to customise the behaviour by

providing overloads of sync_wait () or sync wait r () for user-defined types that are found using ADL.

Technically, the interface is implemented as customization-point objects that overload operator () .
namespace std

{

template<typename T> concept Awaitable = ...;
template<typename T, typename Result> concept AwaitableOf = ...;
template<typename Awaitable> using await result t = ...;

namespace std::this thread

{
// Helper that decays rvalue types to unqualified prvalues
template<typename T>
using _ rvalue decay t =

conditional t<is lvalue reference v<T>, T, remove cvref t<T>>;

template<Awaitable A>
requires MoveConstructible< rvalue decay t<await result t<A>>>

auto sync wait (A&& awaitable) -> rvalue decay t<await result t<A>>;

template<typename Result, AwaitableOf<Result> A>
Result sync wait r (A&& awaitable);

Note that the sync_wait () function places the following requirements on Awaitable type:

e It must satisfy the Awaitable concept (see P1288R0 for details)

e Theawait result t<Awaitable> type mustbe move-constructible.

e Ifawait result t<Awaitable> is notan lvalue-reference, then
remove cvref t<await result t<Awaitable>> mustbe implicitly constructible from a value
of type await result t<Awaitable>. This typically means the result must be move-constructible,
but may require copy-constructible in the case where the result of the co_await expression is a
const-qualified rvalue.

The sync_wait r<R>() function operates similarly to sync _wait () except that it allows the caller to
override the deduced return-type and instead implicitly casts the result of the co_await expression to type R.
See the section on handling co_await expressions that return r-values below for more context.

If the expression co_await static cast<Awaitable&&> (awaitable) completes with an exception
then the exception is caught and rethrown to the caller of sync_wait ().

Bikeshedding

Some potential names (and namespaces) for this new function:
std::this thread::wait()

std::this thread::wait synchronously ()
std::this thread::get()

std::this thread::sync wait ()

std::this thread::sync_get ()

std::this thread::sync await()
std::this thread::blocking wait ()
std::this thread::blocking get ()
std::this thread::await()

std::this thread::await synchronously ()

For the rest of this document | will assume this function is called sync_wait (), however feel free to mentally
replace this name with any of the alternatives.

If this paper is merged into the Coroutines TS first before merging into the DS then these functions could
alternatively be placed inside std: :experimental::this thread namespace.

Design Discussion

Handling co await expressions that return rvalue references

Q. Should an awaitable that returns an rvalue reference from await resume () return an rvalue reference
from sync wait () or should an rvalue-reference result be decayed to a prvalue result?

It's possible that a given awaitable type could return an rvalue-reference to an object that is stored inside the
temporary awaiter object returned from operator co_await(). This temporary object will be placed on the
temporary coroutine frame created inside sync_wait() for awaiting the passed awaitable. This temporary
coroutine frame will be destroyed before sync_wait() returns and so for this operation to be safe, we need to
ensure the result is moved from the returned rvalue-reference into a new object before returning from
sync_wait().

For example, a simple async operation that stores its result in the temporary awaiter object:
struct big object

{
big object () noexcept;
big object (big objecté&& other) noexcept;

) &

struct my operation

{

class awaiter

{
std::optional<big object> result;
public:
bool await ready();
void await suspend(std::experimental::coroutine handle<> h);
big object&& await resume () { return std::move (*result); }

) 8

awalter operator co await ();

J &

Such an awaitable operation would be used as follows:
void consume big object (big objecté&& o) ;

task<void> usage ()

{

my operation op;

consume big object (co await op);

task<void> usage expanded()
{
my operation op;
{
my operation::awaiter awaiter = op.operator co await();
big object&& result = co await awaiter;
consume big object (std::move (result));

If we were to pass an object of type my operationinto sync wait () then the temporary awaiter object
created on the temporary coroutine frame would be destroyed before sync wait () returns. Thus if we were
to return an rvalue reference to this object from sync wait () then we would be returning a dangling
reference.

Note that an awaitable type could also do something similar and then return an Ivalue reference to an object
stored within the temporary awaiter object and the proposed APl would not promote that to a prvalue and thus
would return a dangling reference. However, returning an lvalue reference to a value stored within a temporary
object seems like a bad API design and so perhaps we can just discourage that pattern.

It is still valid to sometimes return an lvalue-reference to some non-temporary value, however, so we still want
to avoid promoting lvalue references to prvalues.

For example: An awaitable that returns an Ivalue reference
struct record cache
{
public:
record cache () = default;

// This method returns a task that yields an lvalue reference to an
// entry in the map when co awaited.

task<const record&> get (std::string s)

{

auto lock = co awailt mutex.scoped lock();

auto iter = cache.find(s);
if (iter == cache.end())

record r = co _await load(s);
iter = cache.emplace(std::move(s), std::move(r)).first;

}

co_return iter->second;

private:
task<record> load(std::string s);

cppcoro::async mutex mutex;
std::unordered map<std::string, record> cache;

J 8

Note that there may be valid cases where the awaitable returns an rvalue reference to an object that is not
stored in the temporary awaiter object and so therefore would be safe to pass through as the return-value of
sync_wait (). eg. if the object was stored in the awaitable object itself rather than the awaiter object returned

by operator co await.

We could potentially provide a variant of sync wait () that let the user explicitly specify the return-type of
sync_wait () via a template argument. This variant would be valid iff the await result t<Awaitable>
was implicitly convertible to the specified return-type. This would allow the user to override the default xvalue
— prvalue promotion.

namespace std::experimental::this thread

{
template<typename Result, typename Awaitable>
_Result sync wait r(Awaitable&& awaitable)

{
return make sync wait task(
static cast< Awaitable&&>(awaitable)). get();

Usage of this sync_wait r () function would look like this:
task<big object&s&> get big object();
void consume big object (big objecté&s& x);
void usage ()

{
task<big object&&> t = get big object();

// No extra call to big object move-constructor here.
consume big object (sync wait r<big objecté&&>(std::move(t)));

Allowing customisation of blocking behaviour by current Executor

Q. Should the sync_wait () function provide some hook for an executor to customise the blocking
behaviour?

One of the risks of providing a blocking API for waiting on asynchronous operations is that of introducing
deadlock if the blocking call is made from an execution context that is required to execute other work in order
to make forward progress on the task being waited-on.

For example, performing a blocking-wait on an operation that needs to execute on a Ul thread to be able to
complete will deadlock if that blocking-wait call is made from the Ul thread.

This deadlocking could be avoided if we allow the blocking-wait call to re-enter the event loop from within the
sync_wait () call and continue to process events (aka “boost block”) until the operation we are waiting for
completes. However, doing so is not straight-forward because the current thread’s executor is not a parameter
tothe sync_wait () call. This means that the current executor would need to install, in a thread-local
variable, some type-erased callback that the sync_wait () implementation could call to delegate the blocking
behaviour to the current thread’s executor.

While this customisation point could be added at a later date, | would like to defer introducing this extra level of
complexity until its need is proven. The preferred direction for now is to keep it simple and just say that the
operation blocks the current thread (as implied by its location in namespace std: :this thread).

Generally, we should try to discourage calls to synchronously wait from within execution contexts that are
owned by an executor and instead provide tools for letting the application write as much of the code using the
asynchronous paradigm as possible. For example, using coroutines.

Ideally there would only be a handful of calls to sync_wait () in an application, typically from top-level calls
like main () or from unit-tests.

Allowing customisation of blocking behaviour by Awaitable type

Q. Should the sync_wait () function provide a customisation point to allow different implementations of
blocking for particular Awaitable types?

There may be certain types of Awaitable objects that can provide a more efficient blocking-wait operation than
by executing operator co await () on the awaitable and synchronising with a
mutex/condition variable orbinary semaphore.

For example, a hypothetical cuda task awaitable that wrapped a given CUDA operation on a GPU can be
more efficiently waited-on by calling the CUDA library’s cudaEventSynchronize () function instead of
attaching a callback to be executed on the CUDA device thread that would then signal a

condition variable.

To support customising the behaviour of sync_wait () for various awaitable types, the sync_wait ()
function needs to be made a customisation point that allows different awaitable types to overload the behaviour
of sync_wait (). If an overload of sync wait () is found via argument-dependent lookup then this
overload should be called instead of the default sync_wait ().

See the appendix for an example implementation of a cuda task that customises sync _wait ().

Supporting blocking-wait on other kinds of async operations

Q. Should the sync_wait () function provide overloads for waiting on other kinds of async operations?
Do we want this to be a uniform async—sync blocking interface?

For example:
e T sync wait(std::future<T>&& f) { return std::move(f).get(); }
e Senders from the upcoming revised Executors proposal.
See Code Samples appendix for an example implementation.

The decision about whether we want this function to be a universal blocking-wait on asynchronous operations
other than coroutine awaitables will likely influence the name of this function. If so, we may want to avoid
names that are coroutine-specific.

Free function vs Member function

Q. Why should this function be a free-function and not a method on task<T>?

Making it a free-function allows the implementation to work on arbitrary awaitable types and not be limited to
use with task<T>. We expect many different awaitable types to be written and sync wait () should be able
to work with all of them.

Timed-wait variants of sync wait ()

Q. The other waiting functions in std::this_thread provide overloads that take either a time_point or a duration
to allow time-limited blocking wait operations. Should we also provide a timed-wait operation for sync_wait()?

It is actually unsafe in general to return early from the sync _wait () callifthe co_await expression has not
yet completed. The temporary coroutine that has been created to co_await the passed awaitable still holds a
reference to the awaitable object. If we were to return-early from the sync wait () function then calling
thread may go on to run the destructor of the awaitable object while the coroutine is still executing, leaving the
coroutine with a dangling reference.

We could partly work around this issue by requiring the coroutine to take a copy of the awaitable object that it
stored locally within the coroutine frame. However, the awaitable object may in turn reference other objects
that are owned by the caller which could also be at risk of being destroyed by the caller before the async
operation completes.

If we were to return from sync_wait () early, we would need to return some representation of the operation
that allowed the caller to subsequently wait for the operation to complete. e.g. a std: : future<T>-like thing.
This object would then also need to provide some kind of timed-wait operation. At this point it seems like it
would be better to just simply wrap the awaitable in a std: : future<T> coroutine and use the existing
std::future<T>::wait for () and std::future<T>::wait until () functions to perform the
timed-wait.

For example: If we add the following to allow coroutines to return std: : future<T>
namespace std::experimental
{
template<typename T>
struct future promise
{

std: :promise<T> promise;

std::future<T> get return object () { return promise.get future(); }
void unhandled exception () {
promise.set exception(std::current exception()); }

void return value (T&& value) {
promise.set value(static cast<Té&&>(value)); }

void return value (const T& value) { promise.set value(value); }
std::experimental: :suspend never initial suspend() { return {}; }
std::experimental::suspend never final suspend() { return {}; }

}i
// Specialisations for T& and void omitted for brevity.

template<typename T, typename... Args>
struct coroutine traits<std::future<T>, Args...>
{
using promise type = future promise<T>;
}i

template<typename Awaitable>
auto make future from awaitable (Awaitable awaitable)
-> std::future<await result t<T>>

co_return co_await static cast<Awaitable&&> (awaitable);

Then we could enable timed wait of an awaitable by wrapping the awaitable in a std: : future<T> coroutine:
void example usage ()
{
using namespace std;
using namespace std::experimental;
using namespace std::literals::chrono literals;

task<int> t = some async_ function();
future<int> f = make future from awaitable(std::move(t)):;
if (f.wait for(500ms) == future status::timeout)
{
// ... do something else for a while

// Later, do another timed wait
f.wait for (500ms) ;

// Or eventually a blocking wait.
int result = f.get();

The use of a type like std: : future (or any eagerly-started async operation) can be error-prone, however,
since it is possible to exit the scope without waiting for operations to complete. The caller needs to be extra
careful to make sure that they wait for the operation on all code-paths before the scope exits.

The std: : future approach mentioned above allows you to perform a blocking wait and exit early from the
blocking wait while still letting the operation continue to run in the background. Another use-case for a timed
wait is to cancel the operation after a certain period of time, e.g. because you don't want the result any more
once a timeout has elapsed. This can be implemented using sync wait () with a combination of

when all (), cancellation token and an asynchronous sleep for () operation (implementations of
which can be found in cppcoro).

For example: The following code shows how you can use when all () to start two concurrent operations, one
that sleeps for a specified duration of time and another that performs the actual operation. When either of the

https://github.com/lewissbaker/cppcoro
https://github.com/lewissbaker/cppcoro

tasks completes it requests cancellation of the other and then the when all () waits until both operations
complete.

task<int> cancellable work(cancellation token ct);

template<typename Awaitable>
task<await result t<Awaitable>> cancel on completion (
cancellation source cs, Awaitable a)

scope guard cancelOnExit = [&]{ cs.request cancellation(); };
co_return co_await std::move(a);

int main ()

{
static_thread pool tp;
cancellation source cs;

try {
auto [, result] = sync wait(when all (
cancel on completion(cs, tp.sleep for(500ms, cs.get token())),

cancel on completion(cs, cancellable work(cs.get token()))));
return result;

} catch (operation cancelled&) {
return -1;

Using sync wait () in combination with event-loops

The sync_wait () function can be used in conjunction with when all () to allow starting an async operation
and then enter an event loop without needing to introduce an eager coroutine-type like std: : future<T>.

// Assuming this task calls io.stop() when it’s done.
task<void> run service(io context& io);

int main ()
{
io _context io;
this thread::sync wait (when all(
run_service (io),

[&] () -> task<void> { io.run(); co_return; }()));

return O;

Semantics / Wording

Modify section 33.3.1 Header <thread> synopsis
namespace std {

class thread;

void swap (thread& x, thread& y) noexcept;

namespace this thread ({
thread::id get id() noexcept;
void yield() noexcept;
template <class Clock, class Duration>

void sleep until (const chrono::time point<Clock, Duration>& abs time);

template <class Rep, class Period>

void sleep for(const chrono::duration<Rep, Period>& rel time);

inline namespace unspecified ({
inline constexpr unspecified sync wait = unspecified;
template<typename Result>
inline constexpr unspecified sync wait r = unspecified;

Modify section 33.3.3 Namespace this_thread
namespace std::this thread {
thread::id get id() noexcept;
void yield() noexcept;
template <class Clock, class Duration>
void sleep until (const chrono::time point<Clock, Duration>& abs time);
template <class Rep, class Period>

void sleep for(const chrono::duration<Rep, Period>& rel time);

inline namespace unspecified ({
inline constexpr unspecified sync wait = unspecified;
template<typename Result>
inline constexpr unspecified sync wait r = unspecified;

thread::id this thread::get id() noexcept;

Returns: An object of type thread: : id that uniquely identifies the current thread of execution. No other
thread of execution shall have this id and this thread of execution shall always have this id. The object returned
shall not compare equal to a default constructed thread: :id.

void this thread::yield() noexcept;
Effects: Offers the implementation the opportunity to reschedule.
Synchronization: None.

template <class Clock, class Duration>

void sleep until (const chrono::time point<Clock, Duration>& abs time);
Effects: Blocks the calling thread for the absolute timeout (33.2.4) specified by abs_time.
Synchronization: None.
Throws: Timeout-related exceptions (33.2.4).

template <class Rep, class Period>

void sleep for(const chrono::duration<Rep, Period>& rel time);
Effects: Blocks the calling thread for the relative timeout (33.2.4) specified by rel_time.
Synchronization: None.
Throws: Timeout-related exceptions (33.2.4).

std::this thread::sync wait

The name std: :this thread::sync_wait denotes a customization point object
([customization.point.object]). The expression std: :this thread::sync _wait (E) for some
subexpression E is expression-equivalent to:

e sync wait (E), if that expression is valid, with overload resolution performed in a context that does
not include a declaration of std: :this thread::sync wait.

e Otherwise, if the expression co await E is valid inside a coroutine with a promise type that does not
define an await transform member, then evaluates co await E on the current thread inside a
new coroutine function invocation. If the coroutine suspends without running to completion then the
current thread blocks until the operation completes on another thread.

Returns: If the result of the expression co _await E is an Ivalue reference then the Ivalue reference is
returned from sync_wait (). Otherwise, if the result of the co _await expression is non-void then
returns a new unqualified prvalue of the same type as the co_await E expression that is
move-constructed from the value returned by the co _await expression. In this case, the
move-constructor is executed on the thread that called sync_wait (). Otherwise, if the result of the
co await expression has type void then sync wait () returns void.

Synchronization: Synchronizes with the completion of the co await E expression. Operations that
are sequenced after the sync_wait () call happens-after the completion of the expression co_await
E.

Throws: Rethrows any exception thrown by the expression co _await E. If any internal
synchronization operations fail with an exception then the sync_wait () function is unable to fulfill its
requirements and std: :terminate () is called.

e Otherwise, std: :this thread::sync wait (E) isill-formed.

std::this thread::sync wait r<R>

The name std::this thread::sync wait r<R> denotes a customization point object
([customization.point.object]). The expression std: :this thread::sync_wait r<R>(E) for some type R
and some subexpression E is expression-equivalent to:

e sync wait r<R>(E), if that expression is valid, with overload resolution performed in a context that
does not include a declaration of std: :this thread::sync wait r.

e Otherwise, if the type of the expression co _await E is implicitly convertible to R, then evaluates
co_await E on the current thread inside a new coroutine function invocation. The cast of the result of
co_await E totype R is executed on the thread that called sync wait (). If the coroutine suspends
without running to completion then the current thread blocks until the operation completes on another
thread.

Returns: The result of the expression co_await E implicitly cast to type R.

Synchronization: Synchronizes with the completion of the co_await E expression. Operations that
are sequenced after the sync_wait () call happens-after the completion of the expression co_await
E.

Throws: Rethrows any exception thrown by the expression co _await E. If any internal
synchronization operations fail with an exception then the sync_wait () function is unable to fulfill its
requirements and std: :terminate () is called.

e Otherwise, std::this thread::sync_wait r<R>(E) is ill-formed.

[Note: [customization.point.object] refers to http://eel.is/c++draft/customization.point.object]

Appendix - Code Samples

Reference sync wait () implementation

This implementation is for exposition purposes only.
Standard library vendors are free to pursue other implementations.
For example, an implementation may choose to use a futex for thread-synchronization on platforms that

support it instead of using std: :mutex and std: :condition variable.

You can play with the compiled code here:_https://godbolt.org/z/DMU-Tn

L1707 0700770777777 7777777777777
//

// Expositional implementation of std::experimental::this thread::sync wait ()

//

// Supporting material for ISO C++ standard proposal P1171.

//
// See https://wg2l.link/P1171

http://eel.is/c++draft/customization.point.object
https://godbolt.org/z/DMU-Tn
https://godbolt.org/z/H3Phxh
https://wg21.link/P1171

#include <experimental/coroutine>
#include <mutex>

#include <condition variable>
#include <type traits>

#include <exception>

namespace std::experimental
{
// NOTE: This section duplicates type-traits and concept-checks that have
// been proposed in P1288RO.
template<typename Tp>
struct _ is coroutine handle : false type {};
template<typename Promise>
struct 1is coroutine handle<coroutine handle< Promise>> : true type {};
template<typename Tp>
struct is valid await suspend result
disjunction<is void< Tp>,
is _same< Tp, bool>,
__1s coroutine handle< Tp>> {};

template<typename Tp, typename = void>
struct is awaiter : false type {};

template<typename Tp>
struct is awaiter< Tp, void t<
decltype (std::declval< Tpé&> () .await ready()),
decltype (std::declval< Tpé&>() .await suspend(coroutine handle<void>{})),
decltype (std::declval< Tpé&>() .await resume())>>
conjunction<
is same<decltype (std::declval< Tpé&>().await ready()), bool>,
__1s valid await suspend result<
decltype (std::declval< Tp&> () .await suspend(coroutine handle<void>{}))>>
{1}

template<typename Tp, typename = void>
struct _ has member operator co await : false type {};

template<typename Tp>
struct @ has member operator co await< Tp, void t<
decltype (std::declval< Tp>() .operator co await())>>

true type {};

template<typename Tp, typename = void>
struct _ has free operator co await : false type {};

template<typename Tp>

struct @ has free operator co await< Tp, void t<
decltype (operator co_ await (std::declval< Tp>()))>>
true type {};

template<typename Awaitable>
decltype (auto) get awaiter(Awaitable&& awaitable)
{
if constexpr (_ has member operator co await< Awaitable>::value)
{
return static cast< Awaitable&&>(awaitable) .operator co await();
}
else if constexpr (has free operator co await< Awaitable>::value)
{
return operator co await (static cast< Awaitable&&>(awaitable));
}
else

{

return static cast< Awaitable&&>(awaitable);

template<typename Tp, typename = void>
struct awaiter type {};

template<typename Tp>
struct awaiter type< Tp, void t<
decltype (std: :experimental::get awaiter (std::declval< Tp>()))>>

using type =
decltype (std::experimental::get awaiter (std::declval< Tp>()));
}i

template<typename Tp>
using _ awailter type t = typename awaiter type< Tp>::type;

template<typename Tp, typename = void>
struct await result {};

template<typename Tp>

struct @ await result< Tp, void t<decltype (
std::declval<add lvalue reference t< awaiter type t< Tp>>>()
.await resume ())>>

using type = decltype (
std::declval<add lvalue reference t< awailter type t< Tp>>>()
.await resume());

) &

template<typename Tp>
struct await result : await result< Tp> {};

template<typename Tp>

using await result t = typename awalit result< Tp>::type;
class _ event
{
public:
__event () noexcept : isSet (false) {}
void set () noexcept
{
scoped lock lock{ mutex };
_isSet = true;

cv_.notify all();

void wait () noexcept
{
unique lock lock{ mutex };
__cv_.wait(lock, [this] { return isSet ; });
}
private:

// NOTE: If standardised, the std::binary semaphore from P0514R4
// could be used here instead of mutex/condition variable.

mutex mutex ;

condition variable cv ;

bool isSet ;

template<typename Tp>
class sync wait task;

class sync wait promise base
{
struct final awaiter

{

bool await ready () noexcept { return false; }

template<typename Promise>

void await suspend(coroutine handle< Promise> h) noexcept
{
__sync_wait promise base& promise = h.promise();
__promise. event . set();
}
volid await resume () noexcept ({}
bi
public:
suspend never initial suspend() noexcept { return {}; }
final awaiter final suspend() noexcept { return {}; }
void unhandled exception () noexcept
{
__exception = current exception();
}
protected:
void wait () noexcept { event . wait(); }
void throw if exception()
{
if (_exception)
std::rethrow exception(std::move(exception));

friend struct final awaiter;
__event event ;
std::exception ptr exception ;

¥

template<typename Tp>

struct @ sync wait promise : sync wait promise base

__sync_wait task< Tp> get return object () noexcept;

auto yield value(Tp&& _ value) noexcept
{

~value = std::addressof(value);

return this->final suspend();

void return void() { std::abort(); }

_Tp&& _ get()
{
this-> wait();
this-> throw if exception();
return static cast< Tpé&&>(* value);

std::add pointer t< Tp> value ;
}i

template<>
struct sync wait promise<void> : sync wait promise base
{

__sync_walt task<void> get return object () noexcept;

void return void() noexcept {}

void get()
{
this-> wait();
this-> throw if exception();

¥

template<typename Tp>

struct @ sync wait task
{
using promise type = sync wait promise< Tp>;
explicit sync wait task(coroutine handle<promise type> coro) noexcept

__coro_(__ coro)

{}

__sync _wait task(sync wait task&& t)
__coro_(exchange(t. coro , {}))

{}

~ sync _wait task()

{

if (_ _coro) coro .destroy();
}
decltype (auto) get()
{
return coro .promise(). get();
}
private:
coroutine handle<promise type> coro ;

¥

template<typename Tp>

__sync_wait task< Tp> sync wait promise< Tp>::get return object () noexcept

return sync wait task< Tp>{

coroutine handle< sync wait promise< Tp>>::from promise (*this)

) 8

inline
__sync_wait task<void> sync wait promise<void>::get return object ()
noexcept
{
return sync wait task<void>({

coroutine handle< sync wait promise<void>>::from promise (*this)

) &

template<

typename Awaitable,

enable if t<!is void v<await result t< Awaitable>>, int> = 0>
auto make sync wait task(Awaitable&& awaitable)

-> sync_wailt task<await result t< Awaitable>>

co _yield co await static cast< Awaitable&&>(awaitable);

template<

typename Awaitable,

enable if t<is void v<await result t< Awaitable>>, int> = 0>
auto make sync wait task(Awaitable&& awaitable)

-> sync_wait task<void>

co awailt static cast< Awaitable&&>(awaitable);

namespace std::experimental::this thread
{
namespace _ adl
{
template<typename Awaitable>
auto sync wait(Awaitable&& awaitable)
-> conditional t<
is lvalue reference v<await result t< Awaitable>>,
await result t< Awaitable>,

remove cv_ t<remove reference t<await result t< Awaitable>>>>

return std::experimental:: make sync wait task(
static cast< Awaitable&&>(awaitable)). get();
}
struct sync wait fn

{
template<typename Awaitable>
auto operator () (Awaitable&& awaitable) const

noexcept (noexcept (sync wait (static cast< Awaitable&&>(awaitable))))
-> decltype (sync wait (static cast< Awaitable&&>(awaitable)))

{

return sync wait (static cast< Awaitable&&>(awaitable));

) g

// Optional overload that allows sync wait r<ReturnType> (awaitable)
template<typename Result, typename Awaitable>

enable if t<is convertible v<await result t< Awaitable>, Result>,
_Result>

sync_walit r(Awaitable&& awaitable)
{

return std::experimental:: make sync wait task(

static cast< Awaitable&&>(awaitable)). get();

template<typename Result>
struct _ sync wait r fn
{
template<typename Awaitable>
auto operator () (Awaitable&& awaitable) const
noexcept (noexcept (sync _wait r< Result> (
static cast< Awaitable&&>(awaitable))))
-> decltype(sync wait r< Result>(
static cast< Awaitable&&>(awaitable)))

return sync wait r< Result>(static cast< Awaitable&&>(awaitable));
}
bi
}
inline namespace _ vl {
inline constexpr adl:: sync wait fn sync wait;

template<typename Result>
inline constexpr adl:: sync wait r fn< Result> sync wait r;

Some example usage code:
L1170 7700777077777 7777777777777 7777777777077 77777777777

// Example usage

template<typename Tp>
struct ready awaitable

{
_Tp value ;

ready awaitable(Tp&& value) : value (std::forward< Tp>(value)) {}
bool await ready() { return true; }
void await suspend(std::experimental::coroutine handle<>) ({}
Tp await resume () { return std::forward< Tp>(value); }
i
template<>

struct ready awaitable<void>

bool await ready() noexcept { return true; }
void await suspend(std::experimental::coroutine handle<>) noexcept {}
void await resume () noexcept {}

J 8

struct move only
{
move only () {}
move only(move onlyé&é&) {}
move only(const move onlyé&) = delete;

J 8

struct unmovable

{

unmovable () ;
unmovable (unmovableé&&) = delete;
unmovable (const unmovable&) = delete;

) &

void test ()
{

using std::experimental::this thread::sync wait;

decltype (auto) x = sync wait (ready awaitable{ 123 });
static assert(std::is same v<decltype (x), 1int>);

int value = 123;
decltype (auto) y = sync wait (ready awaitable<inté&>{value});
static assert (std::is_same v<decltype(y), inté&>);

move only mo;
decltype (auto) z = sync wailt (ready awailtable<move onlyé&&>{std::move (mo)});
static assert(std::is same v<decltype(z), move only>);

sync wait (ready awaitable<void>{});

using std::experimental::this thread::sync wait r;
unmovable um;

decltype (auto) w = sync wait r<unmovable&&> (

ready awaitable<unmovable&&> (std::move (um))) ;
static assert(std::is same v<decltype (w), unmovable&&>);

Executor Sender/Receiver customisation

This is an example implementation of sync_wait () for the Sender concept from pushmi (an exploratory
prototype design for generalised Executors/Futures).

An alternative implementation could be to define a free-function operator co await () forall Sender
types that makes sender types Awaitable.

namespace std::experimental::this thread:: adl
{
namespace _ detail

{
template<typename T>

class blocking receiver
{
public:
__blocking receiver () noexcept : done (false) {}

template<typename U>

void value(U&& val)
{
__value .emplace(static cast< U&&>(_ wval));
}
void error (exception ptr e) noexcept
{
__error = std::move(e);
done () ;
}
void done () noexcept
{
scoped lock lock{ mutex };
__done_ = true;

cv_.notify all();

optional< T> get() &&
{

https://github.com/facebookresearch/pushmi

_wait();

if (__error) std::rethrow exception(error);
return std::move(value);

}

private:

void wait () noexcept

{
unique lock lock{ mutex };

cv_.wait(lock, [this] { return done ; });

optional< T> wvalue ;

exception ptr error ;
mutex mutex ;
condition variable CV. ;

bool done ;

template<typename Sender>
auto sync wait (Sender&& sender) -> optional<sender value t< Sender>>

{

__detail:: Dblocking receiver<sender value t< Sender>> recelver;
static cast< Sender&&>(sender) .submit (std::ref(receiver));

return std::move(receiver). get();

CUDA task sync_wait() customisation

An example implementation of a hypothetical CUDA awaitable type, cuda task, and specialisation of
sync_wait () for that awaitable type.

namespace cuda
{
class cuda task
{
cudaStream t stream ;
cudaEvent t event ;
cudaError t status ;

std::experimental::coroutine handle<> continuation ;

public:
explicit cuda task(cudaStream t stream, cudaEvent t event) noexcept
stream (stream), event (event) {}

~cuda_task()
{

cudaEventDestroy (event);
cudaStreamDestroy (stream) ;

bool await ready() noexcept

{
status = cudaEventQuery (event);
return status != cudaErrorNotReady;

bool await suspend(std::experimental::coroutine handle<> continuation)

{

continuation = continuation;
cudaError t result = cudaStreamAddCallback (
stream ,

&cuda_ task::cuda callback,
static cast<void*>(this),

0);
if (result != cudaSuccess) {
status = result;

return false;

}

return true;

cudaError t await resume () noexcept

{

return status ;

// Customisation of sync_wait () for cuda_ task
friend cudaError t sync wait (cuda taské&& task) noexcept

{

return cudaEventSynchronize (task.event);

private:

static void CUDART CB cuda_ callback(
cudaStream t stream, cudaError t status, void* userData) noexcept

cuda task* t = static cast<cuda task*>(userData);
t->status_ = status;

// TODO: Schedule coroutine resumption on another thread
t->continuation .resume () ;

Example usage:
// Some task factory that returns a cuda task
cuda: :cuda task parallel sort(double values[], size t count);

std::vector<double> get values();

std::task<void> async example ()

{

auto values = get values();

// Compiles down to call to cudaStreamAddCallback () and schedules
// continuation to run in callback when the task completes.
cudaError t status = co await parallel sort(values.data(), values.size());

void sync example ()

{

auto values = get values();

// Compiles down to call to cudaEventSynchronize ()
cudaError t status = std::this thread::sync wait(
parallel sort(values.data(), values.size()));

