
P1112R0

EWG

2018-09-28

Balog, Pal (pasa@lib.hu)

Language support for class layout controlLanguage support for class layout controlLanguage support for class layout controlLanguage support for class layout control

AbstractAbstractAbstractAbstract

The current rules on how layout is created for a class fall between chairs: if the user does not care about the

order of members, they prevent optimal placement, while if the user cares, the control is taken unless all

members have the same access control.

This proposal attempts to remedy this situation with an attribute that express the intent and reduce waste or

ambiguity.

MotivationMotivationMotivationMotivation

This proposal is inspired by [Language support for empty objects] (http://open-

std.org/JTC1/SC22/WG21/docs/papers/2017/p0840r1.html)] that allowed to turn off a layout-creating rule

that requires distinct address for all members, including those taking up zero space. Causing wasted

performance when the user never looks at member offsets.

We have another rule preventing optimal layout: p19 in [class.mem] stating " Non-static data members of a

(non-union) class with the same access control (Clause 14) are allocated so that later members have higher

addresses within a class object." (ORDERRULE) In practice that results in plenty of padding when the

class has members of different size and alignment. That could be reduced if reordering the members was

allowed.

On the other common use case the desired layout is compatible with another language and must have the

members in a strict order. This can be achieved only by not using access control.

ProposalProposalProposalProposal

We propose the addition of an attribute, [[layout(strategy)]] that can be applied to a class definition and

indicates that the programmer wants to cancel ORDERRULE and orders the layout created in a certain way

indicated by strategy.

[[layout(smallest)]] wants the members reordered to minimize the memory footprint. Minimizing the sum

of inter-member padding and maximizing the tail-padding as tie-breaker if multiple variants have the same

minimal sizeof(T), that may benefit in a subclass.

[[layout(best)]] allows reordering as the implementation decides optimal on the target platform, without

specific preference.

[[layout(declorder)]] wants the members appear strictly in declaration order regardless access control, thus

allowing standard-layout compatibility without interaction of the unrelated ACL functionality.

We thought about many other sensible strategies that are not proposed at this time, but the implementations

can add their own keywords as extension and they can be standardized alter as implementation and usage

experience emerges. But in the meantime, those can be put to use under (best).

Why language support is required?Why language support is required?Why language support is required?Why language support is required?

Currently we have just one tool to get the best layout: arranging the members in the desired order. That

brings in several problems:

 - the source will be (way) less readable, the natural thing is to have members arranged by program logic

 - the programmer must know the size and alignment of members; including 3rd party and std:: classes (that

is next to impossible)

 - if some member changed its content, what contains it needs rearrangement (recursively)

 - such manual adjustment itself triggers need to rearrange the subsequent classes

 - if the source targets several platforms, each may need a different order to be optimal

What makes the effort really infeasible in practice. We can ask the compiler to warn about padding or even

dump the realized layout, but then many iterations are needed. And the work redone on a slight change.

And we sacrificed much of readability and portability.

Therefore, in practice we mostly just ignore the layout and live with the waste as cost of using the high-

level language. Against the design principles of C++. And this is really painful considering that cases

where we use the address of members for anything is really rare. And that the compiler has all the info at

hand when it is creating the layout to do the meaningful thing, just it is not allowed.

Why attribute?Why attribute?Why attribute?Why attribute?

It passes the "compiling a valid program with all instances of a particular attribute ignored must result in a

correct interpretation of the original program" test. This also ensures that existing code will not change its

meaning, the programmer must actively apply the attribute.

The attribute nameThe attribute nameThe attribute nameThe attribute name

We considered a simpler approach with just an attribute to disable the ORDERRULE :

[[no_incremental_address]]. That is great for language lawyers, but programmers would benefit more from

reflecting the motivation. So next it was [[optimized_layout]] and [[bestlayout]] along with

[[smallestlayout]].

But at defining the semantics we (obviously) discovered that "best" is an elusive thing. Smallest was simple

to define but in some special cases the size reduction may result loss of performance, not gain (i.e. on

modern platforms going from 64 byte to 60).

So we prefer an attribute family [[layout()]] with options already defined and ability to extend with relative

ease. At the same time adding another strategy going the opposite direction, as it is trivial to define and

implement, and cures an old pain.

Within the strategy keywords "best" is still somewhat fishy, but in this framework is more intuitive. The

compiler optimizer options also started as Osmall Ofast but as a multitude of elementary optimizations got

controllable introduced O1 O2 O3 umbrella for the regular user meaning "give me what you think is best"

without a special preference. It can be changed to "optimized" but we think it is just longer and not really

more expressive.

For "declorder" we also considered "standard" that aligns with the likely intent of use. However, this might

confuse the user when other requirements of standard-layout class-ness are not fulfilled beyond the same

access. ("standard" may be considered a separate strategy making the program ill-formed if not applicable).

Other considered strategies (not proposed now)Other considered strategies (not proposed now)Other considered strategies (not proposed now)Other considered strategies (not proposed now)

"pack(N)" would invoke the effect of #pragma pack(N) finally bring this omnipresent facility in the

standard. Not included because this proposal aims only at reordering members, not interacting with

alignment.

"compact" would imply "smallest" "pack(1)" and implicit [[no_unique_address]] removing all possible

waste.

"cacheline" a very powerful strategy for speed optimization aiming to set sizeof(T) be a divisor or multiple

of the cacheline size. Not included before gathering experience with implementation and impact, especially

for sizes over the cacheline size. Possibly needs additional tuning parameter, i.e. to control maximum

extension.

Interaction with coreInteraction with coreInteraction with coreInteraction with core

A major clash point is with 'standard-layout'. Rearranging the members shall render the class not standard-

layout. The ambiguous point is when the [[layout(smallest)]] is present on a standard-layout class and no

rearrangement actually happened. But that may change just due to size change of members later.

We believe that the spirit of standard-layout lies in the actual layout arrangement. The requirement on no

mixed access was put in only as reflection of ORDERRULE. bullet (7.3) can be changed to this original

intent stating it depends on all ints members laid out in declaration order.

Going this route would create a behavior change on existing code without using the attribute (the only such

change): is_standard_layout for a class with mixed access always reported false and now can report true if

the implementation did not use the license of reordering (likely). We consider preserving the way of such

code has less value than the change that moves toward the original intent and give more clarity.

Full compatibility, if desired, can be achieved by an extra bullet in wording.

Interaction with librInteraction with librInteraction with librInteraction with libraryaryaryary

The specification method of the library allows the implementation to use or not use the attribute without the

user could detect it. The few cases where it is not evident are classes with public members, like std::pair.

Simplest and safest way is to explicitly state that the implementation is allowed to use [[layout(best)]]

except where multiple public data members are specified. Or just state that library classes with multiple

public members will have them in layout in declaration order.

RisksRisksRisksRisks

This proposal does not create new kind of risk, as impact is similar to [[no_unique_address]]: if we mix

code compiled with versions that implement it differently, the program will not work. (Similar mess can be

created by inconsistent control of alignment through #pragma pack and related default packing control

compiler switches.) But we add an extra item to those potential problems. For practice we consider these

problems as an aspect of ODR violation.

The implementation of the attribute in general and a stable approach for "best" in particular, must become

part of the ABI.

Summary of decision pointsSummary of decision pointsSummary of decision pointsSummary of decision points

 - preserve not standard-layoutness of mixed-access classes without attribute? (no)

 - tie standard-layoutness to actual created layout (yes) or consider potential reorder as breaker

 - bikeshed the strategy names

 - add/remove some of the strategies

Plan for wording (draft)Plan for wording (draft)Plan for wording (draft)Plan for wording (draft)

Add a new subclause [dcl.attr.layout] after last attribute

9.11.12 Layout control attribute

1 The attribute-token layout specifies special rules regarding nonstatic member placement when the

memory layout for a class is created. This attribute may appertain to struct or class definition. It shall

appear at most once in each attribute-list.

It shall have an attribute-argument-clause of the following form:

 (layout-strategy)

 layout-strategy:

 declorder

 smallest

 best

2 The attribute allows placing members in layout according to the indicated strategy, removing requirement

set in (10.3 p19).

3 The declorder strategy requires members appear in the layout strictly in the order of declaration. [Note:

Members are allocated so that later members have higher addresses within a class object or same if

[[no_unique_address]] was used. – end note]

4 The smallest strategy aims for a layout with the smallest memory size. The size is considered smaller if

sizeof(T) is smaller or sizeof(T) is equal and the amount of tail padding is greater. The implementation

shall consider possible orders of the members and use one of the layouts with the smallest size. If the layout

that is created by ignoring the layout attribute has the smallest size, that must be used. [Note: Gratuitous

reordering without gain is not allowed. – end note]

5 The best strategy aims for a layout that the implementation considers ideal using its knowledge about the

target platform. Any reordering is allowed. [Note: The result is up to quality of implementation. It can be

identical to what the smallest strategy produces. It can leave the layout as if it had no layout attribute. It can

increase the size if that is likely to increase the runtime performance. Quality is not considered good it

makes the performance worse without a chance to be better. – end note]

6 The reordering shall be deterministic, so multiple translation units use the same layout from identical

member definition and strategy.

[Example:

 [[layout(smallest)]] struct S {

 double d1;

 bool b1;

 double d2;

 bool b2;

 double d3;

 bool b3;

 };

 If double is aligned on 8 bytes, without the attribute the struct has 7 bytes padding after b1, b2 and b3,

having size 48 bytes. With the attribute it can be reordered by moving the three bools next to each other and

have 5 byte padding, size 32 bytes. The bools must be placed last for the maximum tail padding. -- end

example].

In 10.1 [class.prop] p3 change bullet (3.3)

(3.3) — has the same access control (10.8) for all non-static data members,

(3.3) — has such layout, that all non-static data members are allocated in the order of their declaration,

Add at end of first sentence of 10.3 Class members [class.mem] p19

Non-static data members of a (non-union) class with the same access control (10.8) are allocated so that

later members have higher addresses within a class object, unless the class has the layout attribute

(9.10.12). The order …

Add new section after 15.5.5.15 in 15.5.5 [conforming]

15.5.5.16 Layout control [lib.layoutcontrol]

1 The C++ library classes where multiple public data members are specified (like std::pair) must ensure a

layout where these members appear in declaration order.

Possible improvements in the futurePossible improvements in the futurePossible improvements in the futurePossible improvements in the future

(Not part of the proposal at this time.)

Bulk specificationBulk specificationBulk specificationBulk specification

The programmers who want to use this attribute will likely want it on majority of their classes. So, a simple

form that could add it to many places with little source change would be good. Like with extern "C" that

can be applied to make a {} block that will apply it to all relevant elements inside.

We considered the attribute applicable to the extern "" {} block and namespace {} block with the semantics

that it would be used on any class definition within the block without a layout attribute. Neither felt good

enough.

The implementation could likely add a facility like current #pragma pack along with push and pop, but

pragmas that is not fit for the standard.

Additional strategiesAdditional strategiesAdditional strategiesAdditional strategies

These were discussed earlier

