
Document Number: P0964R0

Date: 2018-02-12

Reply-to: Matthias Kretz <m.kretz@gsi.de>

Audience: SG1, LEWG

Finding the right set of traits for
simd<T>

ABSTRACT

This paper discusses the set of traits we want to ship with simd<T>.

CONTENTS

1 Introduction 1
2 Motivation 1
3 Proposed Wording 1
A Bibliography 3

P0964R0 1 Introduction

1 INTRODUCTION

Kretz [P0214R8] defines the trait abi_for_size<T, N>, allowing users to find an
“implementation-recommended” ABI tag for a given value_type and number of el-
ements. Shen [P0820R1] discusses a use for considering involved ABI tags in the
“recommendation”. SG1 polled in Albuquerque about
Poll: abi_for_size_t (SF) vs. implementation-defined (SA)
SF F N A SA

1 7 7 0 0
The poll result implies that SG1 prefers users to be able to spell out the ABI tags that
are determined as return types. The poll was not about a specific name to use for the
trait. Shen [P0820R1] suggests to rename the trait to rebind_abi<T, N, Abis...>.

2 MOTIVATION

I believe the name rebind_abi in Shen [P0820R1] is misleading, since no rebinding
is taking place, but rather a type for implementing a rebind of a given simd<T, Abi>
to a different value_type U is made possible. Therefore, I propose to

1. not rename the abi_for_size trait in Kretz [P0214R8], and

2. extend abi_for_size to consider input ABI tags in its decision, and

3. introduce a new trait rebind_simd<U, V>, which deduces a simd<U, Abi> in-
stantiation from a given simd type V and requested value_type U.

In addition to rebind_simd, SG1 should consider whether a resize_simd trait should
be added. resize_simd_t<N, simd <T, Abi0>> is an alias for a simd<T, Abi1> so
that simd_size_v<T, Abi1> == N, and resize_simd_t<N, simd_mask <T, Abi0>>
is an alias for a simd_mask<T, Abi1> so that simd_size_v<T, Abi1> == N. Since the
implementation burden is minimal and the trait can simplify user code, I recommend
to add it to the Parallelism TS 2.

3 PROPOSED WORDING

Apply the following change to the Parallelism TS 2 before finalization:
modify §8.2

template <class T, size_t N> struct abi_for_size { using type = see below ; };

template <class T, size_t N> using abi_for_size_t = typename abi_for_size<T, N>::type;

template <class T, size_t N, class... Abis> struct abi_for_size { using type = see below ; };

1

P0964R0 3 Proposed Wording

template <class T, size_t N, class... Abis> using abi_for_size_t = typename abi_for_size<T, N, Abis...>::type;

template <class T, class V> struct rebind_simd { using type = see below ; };

template <class T, class V> using rebind_simd_t = typename rebind_simd<T, V>::type;

modify §8.2.2
template <class T, size_t N> struct abi_for_size { using type = see below ; };

template <class T, size_t N, class... Abis> struct abi_for_size { using type = see below ; };

5 The member type shall be omitted unless
• T is a cv-unqualified type, and
• T is a vectorizable type, and
• simd_abi::fixed_size<N> is supported (see [simd.abi]), and
• every type in the Abis pack is an ABI tag.

6 Where present, the member typedef type shall name an ABI tag type that satisfies
• simd_size_v<T, type> == N, and
• simd<T, type> is default constructible (see [simd.overview]),

simd_abi::scalar takes precedence over simd_abi::fixed_size <1>. The precedence of implementation-
defined ABI tags over simd_abi::fixed_size<N> is implementation-defined. [Note: It is expected that
implementation-defined ABI tags can produce better optimizations and thus take precedence over simd_-
abi::fixed_size<N>. Implementations may want to base the choice on Abis, but may also ignore the
Abis arguments. — end note]

template <class T, class V> struct rebind_simd { using type = see below ; };

7 The member type shall be omitted unless
• T is a cv-unqualified type, and
• T is a vectorizable type, and
• V is either simd<U, Abi0> or simd_mask<U, Abi0>, where U and Abi0 are deduced from V.

8 Where present, the member typedef type shall name simd<T, Abi1> if V is simd<U, Abi0> or simd_-
mask<T, Abi1> if V is simd_mask<U, Abi0>. Abi1 is equal to abi_for_size_t<T, simd_size_v<U,
Abi0>, Abi0>.

If resize_simd is accepted, add the following right after rebind_simd_t:
modify §8.2

template <class T, class V> using rebind_simd_t = typename rebind_simd<T, V>::type;

template <int N, class V> struct resize_simd { using type = see below ; };

template <int N, class V> using resize_simd_t = typename resize_simd<N, V>::type;

2

P0964R0 A Bibliography

And the following after paragraph 8 in §8.2.2:
modify §8.2.2

template <int N, class V> struct resize_simd { using type = see below ; };

9 The member type shall be omitted unless
• N > 0, and
• V is either simd<T, Abi0> or simd_mask<T, Abi0>, where T and Abi0 are deduced from V.

10 Where present, the member typedef type shall name simd<T, Abi1> if V is simd<T, Abi0> or simd_-
mask<T, Abi1> if V is simd_mask<T, Abi0>. Abi1 is equal to abi_for_size_t<T, N, Abi0>.

A BIBLIOGRAPHY

[P0214R8] Matthias Kretz. P0214R8: Data-Parallel Vector Types & Operations. ISO/IEC
C++ Standards Committee Paper. 2018. url: https://wg21.link/p0214r8.

[P0820R1] Tim Shen. P0820R1: Feedback on P0214R5. ISO/IEC C++ Standards Com-
mittee Paper. 2017. url: https://wg21.link/p0820r1.

3

https://wg21.link/p0214r8
https://wg21.link/p0820r1

	1 Introduction
	2 Motivation
	3 Proposed Wording
	A Bibliography

