
5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 1/40

A Modest Executor Proposal

with homage to Swift

Document number: P1055

Date: 2018-04-26

Audience: Library Evolution Working Group

Reply-to: Kirk Shoop kirkshoop{at}fb[dotcom]; Eric Niebler eniebler{at}fb[dotcom]; Lee Howes
lwh{at}fb[dotcom]

I. Table of Contents
I. Table of Contents
II. Introduction
III. Motivation and Scope
1. Goals for an Executor Concept

1.1 Batchable
1.2 Heterogenous
1.3 Orderable
1.4 Controllable
1.5 Continuable
1.6 Layerable
1.7 Usable
1.8 Composable
1.9 Minimal

2. Goals not met by the Executor proposal
2.1 Orderable
2.2 Layerable
2.3 Composable
2.4 Controllable
2.5 Minimal

3. Satisfying these goals
3.1 Before and After
3.2 A Future that is an Executor
3.3 Batching
3.4 Heterogenous
3.5 Ordering
3.6 Minimal

4. Addressing Concerns
IV. Impact On the Standard
1. concepts for C++20
2. expression composition for C++20
3. library support for C++20

3.1 execute and twoway_execute
3.2 then_execute

https://wg21.link/p1055

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 2/40

3.3 bulk_execute
3.4 just
3.5 map
3.6 concat
3.7 via
3.8 on
3.9 new_thread
3.10 get
3.11 executor
3.12 single_deferred
3.13 single
3.14 none
3.15 deferred
3.16 std::promise<T> & std::future<T>
3.17 task/outcome

4. concepts for time and cancellation
V. Acknowledgments
VI. Appendices
Naming

Deferred
SingleDeferred
FlowSingleDeferred
ManyDeferred
FlowManyDeferred

Time
TimeDeferred
TimeSingleDeferred
TimeFlowSingleDeferred
TimeManyDeferred
TimeFlowManyDeferred

Concepts
Diagrams

Deferred state transitions diagram
SingleDeferred state transitions diagram
FlowSingleDeferred state transitions diagram
ManyDeferred state transitions diagram
FlowManyDeferred state transitions diagram
SingleDeferred on(Executor) sequence diagram
FlowSingleDeferred on(Executor) sequence diagram

II. Introduction
An abstraction to associate work with a target that will execute that work is an essential
primitive that is required to write higher level libraries that deal with parallelism and
concurrency.
There have been several attempts to define this facility with a focus on parallelism, but nothing
has yet been accepted. There are indications that the current proposal for Executor is not a
complete unification - one is that the NetworkingTS is including a separate io_context for
concurrency and has devised a way to parameterize the async mechanism used on a per-
function-call granularity, with the default being to use callbacks.

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 3/40

The intent of this paper is to express concerns about the complexity of the current executor
and parallelism designs, and offer constructive suggestions for streamlining the current
proposals and building on them into something more flexible. Following that, the paper will
explore a subsumption hierarchy of Concepts and layered Implementations that allow separate
implementations of the Concepts to maximize parallelism and/or provide efficient
concurrency.

The approach taken in this paper is to list the goals for an Executor and describe a
subsumption hierarchy of concepts that will have many implementations. Each
implementation will address some goals. Once there are concepts and implementations of
those concepts this paper will describe methods to compose the implementations.

Review of Iterator concepts

An Iterator is intended to hide the mechanism of navigating a set of values so that
algorithms and containers can be independent of each other. The Iterator concepts model
a subsumption hierarchy of the operations on a pointer to accomplish this.

Foreshadowing of Executor concepts

An Executor is intended to hide the mechanism of where, how and when some unit of
work is performed. where may mean that the work is transmitted to an external
processor and that the result is read back from the external processor. how may mean
that the type of work is constrained in some way (SIMD, GPU). when may mean that the
work is queued to a scheduler that controls when the work actually occurs. The concepts
for executor will need to be a subsumption hierarchy of the additive features; error, done,
value, sequence, cancellation, time-ordered.

Concerns:
There is a section in this paper called Addressing Concerns. Readers are encouraged to skip
there at any point that they have concerns that they hope would be addressed.

P1053 - Future-proofing the Executor Continuation concept:
P1053 is an excellent choice to read right before this paper. In that paper a path is followed
from callable to a fully generic continuation with composition.

Naming in this paper:
The purpose of names in this paper changes according to context. Sometimes names are
used to connect with existing naming and sometimes names are used to distinguish from
existing naming and then there are sometimes when the names are intended as proposals
for names. It is expected that the names used in this paper will be ignored until naming is
explicitly discussed. Appendices: Naming

III. Motivation and Scope
Starting with the goals for an Executor Concept is intended to bring the readers and authors of
this paper to common ground at the start. There may be additional goals that were missed and

https://wg21.link/p1053

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 4/40

those should be added when the authors are made aware and subsequently addressed in the
following sections.

1. Goals for an Executor Concept

1.1 Batchable

Batching is used to control the tradeoffs between the cost of each transition of a unit of work
and the granularity of each unit of work.

1.2 Heterogenous

Heterogenous execution allows a unit of work compiled for a different instruction set to be
transitioned, executed and the result transitioned back. Batching is important here because
often the transition cost is high, so it is desirable to have fewer and larger units of work.

1.3 Orderable

The Order in which work units are invoked is often essential. In some common cases ordering
information must be specified when submitting the work. It is also common to combine more
than one ordering rule to determine the order of execution. The common composition of
ordering rules for a particular scope in a concurrent algorithm library is: Sequential & Time
& FIFO @ a particular Time T.

1.3.1 LIFO

The most recent submitted work is invoked first. Sometimes doing this will maximize locality.

1.3.2 FIFO

The oldest submitted work is invoked first. Some workloads require this guarantee because
they deal with sequenced data.

1.3.3 Priority

Priority is important to support because some work (e.g. user initiated) is more important than
other work.

1.3.4 Time

Time is essential to many forms of concurrency. Timeouts, polling-intervals and animations are
some of the many uses of time-ordered execution.

1.3.5 Sequential

Each invocation of submitted work must be complete before the next is invoked.

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 5/40

1.4 Controllable

1.4.1 Targetable

The selection of an Executor allows work units that are submitted to it to be targeted to a
specific execution resource or a specific set of resources.

1.4.2 Deferrable

Work is deferred until the Continuation is applied.

Eager constructs like std::async and std::future are designed to create a race between the
result and the continuation and then have to add complexity and overhead to resolve the race.
This creates non-deterministic context for calls to the continuation.

Deferred work is much less complex and much more efficient.

1.4.3 Cancelable

Allow the client to signal that the work should not be run and the result should not be
delivered. Cancellation requires a back channel and complicates lifetime and therefore adds
overhead. Back-channels like cancellation also require races to be resolved between the signals
traveling in opposite directions.

1.5 Continuable

When an Executor supports non-blocking submission of work units, signals from the work
units are needed.

1.5.1 Result Signal

The result of the work unit must be delivered once the work is complete.

1.5.2 Error Signal

When the invocation or transitions or ordering of the work fails, an error must be delivered
instead of a result. if an unhandled exception from the work unit reaches the Executor it will
be translated into an error signal.

1.5.3 Done Signal

Done is signaled when the result is not available and no error occurred. This is important
when producing side effects.

1.5.4 Cancel Signal

Cancel is signaled when the consumer wishes to stop the producer or ignore the output from
the producer. This is required when cancellation support is introduced (cancellation is not an
error).

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 6/40

Cancel vs. Done:
Cancel and Done signals are only distinguished by the direction of travel. Done goes from
producer to consumer. Cancel goes from consumer to producer.

1.5.5 Stopping Signal

Stopping is signaled when the handle passed to Starting is invalidated. This signal represents
some of the lifetime complexity of a back-channel. Stopping is always the last signal when it
exists.

1.5.6 Starting Signal

When cancellation is supported, Starting is signaled by the submit() method to pass a handle
to the producer that can be used to cancel the producer (or ignore the producer result if the
cancel signal loses the race with the result signal)

1.6 Layerable

1.6.1 Concepts

Subsumption hierarchies of concepts allow capabilities to be added without increasing the
complexity of simpler things.

1.6.2 Types

Layered types and implementations allow an Ordering Executor to delegate the invocation of
the work to another Executor

1.7 Usable

Ease-of-use applies to both implementors and users. This is less about the shape of the
Concepts and more about the tools in the library provided to build and consume new types
that model the Concepts. The complexity of building a model of the Range Concept is reduced
by the tools in the range library.

1.7.1 Implementor

Implementors have tools that allow simple construction of new Executor types so that they
focus on the behavior more than the shape.

1.7.2 Consumer

Consumers have tools that allow usage that is more varied and natural to each use case than
the shape of the Concepts natively provides.

1.8 Composable

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 7/40

Composability allows implementations of the Concepts to compose to achieve usage patterns
that have not been conceived of yet. Users will need to extend and add support for features
that are not included in the standard.

Composability involves creating functions in the pattern Executor(Executor) and
Continuation(Continuation) that adapt one implementation into another while composing
some additional functionality.

Composability involves creating functions that compose sets of adaptors in the pattern of
Executor operator|(Executor, Executor(Executor)) and Executor pipe(Executor,
Executor(Executor)...).

1.9 Minimal

Nothing should exist on the Executor Concepts that could be added externally in a library on
top of the Concept. This is similar to the principal that nothing should be added to the language
that could be added to the library.

Even names should be selected to be most general and the types in the library named
differently to be natural for each application of the Concepts.

2. Goals not met by the Executor proposal

Concerns:
There is a section in this paper called Addressing Concerns. Readers are encouraged to skip
there at any point that they have concerns that they hope would be addressed.

Impact:
There is a section in this paper called IV. Impact On the Standard that will recommend
specific changes for C++20.

2.1 Orderable

The only support for ordering in A Unified Executors Proposal for C++ and Executors Design
Document are the properties for bulk execution guarantees, otherwise ordering is unspecified.

Even if there were more properties and _execute() methods for ordering semantics, it is
unclear how one would compose them to ask for: Sequential & Time & FIFO @ a
particular Time T.

Where work is targeted is a separate concern from the order in which it is processed on that
target.

It is tempting to split these separate concerns into separate concepts. This is what the
NetworkingTS io_context does. The io_context owns a queue and the work in that queue
can be consumed by one or more Executors consuming work from that queue by calling

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0443r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0761r2.pdf

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 8/40

run(). However, the io_context is not minimal and not sufficient, it is unclear how one
would ask for: Sequential & Time & FIFO @ a particular Time T.

2.2 Layerable

The requires mechanism provides layering of implementations. The requires mechanism
implicitly creates Concepts for every permutation of the execution methods, with an
implementation returned by a call to requires() supporting one permutation of the
Concepts.

Working from the type-erasure definition here: A Unified Executors Proposal for C++ - 1.5.1 the
uber-concept might look like this:

struct Executor {
 template <class Property>
 executor require(Property) const;

 template <class Property>
 executor query(Property) const;

 template<class Function>
 void execute(Function&& f) const;

 template<class Function>
 std::experimental::future<result_of_t<decay_t<Function>()>>
 twoway_execute(Function&& f) const

 template<class Function, class Future>
 std::experimental::future<result_of_t<decay_t<Function>()>>
 then_execute(Function&& f, Future&& fut) const;

 template<class Function, class SharedFactory>
 void bulk_execute(Function&& f, size_t n, SharedFactory&& sf) const;

 template<class Function, class Shape, class Future, class RF, class SF>
 std::experimental::future<result_of_t<decay_t<Function>()>>
 bulk_then_execute(Function&& f, Shape s, Future&& fut, RF&& rf, SF&& sf) const;

 template<class Function, class ResultFactory, class SharedFactory>
 std::experimental::future<result_of_t<decay_t<ResultFactory>()>>
 bulk_twoway_execute(Function&& f, size_t n, ResultFactory&& rf, SharedFactory&& sf) const;
};

Due to the nature of the require mechanism, there are additional concepts implied, though
none are defined, for all the permutations of execute supported by the type.

The type-erasure definition also demonstrates that the proposal is user extensible on the set of
Properties, but has no way for the user to extend the set of _execute methods for type-
erasure. This means that adding full support for ordering by time would be precluded until it
was added to a future standard.

require extension mechanism:
The require/prefer/query extension mechanism is a novel method for composition. It
would be great to see it as a library for composing arbitrary types which could be applied
to executors for those that want that style of composition.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0443r5.html

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 9/40

The existing permutations of oneway, twoway, then, single, bulk and expected additional
permutations for time & priority are concerning.

2.3 Composable

The mechanism of using requires to add/remove execute methods from an Executor prevents
user-added functionality from composing the same way as the built-in functionality.

The mechanism of require, followed by .execute() invocation requires a lot of hand wiring
and extra verbosity to compose operations together.

The execute overloads already look a lot like a future, yet some also return a future. This also
complicates composition of execution work and promise work.

2.4 Controllable

Deferral is supported but cancel is not, nor is there a plan for how cancel would be added to
ensure that it is a strict super-set of the current proposal.

Future cancellation:
The P1055 paper makes an attempt at defining cancellation for future that is suitable for
use by executors, but through a very specific mechanism rather than a general mechanism.
This is another consequence of defining executor and future separately as types and
providing neither with concepts.

2.5 Minimal

The inclusion of the requires mechanism and the set of execute functions is not minimal and
yet is equally insufficient to support common usage (e.g. Sequential & Time & FIFO @ a
particular Time T).

The overlap of the underlying pattern of function that takes a continuation with a future that
supports .then() indicates that the types being added to the library for executors and futures
are obscuring the underlying Concepts that they share.

3. Satisfying these goals
One way to satisfy additional goals is to add complexity to what exists. Another way to satisfy
additional goals is to find a core set of concepts upon which all the functionality can be built.
The following takes the later approach.

Concerns:
There is a section in this paper called Addressing Concerns. Readers are encouraged to skip
there at any point that they have concerns that they hope would be addressed.

https://wg21.link/p1055

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 10/40

3.1 Before and After

3.1.1 std::async() example

This example of std::async() from the Executors Design Document - 5.1

template<class Executor, class Future, class... Args>
execution::executor_future_t<Executor, auto>
async(const Executor& exec, Function&& f, Args&&... args) {
 // bind together f with its arguments
 auto g = bind(forward<Function>(f), forward<Args>(args)...);

 // introduce single-agent, two-way execution requirements
 auto new_exec = execution::require(exec, execution::single, execution::twoway);

 // implement with execution function twoway_execute
 return new_exec.twoway_execute(g);
}

The changes below involve switching from placing execution algorithms as members on the
executor, exposed through the requires mechanism, to making external algorithms that
compose with Executor concepts.

template<class Executor, class Future, class... Args>
auto
async(const Executor& exec, Function&& f, Args&&... args) {
 // bind together f with its arguments
 auto g = bind(forward<Function>(f), forward<Args>(args)...);

 // implement with execution twoway_execute
 return exec | twoway_execute(g) | eager_incorrigible_race_with_continuation();
}

eager_incorrigible_race_with_continuation() follows the lineage of making
dangerous or slow things look ugly. This one in particular makes something that would be
dangerous (a race between the producer of a value and the consumer setting a
continuation to receive the value) become safe by adding overhead and making it slow
(heap allocation and lock-free code to resolve the race).

3.1.2 inline_executor example

This example of inline_executor from the Executors Design Document - 6.

struct inline_executor {
 . . .
 const inline_executor& context() const noexcept {
 return *this;
 }
 inline_executor require(execution::always_blocking) const noexcept
 {
 return *this;
 }
 template<class Function>

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0761r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0761r2.pdf

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 11/40

 void execute(Function&& f) const noexcept {
 std::forward<Function>(f)();
 }
};

The changes below reveal the beginnings of the concepts for an Executor. Rather than
requiring certain behavior of an executor, composition would be used to layer the desired
behavior across executors. More details to follow and don't get very attached to them as shown
here..

struct inline_executor {
 . . .
 template<class Continuation>
 void execute(Continuation&& c) const noexcept {
 try {
 std::forward<Continuation>(c).work(*this);
 } catch(...) {
 std::forward<Continuation>(c).error(std::current_exception());
 }
 }
};

3.1.3 executor type-erasure example

This definition of the type-erased executor from A Unified Executors Proposal for C++

template <class... SupportableProperties>
class executor
{
public:
 . . .
 // executor operations:

 template <class Property>
 executor require(Property) const;

 template <class Property>
 executor query(Property) const;

 template<class Function>
 void execute(Function&& f) const;

 template<class Function>
 std::experimental::future<result_of_t<decay_t<Function>()>>
 twoway_execute(Function&& f) const

 template<class Function, class Future>
 std::experimental::future<result_of_t<decay_t<Function>()>>
 then_execute(Function&& f, Future&& fut) const;

 template<class Function, class SharedFactory>
 void bulk_execute(Function&& f, size_t n, SharedFactory&& sf) const;

 template<class Function, class Shape, class Future, class RF, class SF>
 std::experimental::future<result_of_t<decay_t<Function>()>>
 bulk_then_execute(Function&& f, Shape s, Future&& fut, RF&& rf, SF&& sf) const;

 template<class Function, class ResultFactory, class SharedFactory>
 std::experimental::future<result_of_t<decay_t<ResultFactory>()>>

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0443r5.html

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 12/40

 bulk_twoway_execute(Function&& f, size_t n, ResultFactory&& rf, SharedFactory&& sf) const;

 . . .
};

The changes below reveal more about the concepts for an Executor. Remember, don't get very
attached to them..

template<class E>
class executor;

template<class E>
class continuation
{
public:
 . . .
 // continuation operations:

 void work(executor<E>& exec);
 void error(E e) noexcept;

 . . .
};

template<class E>
class executor
{
public:
 . . .
 // executor operations:

 void execute(continuation<E> c);

 . . .
};

3.2 A Future that is an Executor

P1053 - Future-proofing the Executor Continuation concept:
P1053 is an excellent choice to read right before this section. In that paper a path is
followed from callable to a fully generic continuation with composition.

Here is a Future that supports Continuation and defers the start of the work until the
Continuation is attached.

struct Promise
{
 template<class T>
 void value(T&& t);

 template<class E>
 void error(E&& e);
};

struct Future
{

https://wg21.link/p1053

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 13/40

 template<class Promise>
 void submit(Promise);
};

Static Polymorphism:
Leaving T, E and Promise arguments to the functions unspecified, until they are called,
allows very interesting compositions. One is that overloads are supported for each named
function. With libraries that allow a Callable type to be built from a set of lambdas (these
already exist to support other forms of visitation), it is not complicated to create these
overload sets. Another is that exception_ptr is not required to be the only type used to
represent errors as a value. std::error_code will work and any other error value type
will work. with an overload set for error(), many error types can be supported by the
same Promise implementation.

Deferred vs. Eager:
Deferred work is efficient and simple, Eager work is inefficient and complex. A Deferred
Future looks like Future{[](auto p){p.value(42);}}.submit(Promise{[](auto v)
{}}); godbolt. By deferring the work until submit() is called the Promise passed to
submit can be directly passed to the work lambda which will directly call value() with 42.
this completely eliminates the race between the value and the continuation.

The only difference in the Future above and the Executor shape described earlier is the
naming and additional flexibility on the types of the function parameters.

Given this definition of a Future, it is interesting to ask whether the Executor Concept needs a
separate definition. One of the algorithms that would compose an Executor with a Future
would be Future via(Executor, Future) here is what that might look like if the Future just
defined was used to implement the Executor.

auto FooExecutor = makeFuture([](auto out){ // submit
 std::thread t{[out](){
 // an executor always passes an executor as the value.
 // usually the executor passes itself so that
 // more work can be scheduled on the same executor
 //
 // this executor ignores any nested work.
 out.value(makeFuture());
 }};
 t.detach();
});

// via returns a new future that will
// schedule all calls from 'in' to
// value and error, via 'exec'.
template<class FutureExec, class FutureIn>
auto via(FutureExec exec, FutureIn in) {
 return makeFuture([exec, in](auto out){ // submit
 // create a promise that will submit each
 // call to 'exec' and then pass the parameter
 // to 'out'.
 // makePromise captures 'out' and passes it
 // to each lambda as the first parameter
 auto viap = makePromise(out,

https://godbolt.org/g/nurYzD

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 14/40

 [exec](auto out, auto v){ // value
 // capture 'v' and 'out' in a Promise
 // that will forward 'v' to out.value
 auto execvp = makePromise(out,
 [v](auto out, auto exec){ // value
 out.value(v);
 });
 // submit 'execvp' to be called by the executor
 exec.submit(execvp);
 },
 [exec](auto out, auto e){ // error
 // capture 'e' and 'out' in a Promise
 // that will forward 'e' to out.error
 auto execep = makePromise(out,
 [e](auto out, auto exec){ // value
 out.error(e);
 }));
 // submit 'execep' to be called by the executor
 exec.submit(execep)
 });
 // time to start 'in' and pass the promise
 in.submit(viap);
 });
}

// submit will return immediately and the lambda passed
// to it will be called later from the std::thread
via(FooExecutor{}, makeFuture([](auto out){ //submit
 out.value(42);
})).submit(makePromise([](auto v){}));

Static Functions:
It is important to call out that every call to value, error and submit are straight, static
function calls, only the FooExecutor{}.submit() would add overhead to start and run the
work on the thread.

Thread Ownership:
The detach() is correct here. lifetime ownership is transferred to the function passed to
the thread. the promise passed to submit will be called to signal that the thread is ending
and this signal can be used by the implementor of value() & error() to wait for work to
complete before continuing or exiting an arbitrary C++ scope.

3.3 Batching

Batching is about controlling the balance between the granularity of the work and the cost of
the transitions that submit the work and deliver the result of the work.

The granularity is controlled by how the work is composed and this does not need to be
expressed in the shape of the Executor Concepts. Work composition can be done by smashing
continuations together using functions like continuation(continuation) or by smashing
executors together using functions like executor(executor). with overloads for specific
types, like bulk_executor(bulk_executor) the function can leverage private functions to
move internals from the parameter and construct a new bulk_executor that composes two

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 15/40

operations or can use private functions to add the new operation to the parameter and then
move that same instance to the result.

in the following code, presume that bulk_future defers the transition of the work until a
continuation is attached. this allows multiple bulk_future to be combined and sent
together.

template<class Target, class Function, class SharedFactory>
bulk_future bulk_execute(Target&& t, Function&& f, size_t n, SharedFactory&& sf) {
 auto work = makeBulkWork(t, f, n, sf);
 return makeBulkFuture(work);
}

bulk_future smash(bulk_future lhs, bulk_future rhs) {
 // combine the work from both lhs and rhs into one bulk_future
 return makeBulkFuture(lhs.work(), rhs.work());
}

The transition cost is a property of an Executor implementation and does not need to be
expressed in the shape of the Executor Concept.

3.4 Heterogenous

The work for heterogenous computation is often constrained in the operations that it can
perform. what this means is that all of the functions on the Concepts run on the CPU.

The structure of heterogenous Executors follows a pattern.

CPU submits compatible work to device
device does work
CPU delivers result from device via continuation

The implementation decides whether the CPU blocks waiting for the work or blocks doing the
work or returns after submitting the work and continues based off some internal signal.

The function simd_future simd_execute(. . .) fits this pattern and these simd_futures
can be composed before the final continuation is attached and the deferred work is started.

Batching:
The number of operations performed on the device per submission is determined by how
the work is composed prior to submission. It is expected that operations will steal the work
from adjacent operations and submit them all at once. See 3.3 Batching

3.5 Ordering

Ordering is in play when there are queues of non-blocking work. In these cases submit()
pushes into the queue and potentially returns before the work is even started.

Sequential, LIFO & FIFO do not surface on the Concepts.

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 16/40

Priority could appear on the Concepts, or since it is a finite construct, it could be abstracted by
a Factory.

auto priority = makePriorityFactory(getSystemPool());
auto highexec = priority.makeExecutor(HIGH_PRIORITY);
auto normalexec = priority.makeExecutor(NORMAL_PRIORITY);

highexec | execute(work1) | then([normalexec](auto& highexec){
 return normalexec | twoway_execute(work2);
}) | then([](auto work2result){});

The sticky ordering primitive is Time. Time is a construct used to describe the physical world.
As such it requires explicit support in the concepts. This is one of those cases where the library
will be able to hide an aspect of the Concepts for the many uses that do not care to specify
ordering in time.

pool = getSystemPool();

pool.execute(pool.now(), work1); // ewww

pool | execute(work1); // same thing as the `.execute()` - no muss no fuss
pool | execute_at(pool.now() + 1d, work1); // still nice
pool | execute_after(1d, work1); // same as the call to execute_at

Adding time affects the Future, but not the Promise.

template<class TimePoint>
struct TimeFuture
{
 TimePoint now();

 template<class Promise>
 void submit(TimePoint, Promise);
};

3.6 Minimal

The Future in 3.2 is minimal but not sufficient for Time ordering. The TimeFuture is sufficient
and minimal until cancellation and support for value-sequences and back-pressure are
supported. Concepts that support these additions are all defined in Appendices: Naming and
Appendices: Time. These are structured as a subsumption hierarchy similar to Iterators. The
subsumption hierarchy is made explicit in the Appendices: Concepts

4. Addressing Concerns
Does this require starting over on executors?
No! most of the work to define the behavior and functionality of the types in the Executor
proposal are required after concepts are applied. The concepts will change composition
and layering and user extensibility.

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 17/40

Does every goal have to be achieved right now?
No! as long as there is a clear plan from the proposal now to the full set of concepts and
library tools needed to achieve the goals later.

Why object now?
Other priorities have taken precedence until now. Much that is in this paper has been
expressed in conversations with committee members before, but until now has not had a
formal write up.

What about the additional composition overhead?
Based on previous experience with similar libraries, the runtime overhead of these
compositions will be zero. The actual implementation will affect this statement as will
type-erasure, but type-erasure will be explicitly controlled by the user and the
implementation will be under the control of the components being composed. P1053 has
some great links to godbolt that demonstrate how the compositions are optimized out.

Why not have fewer concepts with more capabilities? Everything can be done with Many,
FlowMany & TimeFlowManyDeferred. cancellation and time are both things that have to
be exposed in the concepts and the choice is between many/fewer concepts and compile-
time/runtime detection (though static tools could also be built to enforce these runtime
restrictions). This balance can be shifted but those shifts have large impact on the
libraries. Taking smaller steps from the minimal concepts up to the full featured concepts
allows incremental and purely additive changes to the libraries and the capabilities.

IV. Impact On the Standard

Rigor
This section will have too much hand waving. There is code similar to this on github now.
There will more exact implementations of this on github later.

1. concepts for C++20
One minimum change needed for C++20 would be to move the expression of executor into a
subsumption hierarchy of concepts. The require mechanism and usage could remain, but not
be the fundamental expression for purposes of composition and usage.

Algorithms should take Concepts as parameters and not call requires()/prefers().

bulk, twoway and then execute overloads should be made into operators that can be
composed.

The minimum concepts to support oneway, twoway, bulk and then_execute are the following
(they are also sufficient to support std::future - where work starts at construction, and task -
where work starts at submission).

struct None
{
 template<class E>
 void error(E&& e) noexcept;

https://wg21.link/p1053

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 18/40

 void done();
};

struct Deferred
{
 template<class None>
 void submit(None);
};

struct Single
{
 template<class T>
 void value(T&& t);

 template<class E>
 void error(E&& e) noexcept;

 void done();
};

struct SingleDeferred
{
 template<class Single>
 void submit(Single);
};

For conversation and context for these names, please consult Appendices: Naming

2. expression composition for C++20
Also minimum for C++20 is expression composition. This involves the definition of Adaptor to
chain from producer to consumer and Lifter to chain from consumer to producer.

SingleDeferred Adapter(SingleDeferred);

Single Lifter(Single);

Adaptor and Lifter functions are often produced by factory functions that capture some
parameters to define the transformation that will be applied by the Adapter or Lifter returned.

template<class... AN>
auto Foo(AN&&... an) {
 //
 // An adapting operator like Foo returns a function
 // that takes a SingleDeferred and returns a SingleDeferred.
 //
 return [<capture an>](auto singleDeferred){
 return makeFooSingleDeferred(<captured an>, singleDeferred);
 };
}

template<class... AN>
auto Bar(AN&&... an) {
 //
 // A lifting operator like Bar returns a function
 // that takes a Single and returns a Single.

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 19/40

 // this Lifter function can be composed using
 //
 return [<capture an>](auto single){
 return makeBarSingle(<captured an>, single);
 };
}

An Adaptor function can be composed using
SingleDeferred operator|(SingleDeferred, Adaptor);
or a function like
template<class... AdapterN> SingleDeferred pipe(SingleDeferred, AdaptorN...
adapterN);
With usage like this

http.get('http://localhost') |
 adapt::filter([](auto r){ return r.status != 200;}) |
 adapt::map([](auto r){ throw http_exception{r}; }) |
 adapt::submit();
// or
adapt::pipe(http.get('http://localhost'),
 adapt::filter([](auto r){ return r.status != 200;}),
 adapt::map([](auto r){ throw http_exception{r}; })).
 submit();

A Lifter function can be composed using
Single operator|(Single, Lifter);
or a function like
template<class... LifterN> Single pipe(Single, LifterN... lifterN);
With usage like this

http.get('http://localhost') |
 adapt::submit(
 lift::filter([](auto r){ return r.status != 200;}) |
 lift::map([](auto r){ throw http_exception{r}; }));
// or
http.get('http://localhost').
 submit(lift::pipe(
 lift::filter([](auto r){ return r.status != 200;}),
 lift::map([](auto r){ throw http_exception{r}; })));

It is possible to implement pipe() tersely in terms of operator| using C++17 fold expressions

template <class In, class Operator>
auto operator|(In&& in, Operator op) -> decltype(op(in)) {
 return op(in);
}

template<class T, class... FN>
auto pipe(T t, FN... fn) {
 return (t | ... | fn);
}

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 20/40

It is trivial to turn Lifters into Adaptors. It is quite challenging and would probably
introduce overhead, to turn Adaptors into Lifters.

3. library support for C++20

3.1 execute and twoway_execute

oneway and twoway execution are supported by std::execute(F)

template<class F>
auto execute(F&& f) {
 return [f](auto exec) {
 if constexpr (std::is_void_v<std::result_of_t<std::decay_t<F>>>) {
 // f returns void, return deferred{}
 return std::deferred{[f](auto out){
 exec.submit(single{out, [f](auto out, auto exec){
 f();
 out.done();
 }});
 }};
 } else {
 // f returns value, return single_deferred{}
 return std::single_deferred{[f](auto out){
 exec.submit(single{out, [f](auto out, auto exec){
 auto r = f();
 out.value(r);
 }});
 }};
 }
 };
}

auto f = std::new_thread() | std::execute([](){ return 42; });
// run f twice - each on a new thread
auto i = std::this_thread::get(f);
auto ii = std::this_thread::get(f);

auto v = std::new_thread() | std::execute([](){ /* side-effects */ });
// run v twice - each on a new thread
std::this_thread::get(v);
std::this_thread::get(v);

3.2 then_execute

This construct can exist and usage prioritizes the composition of executors.

template<class F, class In>
auto then_execute(F&& f, In&& in) {
 return std::executor{[f, in](auto exec){
 return in | std::via(exec) | std::map(f);
 }};
}

auto exp84 = std::new_thread() |
 std::then_execute([](int i){ return i * 2; }, std::just(42));
// run exp84 twice - each on a new thread

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 21/40

auto i = std::this_thread::get(exp84);
auto ii = std::this_thread::get(exp84);

This expresses the same operations as above and usage prioritizes the composition of data.

auto exp84 = std::just(42) |
 std::via(std::new_thread()) | std::map([](int i){ return i * 2; });
// run exp84 twice - each on a new thread
auto i = std::this_thread::get(exp84);
auto ii = std::this_thread::get(exp84);

3.3 bulk_execute

This example demonstrates how chained work can be smashed together into one transition

template<class Function, class SharedFactory>
auto bulk_execute(Function&& f, size_t n, SharedFactory&& sf) {
 return [f, n, sf](auto exec) {
 if constexpr (is_bulk_executor_v<decltype(exec)>) {
 // private function to accrete work to be batched together
 return exec.add(f, n, sf);
 } else {
 return bulk_executor{exec, f, n, sf};
 }
 };
}

This example shows a different structure for the bulk algorithm that is data focused and using
parameters that are more general (there is only one piece of state, that can contain all the
implementation details, and a selector function to resolve the final result value from the
internal state)

template<class F, class Shape, class IF, class RS>
auto bulk(
 F&& func,
 Shape s,
 IF&& initFunc,
 RS&& selector) {
 return [func, s, initFunc, selector](auto in){
 return std::single_deferred{[in, func, s, initFunc, selector](auto out) mutable {
 in.submit(std::single{out,
 [func, s, initFunc, selector](auto out, auto input){
 auto [target, acc] = initFunc(input);
 std::bulk_driver(target, acc, func, s);
 auto result = selector(std::move(acc));
 out.value(std::move(result));
 }
 });
 }};
 };
 }

See the compiler output on godbolt

https://tinyurl.com/y7qcdjtp

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 22/40

3.4 just

template<class V>
auto just(V&& v) {
 return std::single_deferred{[v](auto out){
 try {
 out.value(v);
 } catch (...) {
 out.error(std::current_exception());
 }
 }};
}

auto i = std::this_thread::get(std::just(42));

3.5 map

template<class F>
auto map(F&& f) {
 return [f](auto in) {
 if constexpr (std::is_single_deferred_v<decltype(in)>) {
 // 'in' is a singleDeferred, create a single{} and submit that to 'in'
 if constexpr (std::is_void_v<std::result_of_t<std::decay_t<F>>>) {
 // f returns void, return deferred{}
 return std::deferred{[f, in](auto out){
 in.submit(single{out,
 [f](auto out, auto v){
 f(v);
 out.done();
 }});
 }
 };
 } else {
 // f returns value, return single_deferred{}
 return std::single_deferred{[f, in](auto out){
 in.submit(single{out,
 [f](auto out, auto v){ out.value(f(v)); }});
 }
 };
 }
 } else {
 // 'in' is a deferred, create a none{} and submit that to 'in'
 if constexpr (std::is_void_v<std::result_of_t<std::decay_t<F>>>) {
 // f returns void, return deferred{}
 return std::deferred{[f, in](auto out){
 in.submit(none{out,
 [f](auto out){
 f();
 out.done();
 }});
 }};
 } else {
 // f returns value, return single_deferred{}
 return std::single_deferred{[f, in](auto out){
 in.submit(none{out,
 [f](auto out){ out.value(f()); }})
 }};
 }
 }
 };
}

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 23/40

auto i = std::this_thread::get(std::just(42) | std::map([](int i){ return i * 2; }));

3.6 concat

template<class Executor>
auto concat(){
 return [](auto in){
 return std::single_deferred{[in](auto out){
 in.submit(single{out, [](auto out, auto v){
 v.submit(out);
 }});
 }};
 };
}

// concat allows nested operations to be resolved
std::just(21) |
 std::map([](int i){return std::just(i * 2);}) |
 std::concat() |
 std::submit();

3.7 via

template<class Executor>
auto via(Executor exec) {
 // return SingleDeferred(SingleDeferred) function for composition
 return [exec](auto singleDeferred) {
 // create the single_deferred{} that will proxy calls from
 // 'singleDeferred' through the 'exec'
 return std::single_deferred{[exec, singleDeferred](auto out) {
 // create a single that will submit each
 // call to 'exec' and then pass the parameter
 // to 'out'.
 // single{} captures 'out' and passes it
 // to each lambda as the first parameter
 auto viap = single{out,
 [exec](auto out, auto v){ // value
 // capture 'v' and 'out' in a single
 // that will forward 'v' to out.value
 auto execvp = single{out,
 [v](auto out, auto exec){ // value
 out.value(v);
 }
 };
 // submit 'execvp' to be called by the executor
 exec.submit(execvp);
 },
 [exec](auto out, auto e){ // error
 // capture 'e' and 'out' in a single
 // that will forward 'e' to out.error
 auto execep = single{out,
 [e](auto out, auto exec){ // value
 out.error(e);
 }
 };
 // submit 'execep' to be called by the executor
 exec.submit(execep)
 }

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 24/40

 };
 // time to start 'singleDeferred' and pass the single
 singleDeferred.submit(viap);
 }};
 };
}

3.8 on

template<class Executor>
auto on(Executor exec) {
 // return SingleDeferred(SingleDeferred) function for composition
 return [exec](auto singleDeferred) {
 // create the single_deferred{} that will proxy calls to
 // 'singleDeferred' through the 'exec'
 return std::single_deferred{[exec, singleDeferred](auto out) {
 // capture 'v' and 'out' in a single
 // that will forward 'v' to out.value
 auto execs = single{out,
 [singleDeferred](auto out, auto exec){ // value
 // time to start 'singleDeferred' and pass the single
 singleDeferred.submit(out);
 }
 };
 // submit 'execs' to be called by the executor
 exec.submit(execs);
 }};
 };
}

3.9 new_thread

auto new_thread() {
 return std::single_deferred{[](auto s){
 std::thread t{[s](){
 // TODO:
 // add a trampoline/derecursor for nested
 // work on the same thread and pass that
 // to s.value();
 s.value(std::new_thread());
 }};
 // pass ownership of thread to s
 t.detach();
 }};
}

3.10 get

template<class T, class SingleDeferred>
T get(SingleDeferred in) {
 std::mutex lock;
 std::condition_variable signal;
 std::variant<std::exception_ptr, T> result;
 in.submit(single{
 [&](T t){result.emplace(t);},
 [&](auto e){result.emplace(std::make_exception_ptr(e));}

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 25/40

 });
 std::unique_guard<std::mutex> guard{lock};
 signal.wait(guard, [&](){
 auto pep = std::get_if<std::exception_ptr>(&result);
 return !pep || !*pep;
 });
 if (auto pep = std::get_if<std::exception_ptr>(&result)) {
 std::rethrow_exception(*pep);
 }
 return std::get<T>(result);
}

3.11 executor

template<class SubmitFunction>
class executor : private SubmitFunction;

this function inheritance pattern learned from Zero-allocation & no type erasure futures -
Vittorio Romeo @ ACCU 2018 youtube

3.12 single_deferred

template<class SubmitFunction>
class single_deferred : private SubmitFunction;

3.13 single

template<class... TN>
class single;

template<class T>
class single<std::promise<T>>;

template<class ValueFunction, class ErrorFunction, class DoneFunction>
class single<ValueFunction, ErrorFunction, DoneFunction>;

template<class Data, class DataValueFunction, class DataErrorFunction, class DataDoneFunction>
class single<Data, DataValueFunction, DataErrorFunction, DataDoneFunction>;

3.14 none

template<class... TN>
class none;

template<>
class none<std::promise<void>>;

template<class ErrorFunction, class DoneFunction>
class none<ErrorFunction, DoneFunction>;

https://www.youtube.com/watch?v=GehO6LPu4qA

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 26/40

template<class Data, class DataErrorFunction, class DataDoneFunction>
class none<Data, DataErrorFunction, DataDoneFunction>;

3.15 deferred

template<class SubmitFunction>
class deferred : private SubmitFunction;

3.16 std::promise<T> & std::future<T>
template<class T>
std::future<T> future_from(auto singleDeferred) {
 std::promise<T> p;
 auto result = p.get_future();
 singleDeferred.submit(single{p});
 return result;
}

std::future<void> future_from(auto deferred) {
 std::promise<void> p;
 auto result = p.get_future();
 deferred.submit(none{p});
 return result;
}

3.17 task/outcome

type-forgetters for implementations of the concepts

template<class E = std::exception_ptr>
class void_outcome {
 void error(E e) noexcept override;
 void done() noexcept override;
};

template<class E = std::exception_ptr>
class void_task {
 void submit(void_outcome<E> out) override;
};

template<class T, class E = std::exception_ptr>
class single_outcome : public void_outcome<E> {
 void value(T t) override;
};

template<class T, class E = std::exception_ptr>
class single_task {
 void submit(single_outcome<T, E> out) override;
};

4. concepts for time and cancellation

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 27/40

Pie in the sky! Add two additional concepts to C++20 to support time-ordering and cancellation

struct FlowSingle
{
 template<class T>
 void value(T&& t);

 template<class E>
 void error(E&& e) noexcept;

 void done();

 void stopping() noexcept;
 // up reference is invalidated

 template<class NoneRef>
 void starting(NoneRef up);
 // up.error(e); - aborts with consumer error
 // up.done(); - cancels
};

template<class TimePoint = std::chrono::system_clock::time_point>
struct TimeFlowSingleDeferred
{
 TimePoint now() noexcept;

 template<class FlowSingle>
 void submit(TimePoint, FlowSingle);
};

V. Acknowledgments
Many people have contributed to the long history of iterative design and application of the
ideas in this paper. Some of those are: Lee Howes, Eric Niebler, David Sankel, Sean Parent, Gor
Nishanov, Erik Meijer, Ben Christensen, Aaron Lahman, Mark Lawrence, Marc Barbour

VI. Appendices

Naming
Picking names that will survive later additions to these Concepts would be worthwhile.
Naming the Concepts differently from the types may also help avoid confusion.

Additional Concepts would support cancellation, time, value sequences, back-pressure, etc..

The following is one approach to naming that is consistent with these additional features

Deferred

The shape of a Future that does not produce a result value. (ala std::future<void>)

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 28/40

struct None
{
 template<class E>
 void error(E&& e) noexcept;

 void done();
};

struct Deferred
{
 template<class None>
 void submit(None);
};

SingleDeferred

The shape of a Future and an Executor

struct Single
{
 template<class T>
 void value(T&& t);

 template<class E>
 void error(E&& e) noexcept;

 void done();
};

struct SingleDeferred
{
 template<class Single>
 void submit(Single);
};

FlowSingleDeferred

The shape of a Future and an Executor with cancellation

struct FlowSingle
{
 template<class T>
 void value(T&& t);

 template<class E>
 void error(E&& e) noexcept;

 void done();

 void stopping() noexcept;
 // up reference is invalidated

 template<class NoneRef>
 void starting(NoneRef up);
 // up.error(e); - aborts with consumer error
 // up.done(); - cancels
};

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 29/40

struct FlowSingleDeferred
{
 template<class FlowSingle>
 void submit(FlowSingle);
};

ManyDeferred

The shape of a set of events w/o cancellation

struct Many
{
 template<class T>
 void value(T&& t);

 template<class E>
 void error(E&& e) noexcept;

 void done() noexcept;
};

struct ManyDeferred
{
 template<class Many>
 void submit(Many);
};

FlowManyDeferred

The shape of a set of events with cancellation and back-pressure

struct FlowMany
{
 template<class T>
 void value(T&& t);

 template<class E>
 void error(E&& e);

 void done() noexcept;

 void stopping() noexcept;
 // up reference is invalidated

 template<class ManyRef>
 void starting(ManyRef up);
 // up.value(rate/count); - controls back-pressure
 // up.error(e); - aborts with consumer error
 // up.done(); - cancels
};

struct FlowManyDeferred
{
 template<class FlowMany>
 void submit(FlowMany);
};

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 30/40

Other naming patterns that have been discussed are:

NoneResult/SingleResult/ManyResult
NoneResult/OneResult/SomeResult
VoidResult/ValueResult/VariedResult

With some substitutions:

Result -> Continuation
Result -> Value
Result -> Promise
None -> Empty
None -> Void
Single -> Value
Single -> One
Many -> Multi
Many -> Some
Many -> Various
Many -> Varied
Deferred -> Future
Deferred -> Task

Future & Promise already have a lot of baggage and actual types in the std. These concepts
can be used to implement those types but are not bound to the same baggage that the types
have - a distinction in naming for the concepts could be helpful.

Time
Time is a construct used to describe the physical world. As such it requires explicit support in
the concepts.

Actually all the previous Deferred concepts can be completely replaced with the following,
since they are strict super-sets and the library will provide submit helpers that pass now() for
the TimePoint and max() for the Duration.

TimeDeferred

The shape of a Future, that does not produce a result value, with time-ordering

template<class TimePoint = std::chrono::system_clock::time_point>
struct TimeDeferred
{
 TimePoint now() noexcept;

 template<class None>
 void submit(TimePoint, None);
};

TimeSingleDeferred

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 31/40

The shape of a Future and an Executor with time-ordering

The TimePoint specifies that the value() method is expected to be called as soon as possible
after that time.
The now() method allows a virtual clock owned by the implementation to control time.

template<class TimePoint = std::chrono::system_clock::time_point>
struct TimeSingleDeferred
{
 TimePoint now() noexcept;

 template<class Single>
 void submit(TimePoint, Single);
};

TimeFlowSingleDeferred

The shape of a Future and an Executor with time-ordering and cancellation

The TimePoint specifies that the value() method is expected to be called as soon as possible
after that time.
The now() method allows a virtual clock owned by the implementation to control time.

template<class TimePoint = std::chrono::system_clock::time_point>
struct TimeFlowSingleDeferred
{
 TimePoint now() noexcept;

 template<class FlowSingle>
 void submit(TimePoint, FlowSingle);
};

TimeManyDeferred

The shape of a Future and an Executor with time-ordering and cancellation

The TimePoint specifies that the value() method is expected to be called as soon as possible
after that time and then again at intervals specified by the Duration.
The now() method allows a virtual clock owned by the implementation to control time.

template<class TimePoint = std::chrono::system_clock::time_point>
struct TimeManyDeferred
{
 TimePoint now() noexcept;

 template<class Duration, class Many>
 void submit(TimePoint, Duration, Many);
};

TimeFlowManyDeferred

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 32/40

The shape of a Future and an Executor with time-ordering and cancellation

The TimePoint specifies that the value() method is expected to be called as soon as possible
after that time and then again at intervals specified by the Duration.
The now() method allows a virtual clock owned by the implementation to control time.

template<class TimePoint = std::chrono::system_clock::time_point>
struct TimeFlowManyDeferred
{
 TimePoint now() noexcept;

 template<class Duration, class FlowMany>
 void submit(TimePoint, Duration, FlowMany);
};

Concepts

Disclaimer:
You don't find the concepts by looking at the types in your system. You find them by
studying the algorithms.

Extension Points:
The concepts below depend on new extension points that would allow each type to extend
how value, error, done, stopping, starting and submit are delivered to that type.

template<class S, class E>
concept None =
 requires (S& s, E&& e) {
 {std::set_error(s, (E&&) e)} noexcept;
 {std::set_done(s)} noexcept;
 };
template<class D, class S, class E>
concept Deferred =
 None<S, E> &&
 requires (D& d, S&& s) {
 std::submit(d, (S&&) s);
 };

template<class S, class T, class E>
concept Single =
 None<S, E> && requires (S& s, T&& t) {
 std::set_value(s, (T&&) t); // Semantics: called exactly once.
 };
template<class D, class S, class T, class E>
concept SingleDeferred =
 Single<S, T, E> && Deferred<D, S, E>;

template<class S, class Up, class T, class SE, class UE = SE>
concept FlowSingle =
 Single<S, T, SE> && None<Up, UE> &&
 requires (S& s, Up& up) {
 {std::stopping(s)} noexcept;
 std::starting(s, up);
 };

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 33/40

template<class D, class S, class Up, class T, class SE, class UE = SE>
concept FlowSingleDeferred =
 FlowSingle<S, Up, T, SE, UE> && Deferred<D, S, SE>;

template<class S, class T, class E>
concept Many =
 Single<S, T, E>; // Semantics: set_value called one or more times.

template<class D, class S, class T, class E>
concept ManyDeferred =
 Many<S, T, E> && Deferred<D, S, E>;

template<class S, class Up, class ST, class SE, class UT = count_t, class UE = SE>
concept FlowMany =
 Many<S, ST, SE> && Many<Up, UT, UE> && FlowSingle<S, Up, ST, SE, UE>;

template<class D, class S, class Up, class ST, class SE, class UT = count_t, class UE = SE>
concept FlowManyDeferred =
 FlowMany<S, Up, ST, SE, UT, UE> && Deferred<D, S, SE>;

Diagrams

Deferred state transitions diagram

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 34/40

up.submit(down)

down.starting(up ref)

down.error(E) down.done()

raw

constructed

subscribing

subscribed

stopped

destructed

SingleDeferred state transitions diagram

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 35/40

up.submit(down)

down.starting(up ref)

down.value(T) down.error(E) down.done()

raw

constructed

subscribing

subscribed

stopped

destructed

FlowSingleDeferred state transitions diagram

up.submit(down)

raw

constructed

subscribing

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 36/40

down.starting(up ref)

down.value(T) down.error(E) down.done()

up.done() up.error(E)

up.done()

down.stopping()

subscribed

producer or consumer

unsubscribing

canceling

stopped

destructed

ManyDeferred state transitions diagram

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 37/40

up.submit(down)

down.starting(up ref)

down.value(T)

down.error(E) down.done()

raw

constructed

subscribing

subscribed

stopped

destructed

FlowManyDeferred state transitions diagram

up.submit(down)

raw

constructed

subscribing

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 38/40

down.starting(up ref)

down.value(T)

down.error(E) down.done()

up.value(rate)

up.error(E) up.done()

up.done()

down.stopping()

subscribed

producer or consumer

unsubscribing

canceling

stopped

destructed

SingleDeferred on(Executor) sequence diagram

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 39/40

producer executor on consumer

submit(promise)

submit(f)

submit(promise)

error()

error()

value(v)

value(v)

done()

done()

alt [result]

[empty]

alt [failure]

[success]

producer executor on consumer

FlowSingleDeferred on(Executor) sequence diagram

5/7/2018 A Modest Executor Proposal

http://localhost:8000/unified/paper.html 40/40

producer.future producer.up on.down on.executor on.future on.up consumer.down consumer

submit(consumer.down)

submit(f)

submit(on.down)

starting(producer.up ref)

starting(on.up ref)

error(e)

error(e)

value(v)

value(v)

done()

done()

alt [value]

[empty]

alt [failure]

[success]

done()

submit(f)

done()

error(e)

submit(f)

error(e)

alt [cancel]

[abort]

alt [producer wins race]

[consumer wins race]

stopping() - producer.up ref expiring

--internal--

stopping() - on.up ref expiring

producer.future producer.up on.down on.executor on.future on.up consumer.down consumer

