
Juan Alday: P1048R0: A proposal for a type trait to detect scoped enumerations

A proposal for a type trait to detect scoped
enumerations

Document Number: P1048R0

Date: 2018-05-01

Reply-to: Juan Alday (alday@ieee.org)

Audience: Library Evolution Working Group

Introduction
This paper proposes is_scoped_enum, a new trait for the C++ Standard Library, to detect
whether a type is a scoped enumeration.

Motivation and Scope
It is useful in certain contexts to know whether an enumeration is scoped or unscoped
and apply (via SFINAE) different behavior depending on the type of such enumeration.

One use the author has recently worked on involves creating a set of unit tests to track
the progress of a legacy library migration to modern C++. By using this trait, it is
possible to define a unit test to track the progress of migration of unscoped to scoped
enumerations.

Impact On The Standard
This proposal is a pure library extension.

It proposes changes to an existing header, <type_traits>, but it does not require changes
to any standard classes or functions and it does not require changes to any of the
standard requirement tables.

This proposal does not require any changes in the core language, and it has been
implemented in standard C++.

mailto:alday@ieee.org

Juan Alday: P1048R0: A proposal for a type trait to detect scoped enumerations

This proposal does not depend on any other library extensions.

Naming
The existing trait to detect an enum type is is_enum, so variations containing
‘enumeration’ are not considered by the author.

is_scoped_enum is the suggested name, although there are many implementations of this
trait using is_enum_class.

Wording
All proposed additions (there are no deletions) are relative to the post-Jacksonville
working draft N4741. Editorial notes are displayed against a gray background

Insert into [meta.type.synop] (23.15.2) as shown:

template<class T>struct is_member_pointer;

template<class T>struct is_scoped_enum;

template<class T>

inline constexpr bool is_member_pointer_v = is_member_pointer<T>::value;

template<class T>

inline constexpr bool is_scoped_enum_v = is_scoped_enum<T>::value;

Insert into table 41

template<class T>struct
is_member_pointer;

T is a pointer-to-member type
(6.7.2)

template<class T>struct
is_scoped_enum;

T is a scoped enumeration
[dcl.enum]

Juan Alday: P1048R0: A proposal for a type trait to detect scoped enumerations

Example implementation
template<class _T, bool = is_enum_v<_T>> struct __is_scoped_enum_helper : false_type {};
template<class _T>struct __is_scoped_enum_helper<_T, true>
 : public bool_constant<!is_convertible_v<_T, underlying_type_t<_T>>> {};
template<class _T>struct is_scoped_enum : public __is_scoped_enum_helper<_T> {};

Acknowledgments
Thanks to Jonathan Wakely for his comments on early versions of this draft

Bibliography
[N4741] Richard Smith: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N4618 (post-Jacksonville mailing), 2018–04–02. http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2018/n4741.pdf

7 Document history
Version Date Changes

0 2018-05-01 Initial draft

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4741.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4741.pdf

	A proposal for a type trait to detect scoped enumerations
	Introduction
	Motivation and Scope
	Impact On The Standard
	Naming
	Wording
	Example implementation
	Acknowledgments
	Bibliography
	7 Document history

