Usability Enhancements for std: : span

Tristan Brindle (tcbrindle@gmail.com)

Document Number: P1024r0

Date: 2018-05-06
Project: Programming Language C++
Audience: Library Evolution Working Group

1 Introduction

The class template span<ElementType, Extent> was recently added to the working draft of the
C++ International Standard [N4741]. A span is a lightweight object providing a “view” of an
underlying contiguous array, which does not own the elements it points to. It is intended as a new
“vocabulary type” for contiguous ranges, replacing the use of (pointer, length) pairs and, in
some cases, vector<T, A>& function parameters.

This paper identifies several opportunities to enhance the usability of span by improving consistency
with existing container interfaces and removing potential points of confusion for users.

An implementation of span including the changes detailed in this paper is available at [Github].

1.1 Terminology

For the purposes of this paper, a fized-size span is a span whose Extent is greater than or equal to
zero. A dynamically-sized span is a span whose Extent is equal to std: :dynamic_extent.

2 Proposals

2.1 Add front() and back() member functions

To improve consistency with standard library containers, we propose adding front () and back()
member functions with their usual meanings (that is, returning references to the first and last
elements respectively). The effect of calling these functions on an empty span is undefined.

2.2 Add at() member function

The span proposal paper [P0122R7] makes it clear that implementations are encouraged to add
bounds-checking to span’s interfaces, and indeed the reference implementation in the Microsoft
GSL [GSL] does exactly this. However, bounds-checking is not required by the wording, and it
seems highly likely that for effiency reasons such checks (if present) will be disabled in optimised
builds in eventual standard library implementations.

In common with other containers then, we propose to add an at () member function with guaranteed
bounds checking on all implementations even in optimised builds, throwing std: :out_of_range if
the supplied argument is invalid.

mailto:tcbrindle@gmail.com

2.3 Mark empty() as [[nodiscard]]

The empty () member functions of standard library containers are decorated with the [[nodiscard]]
attribute, to make it clearer to users that this function is an observer and does not modify the
container state [PO600R1]. For consistency, this paper adds the attribute to span: :empty () as well.

2.4 Add non-member subview operations

The current wording for span defines the subview operations (namely first(), last() and
subspan()) as member functions. Unfortunately, this introduces a major usability issue. As
member templates of a class template, the fixed-size overloads of these functions require the use of
the highly unusual “dot template” syntax in cases where the span itself is a dependent type. For
example:

template <typename T>

std: :span<T, 3> first_three(std::span<T> s)

{
return s.template first<3>(Q); // Urgh!

}

Without the keyword template here, compilers are required to parse the return expression as an
attempted use of less-than, leading to extremely unhelpful error messages in current implementations.

As a vocabulary type, span will be used by programmers with varying levels of C+4 knowledge,
including beginners. It is our experience that the “dot template” syntax is unfamiliar to all but
experts. We hesitate to think of the questions that would be generated on Stack Overflow and
elsewhere if this syntax were required. For this reason, we propose adding non-member versions of
first(), last() and subspan(), which avoids the need for the template keyword.

(We note that std: :get<N>() for tuple and variant, which conceptually behaves like a member
of those classes, is defined as a non-member, likely for exactly this reason.)

A pleasant side-effect of adding non-member versions of these operations is that is becomes possible
to create subviews of contiguous containers directly, without first having to construct an intermediate
span over the whole container. For example:

std: :vector vec{l, 2, 3, 4, 5};

auto ugly = std::span{vec}.first<3>(); // Current syntax
auto nicer = std::first<3>(vec); // This proposal

We have not proposed the removal of the member subview operations in this paper; indeed the
wording below forwards the non-member calls to the member versions, using decltype returns for
SFINAE and to avoid restating the complex subspan<0ffset, Count>() return type. We do note
however that the member versions are specified only to call public span constructors, and so in
principle the non-member versions could be made “standalone” and the member versions removed
if LEWG prefers avoiding the duplication.

2.5 Remove operator ()

The current wording for span includes an overload of the function call operator, duplicating the be-
haviour of operator[]. We assume that this is a holdover from span’s genesis as a multidimensional
array_view.

Providing this operator for member access is inconsistent with other container types and with
built-in language arrays. Furthermore, it provides the mistaken impression that it is possible to
“invoke” a span. We therefore propose its removal.

2.6 Structured bindings support for fixed-size spans

Built-in arrays and std::arrays may be used with structured bindings, via core language and
library support respectively. To allow function arguments of type T (&) [N] to be replaced by the
more appealing span<T, N> with equal functionality, we propose adding support for structured
bindings for fixed-size spans. Specifically, we propose a new overload of std::get<N>(), and
specialisations of tuple_element and tuple_size for span.

Dynamically-sized spans cannot be decomposed. To prevent this, this proposal declares, but does
not define, a partial specialization of tuple_size for dynamically-sized spans:

template <class ElementType>
struct tuple_size<span<ElementType, dynamic_extent>>; // not defined

Under the wording for structured bindings ([dcl.struct.bind]/3), making this specialization an
incomplete type prevents the language from attempting decomposition via library types.

3 Proposed wording

Changes are relative to [N4741].

In section 26.7.2 [span.syn|, add

// 26.7.X Non-member subview operations
template<ptrdiff_t Count, class Cont>
constexpr auto first(Cont& cont)
-> decltype(span{cont}.template first<Count>());
template<ptrdiff_t Count, class Cont>
constexpr auto last(Cont& cont)
-> decltype(span{cont}.template last<Count>());
template<ptrdiff_t Offset, ptrdiff_t Count = dynamic_extent, class Cont>
constexpr auto subspan(Cont cont)
-> decltype(span{cont}.template subspan<Offset, Count>());

template<class Cont>
constexpr auto first(Cont& cont, ptrdiff_t count)
-> decltype(span{cont}.first(count)) ;
template<class Cont>
constexpr auto last(Cont& cont, ptrdiff_t count)
-> decltype(span{cont}.last(count));
template<class Cont>
constexpr auto subspan(Cont& cont, ptrdiff_t offset,
ptrdiff_t count = dynamic_extent)
-> decltype(span{cont}.subspan(offset, count));

// 26.7.X Tuple interface
template<class T> class tuple_size;
template<size_t I, class T> class tuple_element;

template<class ElementType, ptrdiff_t Extent>

struct tuple_size<span<ElementType, Extent>>;
template <class ElementType>

struct tuple_size<span<ElementType, dynamic_extent>>;

template<size_t I, class ElementType, ptrdiff_t Extent>
struct tuple_element<I, span<ElementType, Extent>>;

template<size_t I, class ElementType, ptrdiff_t Extent>
constexpr ElementType& get(span<ElementType, Extent>) noexcept;

In section 26.7.3.1 [span.overview|, change
// 26.7.3.4, observers

constexpr index_type size() const noexcept;
constexpr index_type size_bytes() const noexcept;
[[nodiscard]] constexpr bool empty() const noexcept;

// 26.7.3.5, element access

constexpr reference operator[] (index_type idx) const;
constexpr—reference—operatorO-(index—type—idx)—econsts
constexpr reference at(index_type idx) const;
constexpr reference front() const;

constexpr reference back() const;

constexpr pointer data() const noexcept;

In section 26.7.3.5 [span.elem], change

[[nodiscard]] constexpr bool empty() const noexcept;

Effects: Equivalent to: return size() == 0;

constexpr reference operator[] (index_type idx) const;

constexprreference—operatorO-{index—type—idx)—consts;
Requires: 0 <= idx && idx < size().

Effects: Equivalent to: return *(data() + idx);

constexpr reference at(index_type idx) const;
Returns: *(data() + idx);

Throws: out_of_range if idx < 0 || idx >= size()

constexpr reference front() const
Requires: empty() == false

Effects: Equivalent to return *data();

constexpr reference back() const
Requires: empty() == false
Effects: Equivalent to return *(data() + (size() - 1));

Add a new subsection [span.sub.nonmember]:

template<ptrdiff_t Count, class Cont>
constexpr auto first(Cont& cont)
-> decltype(span{cont}.template first<Count>());

Remarks: This function shall participate in overload resolution only if span{cont} is
well-formed

Requires: 0 <= Count && Count <= span{cont}.size()

Effects: Equivalent to return span{cont}.template first<Count>() ;

template<ptrdiff_t Count, class Cont>
constexpr auto last(Cont& cont)
-> decltype(span{cont}.template last<Count>());

Remarks: This function shall participate in overload resolution only if span{cont} is
well-formed

Requires: 0 <= Count && Count <= span{cont}.size()

Effects: Equivalent to return span{cont}.template last<Count>();

template<ptrdiff_t Offset, ptrdiff_t Count = dynamic_extent, class Cont>
constexpr auto subspan(Cont cont)
-> decltype(span{cont}.template subspan<Offset, Count>());

Remarks: This function shall participate in overload resolution only if span{cont} is
well-formed

Requires:

(0 <= Offset && Offset <= span{contl}.size())
&% (Count == dynamic_extent || Count >= 0 && Offset + Count <= span{contl}.size())

Effects: Equivalent to return span{cont}.template subspan<Offset, Count>();

template<class Cont>
constexpr auto first(Cont& cont, ptrdiff_t count)
-> decltype(span{cont}.first(count));

Remarks: This function shall participate in overload resolution only if span{cont} is
well-formed

Requires: 0 <= count && count <= span{cont}.size()

Effects: Equivalent to return span{cont}.first(count);

template<class Cont>
constexpr auto last(Cont& cont, ptrdiff_t count)
-> decltype(span{cont}.last(count));

Remarks: This function shall participate in overload resolution only if span{cont} is
well-formed

Requires: 0 <= count && count <= span{cont}.size()

Effects: Equivalent to return span{cont}.last(count);

template<class Cont>
constexpr auto subspan(Cont cont, ptrdiff_t offset,
ptrdiff_t count = dynamic_extent)
-> decltype(span{cont}.subspan(offset, count));

Remarks: This function shall participate in overload resolution only if span{cont} is
well-formed

Requires:

(0 <= offset && offset <= span{cont}.size())
&& (count == dynamic_extent || count >= 0 && offset + count <= span{cont}.size())

Effects: Equivalent to return span{cont}.subspan(offset, count);

Add a new subsection [span.tuple]:

template <class ElementType, ptrdiff_t Extent>
struct tuple_size<span<ElementType, Extent>> : integral_constant<ptrdiff_t, Extent> { };

template <class ElementType>
struct tuple_size<span<ElementType, dynamic_extent>>; // not defined

tuple_element<I, span<ElementType, Extent>>::type

Requires: Extent != dynamic_extent && I < static_cast<size_t>(Extent). The
program is ill-formed if I is out of bounds.

Value: The type ElementType.

template <class ElementType, ptrdiff_t Extent>
constexpr ElementType& get(span<ElementType, Extent> s) noexcept;

Requires: Extent != dynamic_extent && I < static_cast<size_t>(Extent). The
program is ill-formed if I is out of bounds.

Returns: A reference to the I element of s, where indexing is zero-based.

Throws: Nothing

References

[GSL] Microsoft Corporation. Guidelines Support Library. https://github.com/Microsoft/GSL,
2018.

[Github] Tristan Brindle. Implementation of C++20 std::span. https://github.com/
tcbrindle/span, 2018.

[N4741] Richard Smith. Working Draft, Standard for Programming Language C++. http://www.
open-std.org/jtcl/sc22/wg21/docs/papers/2018/n4741.pdf, 2018 (accessed 2018-04-
20).

[PO122R7] Neil MaclIntosh and Stephan T. Lavavej. span: bounds-safe views for sequences of
objects. http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2018/p0122r7.pdf,
2018.

[PO600R1] Nicolai Josuttis. [[nodiscard]] in the library, revl. http://www.open-std.org/jtcl/
sc22/wg21/docs/papers/2017/p0600rl.pdf, 2017.

https://github.com/Microsoft/GSL
https://github.com/tcbrindle/span
https://github.com/tcbrindle/span
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4741.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4741.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0122r7.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0600r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0600r1.pdf

	1 Introduction
	2 Proposals
	3 Proposed wording
	References

