
Stroustrup Remember the Vasa! P0977r0 

1 
 

Doc. no.: P0977r0  
Date: 2018-03-6  

Programming Language C++ 
Audience: All 

Reply to: Bjarne Stroustrup (bs@ms.com) 

 

Remember the Vasa! 
Bjarne Stroustrup 

 

Many/most people in WG21 are working independently towards non-shared goals. Individually, 
many (most?) proposals make sense. Together they are insanity to the point of endangering the 
future of C++.  
 
Here is a selection of papers from the pre-Jacksonville mailing. I list papers that I think has the 
potential for significantly change the way we write code, so that each has significant 
implications on teaching, maintenance, and coding guidelines. Many also have implications for 
implementations: 
 

1. *Gabriel Dos Reis: Modules TS  
2. Herb Sutter: Concepts in-place syntax  
3. H. Carter Edwards:  Polymorphic Multidimensional Array Reference  
4. H. Carter Edwards: Relaxed Incomplete Multidimensional Array Type Declaration  
5. H. Carter Edwards: Span - foundation for the future  
6. David S. Hollman: An Ontology for Properties of mdspan  
7. *Neil MacIntosh: span: bounds-safe views for sequences of objects  
8. Vicente J. Botet Escribá: C++ generic overload function (Revision 3)  
9. Matúš Chochlík: Static reflection  
10. Matúš Chochlík: Static reflection of functions  
11. Jonathan Coe: A polymorphic value-type for C++  
12. Matthias Kretz: Data-Parallel Vector Types & Operations  
13. Vicente Botet: std::expected 
14. Tom Honermann : char8_t: A type for UTF-8 characters and strings (Revision 1)   
15. *J. D. Garcia: Support for contract based programming in C++  
16. Victor Zverovich: Text Formatting  
17. Vicente J. Botet Escribá: C++ Monadic interface  
18. Axel Naumann: Parametric Functions  
19. Bryce Adelstein Lelbach: I Back to the std2::future Part I  
20.  Herb Sutter : Metaclasses: Generative C++  

mailto:bs@ms.com
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4720.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0745r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0009r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0332r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0546r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0900r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0122r6.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0051r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0194r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0670r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0201r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0214r8.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0323r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0482r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0542r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0645r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0650r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0671r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0701r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0707r3.pdf


Stroustrup Remember the Vasa! P0977r0 

2 
 

21. Jeff Snyder: Class Types in Non-Type Template Parameters  
22. Vicente J. Botet Escribá: ValuedOrError and ValueOrNone types  
23. John McFarlane: Elastic Integers  
24. Gašper Ažman: Deducing this  
25. Corentin jabot: A plea for a consistent, terse and intuitive declaration syntax 
26. Bruno Cardoso Lopes: A proposal for modular macros  
27. Barry Revzin: Chaining Comparisons  
28. Lee Howes: A strawman Future API  
29. Tomasz Kamiński : Symmetry for spaceship  
30. *Gor Nishanov:  merging Coroutines TS [N4723] into the C++20 working draft  
31. Vittorio Romeo: Concept-constrained auto  
32. Titus Winters: LEWG wishlist for EWG  
33. Nathan Sidwell: Modules:Dependent ADL 
34. Nathan Sidwell: Modules:Unqualified Using Declarations  
35. James Dennett: Towards A (Lazy) Forwarding Mechanism for C++  
36. *Herb Sutter:  A Modest Proposal: Fixing ADL  
37. Richard Smith: Towards consistency between <=> and other comparison operators   
38. Richard Smith: Another take on Modules  
39. Peter Dimov: Adding support for type-based metaprogramming to the standard library  
40. Matúš Chochlík: constexpr reflexpr  
41. Mingxin Wang: PFA: A Generic, Extendable and Efficient Solution for Polymorphic Programming  
42. Ville Voutilainen: Allow initializing aggregates from a parenthesized list of values   
43. Richard Smith: P0936R0 Bind Returned/Initialized Objects to Lifetime of Parameters  

  
To avoid this list looking longer and even scarier, I have listed only first authors. 
 
For truth in advertising, I have marked proposals I support with *. I may support parts of other 
proposals here, but not all or exactly as written. There are also proposals that I’m working on 
not present here, such as operator dot, uniform function call, and stack_array, see Thoughts 
about C++17. Since I’m not bringing those forward in Jacksonville, they don’t (yet) belong on 
this list. 
 
Apologies if I forgot a paper with major implications or if I listed one without a potential 
significant impact. This list contains less than half of the proposals for extensions, changes, and 
improvements currently being discussed. They are merely the most prominent. Proposals 
related to concurrency are underrepresented. 
 
Hardly any paper contains extensive discussions of the proposed feature’s effect in combination 
with other new features, existing features, and libraries in “ordinary code” written by “ordinary 
programmers.” Few present details of experience of use or teaching. Hardly any contain a 
serious discussion of objections raised. Every proposal is subject to the law of unexpected 
consequences: There will be unexpected consequences. 
 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0732r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0786r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0828r0.md
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0847r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0873r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0877r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0893r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0904r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0905r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0912r0.md
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0915r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0922r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0923r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0925r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0927r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0934r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0946r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0947r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0949r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0953r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0957r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0960r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0936r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4492.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4492.pdf


Stroustrup Remember the Vasa! P0977r0 

3 
 

We are on a path to disaster though enthusiasm and design-by-committee (or rather “design-by-
committees”). During the early days of WG21 the story of the Vasa was popular as warning against 
overelaboration (from 1992): 

Please also understand that there are dozens of reasonable 
extensions and changes being proposed. If every extension that is 
reasonably well-defined, clean and general, and would make life 
easier for a couple of hundred or couple of thousand C++ programmers 
were accepted, the language would more than double in size. We do 
not think this would be an advantage to the C++ community.  

 
We often remind ourselves of the good ship Vasa. It was to be the 
pride of the Swedish navy and was built to be the biggest and most 
beautiful battleship ever. Unfortunately, to accommodate enough 
statues and guns it underwent major redesigns and extension during 
construction. The result was that it only made it half way across 
Stockholm harbor before a gust of wind blew it over and it sank 
killing about 50 people. It has been raised and you can now see it 
in a museum in Stockholm. It is a beauty to behold - far more 
beautiful at the time than its unextended first design and far more 
beautiful today than if it had suffered the usual fate of a 17th 
century battle ship -- but that is no consolation to its designer, 
builders, and intended users. 

Remember the Vasa!  
 
There are people who concluded from the Vasa story that all incremental improvement is a bad 
strategy. However, if the Vasa had been sent to sea as originally designed, it could not have served its 
purpose. Being under-gunned, someone would have sent it to the bottom full of holes. Being somewhat 
ordinary, it would have failed in its representative (image) role. Recent research has shown that a 
relatively modest increase of the Vasa’s length and breadth (claimed technically feasible) would have 
made it stable, so my reading of the Vasa story is: Work hard on a solid foundation, learn from 
experience, and don’t scrimp on the testing. 

The foundation begun in C++11 is not yet complete, and C++17 did little to make our 
foundation more solid, regular, and complete. Instead, it added significant surface complexity 
and increased the number of features people need to learn. C++ could crumble under the 
weight of these – mostly not quite fully-baked – proposals. We should not spend most our time 
creating increasingly complicated facilities for experts, such as ourselves. 
 
We need a reasonably coherent language that can be used by “ordinary programmers” whose 
main concern is to ship great applications on time. We now have about 150 cooks; that’s not a 
good way to get a tasty and balanced meal. 
 
We are on the path to something that could destroy C++. We must get off that path! 

http://www.stroustrup.com/how-to-write-a-proposal.pdf
https://en.wikipedia.org/wiki/Vasa_(ship)


Stroustrup Remember the Vasa! P0977r0 

4 
 

 
See (not a feature proposals):  
 

• Ville Voutilainen: To boldly suggest an overall plan for C++20  
• B. Dawes, H. Hinnant, B. Stroustrup, D. Vandevoorde, M. Wong:    Direction for ISO C++  

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0592r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0939r0.pdf

	Remember the Vasa!
	Bjarne Stroustrup


