
P1029R0: SG14 [[move_relocates]]

Document #: P1029R0
Date: 2018-05-06
Project: Programming Language C++

Evolution Working Group
Reply-to: Niall Douglas

<s_sourceforge@nedprod.com>

This proposes a new C++ attribute [[move_relocates]] which enables more aggressive optimisa-
tion of move constructions than is possible at present. This paper received the following vote at the
May meeting of SG14: 1/10/2/0/0 (SF/WF/N/WA/SA).

The �rst major motivation behind this proposal is to enable the standard lightweight throwable
error object, as proposed by [P0709] Zero-overhead deterministic exceptions: Throwing values, to
directly encapsulate a std::exception_ptr, rather than trivially copyable handles to slots in global
memory as would be necessary otherwise.

The second major motivation behind this proposal is to broaden the scope of what the compiler's
optimiser can treat as movable without user de�ned side e�ects, which we know from trivially
copyable types can signi�cantly improve the quality and density of codegen in aggregate.

Something similar in e�ect, though not in semantics, to this proposed feature is already in the clang
compiler via the [[clang::trivial_abi]] attribute1.

Contents

1 Introduction 2

1.1 Prior work in this area . 3

2 Impact on the Standard 3

3 Proposed Design 4

3.1 Worked example, and e�ect on codegen . 4
3.1.1 With current compilers, without [[move_relocates]]: 6
3.1.2 With the proposed [[move_relocates]]: . 7
3.1.3 How do you know that the code in the second example is feasibly generatable

by a compiler? . 8
3.2 So what? . 8

4 Design decisions, guidelines and rationale 8

5 Technical speci�cations 9

1https://clang.llvm.org/docs/AttributeReference.html#trivial-abi-clang-trivial-abi

1

mailto:s_sourceforge@nedprod.com
https://clang.llvm.org/docs/AttributeReference.html#trivial-abi-clang-trivial-abi

6 Acknowledgements 9

7 References 9

1 Introduction

The most aggressive optimisations which the C++ compiler can perform are to types which meet
the TriviallyCopyable requirements:

• Every copy constructor is trivial or deleted.

• Every move constructor is trivial or deleted.

• Every copy assignment operator is trivial or deleted.

• Every move assignment operator is trivial or deleted.

• At least one copy constructor, move constructor, copy assignment operator, or move assign-
ment operator is non-deleted.

• Trivial non-deleted destructor.

All the integral types meet TriviallyCopyable, as do C structures. The compiler is thus free to
store such types in CPU registers, relocate them at its convenience in memory as if by memcpy, and
overwrite their storage as no destruction is needed. This greatly simpli�es the job of the compiler
optimiser, making for tighter codegen, faster compile times, and less stack usage, all highly desirable
things.

There are quite a lot of types in the standard library and in user code which do not meet
TriviallyCopyable, yet are completely safe to be relocated arbitrarily, at any time and for any
reason, in memory as if by memcpy. For example, a std::vector<T> with default allocator likely
has a similar implementation to:

1 template<class T> class vector
2 {
3 T *_begin{nullptr}, *_end{nullptr}, *_capacity{nullptr};
4 public:
5 vector() = default;
6 vector(vector &&o) : _begin(o._begin), _end(o._end), _capacity(o._capacity) { o._begin = o._end = o.

_capacity = nullptr; }
7 ~vector() { delete _begin; _begin = _end = _capacity = nullptr; }
8 ...
9 };

Such a vector implementation could be arbitrarily relocated in memory with no ill e�ect via the
following as-if sequence:

1 vector<T> *dest, *src;
2

3 // Copy bytes of src to dest
4 memcpy(dest, src, sizeof(vector<T>));
5

2

6 // Copy bytes of default constructed instance to src
7 vector<T> default_constructed;
8 memcpy(src, &default_constructed, sizeof(vector<T>));

This paper proposes a new C++ attribute [[move_relocates]] which guarantees to the compiler
that the move constructor of a type with non-trivial destructor can be substituted with two as-if
memcpy()'s, one from old storage to new, one from a default constructed instance to old. As we
shall see in a worked example later, this enables the optimiser to produce higher quality and more
densely packed optimised assembler.

1.1 Prior work in this area

This paper does NOT propose destructive moves. Object lifetimes are unchanged.

• [N4034] Destructive Move

This proposal di�ers from destructive moves in the following ways:

� This simple, single purpose, language-only proposal only a�ects the strength of the guar-
antees provided by the move constructor. It does not change what move construction
means. It does not change object lifetimes.

• [P0023] Relocator: E�ciently moving objects.

This proposal di�ers from relocators in the following ways:

� We do not propose any new kind of operation, nor new operators. We merely propose
an attribute which strengthens the guarantees given to the compiler for the operation of
move construction.

There is also the [[clang::trivial_abi]] attribute in the clang compiler which overrides the non-
trivial treatment of a type for the purposes of moves and copies. This proposed feature a�ects move
constructions only, but has a very similar positive e�ect on code generation.

2 Impact on the Standard

Very limited. This is a limited, attribute opt-in, optimisation of the implementation of move con-
struction only where the attribute says that the compiler can make some stronger assumptions
during optimisation than it can ordinarily. It can be safely ignored by a compiler, with no ill e�ect.
We do not �ddle with allocators, the meaning nor semantics of moves, object lifetimes, destructors,
library code, nor anything else.

All we propose is that where the programmer has indicated that it is safe to do so, the compiler
can arbitrarily substitute the calling of the move constructor with the �xed operation of memcpy()
(which can be elided by the compiler if it has no visible side e�ects, same as with all memcpy()).
That in turn enables temporary storage in CPU registers and increased elision of emitted code, if
the compiler chooses to do so.

3

3 Proposed Design

1. That a new C++ attribute [[move_relocates]] become applicable to move constructors.
The programmer applies this attribute if they wish to guarantee to the compiler the move
constructor implementation has stronger guarantees than usual.

2. This attribute shall be silently ignored2 if:

• Not all base classes are either trivially copyable or have [[move_relocates]] move con-
structors.

• If there is a virtual inheritance anywhere in the inheritance tree.

• Not all member data types are either trivially copyable or have [[move_relocates]]

move constructors.

• The type does not have a public, non-deleted, constexpr, in-class de�ned default con-
structor.

• The type does not have a public, non-deleted, move constructor.

• The type does not have a public, non-virtual, non-deleted, destructor.

3. If a type T's move constructor has non-ignored attribute [[move_relocates]], the compiler
will substitute the de�ned move constructor with an as-if memcpy(dest, src, sizeof(T)),
followed by as-if memcpy(src, &T{}, sizeof(T)). Note that by `as-if', we mean that the
compiler can fully optimise the sequence, including the elision of calling the destructor if the
destructor would do nothing when supplied with a default constructed instance, which in turn
would elide entirely the second memory copy.

4. It is considered good practice that the move constructor be implemented to cause the exact
same e�ects as [[move_relocates]] i.e. setting the source to destination, followed by setting
the source to a default constructed instance.

5. If a type T has non-ignored attribute [[move_relocates]], the trait
std::is_move_construction_relocating<T> shall be true.

3.1 Worked example, and e�ect on codegen

Let us take a worked example. Imagine the following partial implementation of unique_ptr:

1 template<class T>
2 class unique_ptr
3 {
4 T *_v{nullptr};
5 public:
6 // Has public, non-deleted, constexpr default constructor
7 unique_ptr() = default;
8

2Developers who care strongly that it is not ignored for some type they have written can manually issue a static

assert using the trait.

4

9 constexpr explicit unique_ptr(T *v) : _v(v) {}
10

11 unique_ptr(const unique_ptr &) = delete;
12 unique_ptr &operator=(const unique_ptr &) = delete;
13

14 constexpr [[move_relocates]] unique_ptr(unique_ptr &&o) noexcept: _v(o._v)
15 {
16 o._v = nullptr;
17 }
18 unique_ptr &operator=(unique_ptr &&o) noexcept
19 {
20 delete _v;
21 _v = o._v;
22 o._v = nullptr;
23 return *this;
24 }
25 ~unique_ptr()
26 {
27 delete _v;
28 _v = nullptr;
29 }
30

31 T &operator*() noexcept { return *_v; }
32 };

The default constructor is not deleted, constexpr and public and it sets the single, trivially copyable,
member data _v to nullptr. Additionally, the move constructor is not deleted and public, as is the
destructor, so [[move_relocates]] is not ignored.

The destructor, when called on a default constructed instance, will be reduced by the optimiser to
trivial (operator delete does nothing when fed a null pointer, and setting a null pointer to a null
pointer leaves the object with exactly the same memory representation as a default constructed
instance).

We shall compile this small program and see how it looks before and after the attribute has been
applied:

1 extern unique_ptr<int> __attribute__((noinline)) boo()
2 {
3 return unique_ptr<int>(new int);
4 }
5

6 extern unique_ptr<int> __attribute__((noinline)) foo()
7 {
8 auto a = boo();
9 *a += *boo();

10 return a;
11 }
12

13 int main()
14 {
15 auto a = foo();
16 return 0;
17 }

5

3.1.1 With current compilers, without [[move_relocates]]:

On current C++ compilers3, the program will generate the following x64 assembler:

1 boo():
2 push rbx
3 mov rbx, rdi
4 mov edi, 4
5 call operator new(unsigned long)
6 mov QWORD PTR [rbx], rax
7 mov rax, rbx
8 pop rbx
9 ret

As unique ptr is not a trivially copyable type, the compiler is forced to use stack storage to return
the unique ptr. The caller passes in where it wants the return stored in rdi, which is saved into rbx.
It allocates four bytes (edi) for the int using operator new, and places the pointer to the allocated
memory into the eight bytes pointed to by rbx. It returns the pointer to the pointer to the allocated
int via rax.

1 foo():
2 push rbp
3 push rbx
4 mov rbx, rdi
5 sub rsp, 24
6 call boo()
7 lea rdi, [rsp+8]
8 call boo()
9 mov rdi, QWORD PTR [rsp+8]

10 mov rax, QWORD PTR [rbx]
11 mov esi, 4
12 mov edx, DWORD PTR [rdi]
13 add DWORD PTR [rax], edx
14 call operator delete(void*, unsigned long)
15 add rsp, 24
16 mov rax, rbx
17 pop rbx
18 pop rbp
19 ret
20 mov rbp, rax
21 jmp .L5
22 foo() [clone .cold.1]:
23 .L5:
24 mov rdi, QWORD PTR [rbx]
25 mov esi, 4
26 call operator delete(void*, unsigned long)
27 mov rdi, rbp
28 call _Unwind_Resume

We �rstly allocate 24 bytes on the stack frame (rsp) for the two unique ptrs, calling boo() twice
to �ll each in. We load the two pointers to the two int's from the two unique ptrs (rdi, rax),
dereference that into the allocated int for one (edx) and add it directly to the memory pointed to
by rax. We call operator delete on the added-from unique ptr, returning the added-to unique ptr.

3GCC 8 trunk as of a few days ago with -O2 on.

6

1 main:
2 sub rsp, 24
3 lea rdi, [rsp+8]
4 call foo()
5 mov rdi, QWORD PTR [rsp+8]
6 mov esi, 4
7 call operator delete(void*, unsigned long)
8 xor eax, eax
9 add rsp, 24

10 ret

After reserving space for the returned unique ptr �lled in by calling foo(), main() loads the pointer
to the allocated memory returned by foo(), and calls operator delete on it. This is unique ptr's
destructor correctly �ring on destruction of the unique ptr.

3.1.2 With the proposed [[move_relocates]]:

Now let us look at the x64 assembler which would be generated instead if this proposal were in
place:

1 boo():
2 mov edi, 4
3 jmp operator new(unsigned long) # TAILCALL

The compiler now knows that unique ptrs can be stored in registers because moves relocate. Knowing
this, it optimises out entirely the use of stack to transfer instances of unique ptrs, and thus simply
returns in rax a naked pointer to a four byte allocation for the int. In other words, the unique_ptr
implementation is entirely eliminated, just its data member an int* remains!

1 foo():
2 push rbx
3 call boo()
4 mov rbx, rax
5 call boo()
6 mov esi, 4
7 mov edx, DWORD PTR [rax]
8 add DWORD PTR [rbx], edx
9 mov rdi, rax

10 call operator delete(void*, unsigned long)
11 mov rax, rbx
12 pop rbx
13 ret

foo() has become rather simpler, too. boo() returns the allocated int directly in rax, so now the
compiler can simply dereference one of them once, add it to the memory pointed to by the other.
No more double dereferencing!

The �rst unique ptr is destructed, and we return the second unique ptr in rax.

1 main:
2 call foo()
3 mov esi, 4
4 mov rdi, rax

7

5 call operator delete(void*, unsigned long)
6 xor eax, eax
7 ret

main() has become almost trivially simple. We call foo(), and delete the pointer it returns before
returning zero from main().

3.1.3 How do you know that the code in the second example is feasibly generatable

by a compiler?

The second example is not hand written. I actually created two unique ptr implementations,
one trivially copyable and one the above, and used forced casting to introduce trivially copyable
semantics at the correct points. The code you see above was actually generated by a mixture of
clang trunk and GCC trunk, using those forced type castings to mimic the proposed semantics.

Upon reviewing this paper, Richard Smith suggested that applying the [[clang::trivial_abi]]

attribute might result in similar elision of unique_ptr. This was tested and found to be true.

3.2 So what?

Those of you who are used to counting assembler opcode latency will immediately see that the
second edition is many times faster than the �rst edition because it depends on memory much less.
Even though reads and writes to the stack are probably L1 cache fast, any read or write to memory
is far slower than CPU registers, typically a maximum of one operation per cycle with a latency of
as much as three cycles. CPU registers typically can issue four operations per cycle, with between
a zero and one cycle latency. If you add up the CPU cycles in the two examples above, excluding
operators new and delete, you will �nd the second example is several times faster with a fully
warmed L1 cache.

What is hard to describe to the uninitiated is how well this microoptimisation aggregates over a
whole program. If you make all the types in your program trivially copyable, you will see across
the board performance improvements with especial gain in performance consistency.

This is why SG14, the low latency study group, would really like for WG21 to standardise relocation
so a greater range of types can be brought under maximum optimisation, including [P0709] Zero-
overhead deterministic exceptions: Throwing values and [P1031] Low level �le i/o library, both of
which would make great use of move relocates.

4 Design decisions, guidelines and rationale

Previous work in this area has tended towards the complex. This proposal proposes the barest of
essentials for a limited subset of address relocatable types in the hope that the committee will be
able to get this passed.

8

5 Technical speci�cations

No Technical Speci�cations are involved in this proposal.

6 Acknowledgements

Thanks to Richard Smith for his extensive thoughts on the feasibility, and best formulation, of this
proposal.

Thanks to Arthur O'Dwyer for his feedback from his alternative relocatable proposal.

Thanks to Nicol Bolas for quite extensive feedback and commentary, and to Alberto Barbati for
feedback helping me reduce the size of the proposal still further.

7 References

[N4034] Pablo Halpern,
Destructive Move
https://wg21.link/N4034

[P0023] Denis Bider,
Relocator: E�ciently moving objects
https://wg21.link/P0023

[P0709] Herb Sutter,
Zero-overhead deterministic exceptions: Throwing values
https://wg21.link/P0709

[P0784] Dionne, Smith, Ranns and Vandevoorde,
Standard containers and constexpr
https://wg21.link/P0784

[P1028] Douglas, Niall
SG14 status_code and standard error object for P0709 Zero-overhead deterministic exceptions
https://wg21.link/P1028

[P1031] Douglas, Niall
Low level �le i/o library
https://wg21.link/P1031

9

https://wg21.link/N4034
https://wg21.link/P0023
https://wg21.link/P0709
https://wg21.link/P0784
https://wg21.link/P1028
https://wg21.link/P1031

	Introduction
	Prior work in this area

	Impact on the Standard
	Proposed Design
	Worked example, and effect on codegen
	With current compilers, without [[move_relocates]]:
	With the proposed [[move_relocates]]:
	How do you know that the code in the second example is feasibly generatable by a compiler?

	So what?

	Design decisions, guidelines and rationale
	Technical specifications
	Acknowledgements
	References

