Stroustrup Paradigms P0976r0

Doc. no.: P0976r0

Date: 2018-03-6

Programming Language C++

Audience: All

Reply to: Bjarne Stroustrup (bs@ms.com)

The Evils of Paradigms
Or
Beware of one-solution-fits-all thinking

Bjarne Stroustrup

There is a notion (popularized by the American philosopher and historian Thomas Kuhn) of progress
happening through “paradigm shifts” where an old (supposedly bad) way of doing or understanding
something (a “paradigm”) is replaced by a new (supposedly good) paradigm. Popular examples are the
shift from Newtonian physics to Einstein’s universe and the shift from geocentric view of the universe to
the heliocentric. In programming, some people deem imperative, object-oriented, and functional
programming different paradigms. | think the very notion of a paradigm does harm to use and to design
because people all too easily fall into the trap of considering only one paradigm “good” and then try to
fit everything into it, discarding all aspects of alternative “paradigms” as wrong or inferior (aka “If your
only tool is a hammer, everything looks like a nail”).

| reject that notion, as did Kristen Nygaard, who invented object-oriented programming. Instead, | see
progress on a large scale as necessarily evolutionary, rather than revolutionary, progressing by older
concepts, techniques, and tools being gradually absorbed into a more general framework. Consider:

e For a century after Copernicus, calculations of planet orbits were best done using the old
geocentric model (cycles and epicycles!) because the heliocentric model had not reached the
maturity needed to accurately model the sky. Even when a new way of looking at things is
fundamentally better, it may not yet be sufficiently mature to be useful for practical tasks.

e Einstein’s model of the universe is different from Newton’s, and in important cases far more
accurate. However, we spend almost all of our time in Newton’s universe: Relativity is useful
only for relatively esoteric topics, such as GPS implementation, HEP, and astronomy. To go
shopping or to fly to Jacksonville from anywhere on earth, Newton’s view is sufficiently accurate
and much easier for us to deal with. Even when a new way of looking at things is fundamentally
better, it may actually be inferior for simple, everyday tasks.

What does this have to do with C++? C++ is built on the idea of incremental growth and the gradual
replacement of older facilities with newer ones where appropriate. Examples:

mailto:bs@ms.com

Stroustrup Paradigms P0976r0

e Aclass is a generalization of a struct offering the opportunity for member functions and
encapsulation. There were no attempts to ban structs or to make every function a member
function. There was no attempt to force all access to data to go through getters and setters.
There was no attempt to guarantee complete independence of the type as presented to the
user (the interface) from the representation type (the implementation). This was crucial for
C++'s success. It allowed the efficiency and compactness necessary for systems programming. It
allowed gradual adoption. It is still a major source of C++’s strength, as well as the root of some
of its problems.

e Aclass is just a class until you start adding virtual functions and derived classes. There was no
attempt to force everybody to fit every class into a hierarchy or to make every function a virtual
member function. This may seem obvious today (as it did to me then), but the clamor for 0O
purity was dominant. The zero-overhead principle saved me (see D&E).

e Arrays (and especially the rules for array-to-pointer decay) is the root of much evil, but banning
arrays was and is infeasible. We need arrays as the way of modeling the hardware notion of
memory and for compatibility with billions of lines of code. The strategy adopted was to make
arrays and pointers redundant in most code. We now have std::vector and std::array. Soon, |
hope, we will have std::span (similar to what Dennis Ritchie wanted under the name “fat
pointers”). In this direction, we also need std::stack_array to cover some important use cases. |
don’t know of any single abstraction that could completely replace built-in arrays for all uses. A
general multidimensional array type with complete flexibility isn’t all that hard to build —and
“we” have known how to do so for about 50 years — but the cost of such generality was and is
too high for C++.

e |intensely dislike macros, but macros are deeply ingrained in the C and C++ eco systems. Among
other uses, they act as a plaster over language weaknesses. They allow us to fall back to token
manipulation. That’s what makes them poison to tool builders and consequently the root cause
of the C++ community’s serious weakness when it comes to tools. | didn’t see a single facility for
totally replacing macros while still remaining sufficiently flexible and efficient. Instead, | started
an effort to gradually replace uses of macros with used of better-behaved features, such as
consts, inline functions, name spaces, templates, initializer lists, constexpr. We are almost
there! Static reflection might complete that effort (and feature macros could disrupt progress
on tools). | know of no single language facility that could completely replace macros. | suspect
that one that could would share many of the weaknesses of macros.

All of these decisions were controversial in their time; there were no shortage of people insisting on a
clean break from the past, just as in the fashionable and academic languages. In my considered opinion,
C++ would have been stillborn without these design decisions and the choice of gradual evolution rather
than attempted revolution was essential. Thousands of languages made the opposite decisions, almost
all died. It has been —and still is — essential that users can make significant improvements to their code
without a complete and instant break from the past (modern examples are Perl5 vs. Perl6 and Python2
vs. Python3). Each failed or partially successful paradigm shift bifurcates the community.

In any constrained environment, a cleaner transition from the past to something new is often possible,
but for the whole C++ community, no simple and general alternative exists. We couldn’t achieve a clean

2

Stroustrup Paradigms P0976r0

significant “paradigm shift” for everybody even if we had no compatibility constraints. There is no single
general alternative to the current feature mix for everybody. Sometimes, we forget that and dream
about the whole community simply adopting our favorite feature/technique/proposal/paradigm for
everything. Even for an ideal alternative (which IMO, we will never have), that will not happen on a
time-scale less than decades. It is fundamental for any evolutionary strategy that the language is viable
at every point in time; we cannot ignore serious challenges for a longish period of time, waiting for a
perfect solution.

Gradual transition and co-existence of older features with new also allows us to benefit from feedback
in the evolutionary process. That’s good engineering as opposed to hopeful philosophizing.

In the context of design, one important and unfortunate side effect of paradigm-shift thinking in most of
its variations is that a new facility must be complete. It must completely replace the old/bad facilities, so
it must be able to do all that was considered good or useful from the bad old facility (or it wouldn’t be a
new paradigm). This leads to feature bloat and delays as the new feature is extended and elaborated to
meet the demand for completeness. The alternative to delays is often sloppy design and errors as it
deprives the designers of the experience that an incomplete feature (while relying on the old for
completeness and tricky examples) would give.

Gradual expansion, relying on feedback, is my ideal. Better an incomplete design than a
poor/clumsy/bloated “complete solution.” We can always rely on the “bad old” facilities until we are
confident that we have something genuinely better. Sometimes, we can even pull back from something
that didn’t work out as expected (e.g., exception specifications). That said, | spend a long time thinking
of the long-term aims and consequences. That’s necessary to avoid “gradual expansion” degenerating
into opportunistic hacking. “Gradual expansion” does not mean “repeatedly replacing an old feature
with one that better matches current fashion.” And “no”, this is not easy; there is no fool-proof formula.
The thousands of failed language designs are witnesses to that.

Now consider current and future examples:

e For ages, we have had quests for the one-true-error-signaling mechanism. Currently, there are
people arguing that all signaling of errors should be through error codes and others who would
like to see all errors reported by throwing an exception. When designing exceptions, | came
perilously close to recommending exceptions as a one-size-fits-all solution, but at least | didn’t
recommend using exceptions for loop termination, as had been popular. The “exceptions are for
exceptional events” and “use return codes if the direct caller can be expected to deal with an
error” are decent rules of thumb, but do not cleanly and clearly help users select among the
many alternative solutions (we should clarify). The real problem was and is that it is really hard
to deal with a multiplicity of error-reporting mechanisms: errno (yuck!), returning a struct, a
std::pair, a std::optional, a pointer that might be the nullptr, an int that might be -1, an
“expected”, an out-parameter, or simple termination. Adding a mechanism to “solve the error-
signaling problem” is more likely to add yet-another-alternative to this mess, than to solve it; as
a user of N libraries, | now potentially have N+1 ways of signaling errors to deal with.
Incidentally, this last point was a major motivation for introducing exceptions into C++; they
handle a lot of the tricky cases elegantly (often through RAII).

Stroustrup Paradigms P0976r0

e There are suggestions to extend module import to completely replace #include by allowing
modules to export macros. | see no need for that: #include works as the low-level mechanism it
was designed to be and interacts with the low-level macros in ways with which we have 45 years
of experience. Macros are not modular: they don’t obey the scope and type rules that are the
basis of modularity. Furthermore #include and import co-exists rather nicely. You can use
combinations of #includes and imports in user code and in the implementation of a module.
There is no reason to cripple and complicate modules, lower the level of their implementation,
and compromise compile-time performance by forcing them to deal with a mixture of macros
and proper language facilities. If a library wants to “export macros” let it be represented to its
users by a header file and #included.

e Concepts were carefully designed with three notations for three different levels of complexity of
use cases. The underlying principle was “Keep simple things simple!” aka “the onion principle”
(like for-statements, where we have the fully general C-for plus the simpler, but simpler, range-
for). However, there have been many suggestions to “simplify” by expanding (“bloating”) each
of the simpler notations to be able to express all cases (incl. cases of arbitrary complexity). This
is both unnecessary (for example, the most verbose notation — an explicit requires-clause — can
express all) and damages the simpler notations (especially the so-called natural notation) by
eliminating the simplest and any most common cases in order to achieve uniformity and
generality. We must not forget the simplest and most common cases: keep simple things
simple!

Unfortunately, for major issues, “we know the problems with the existing solutions” is often used as an
argument for untried alternatives. For C++, | preferred to use that argument against novelty where the
problems seemed surmountable or where improvements to the older facilities seemed feasible.

Unfortunately, data necessary to resolve “paradigm choices” is hard to come by and available data is
often ambiguous, biased, or hard to translate into concrete design choices.

	The Evils of Paradigms
	Or
	Beware of one-solution-fits-all thinking
	Bjarne Stroustrup

