Doc. no.: PO903R1

Date: 2018-02-16

Reply to: Ashley Hedberg (ahedberg@google.com),
Audience: LEWG/LWG

Define basic string view(nullptr)

Abstract 1
Background 1
Motivation 2
Proposed Wording 2
Change History 3
Acknowledgements 3

Abstract

This paper proposes modifying the requirements of basic _string view(const charT* str)
such that it becomes well-defined for null pointers, both at compile-time and at runtime.

Background

Throughout this paper, null char_ptr is a null pointer of type const char* (e.g. nullptr,
NULL, ©).

basic_string view(null_char_ptr) is currently undefined behavior. Such code invokes the
basic_string view(const charT* str) constructor, which requires that [str, str +
traits::length(str)) is a valid range [string.view.cons]. The current wording on
requirements for char_traits<T>::length is as follows [char.traits.require]:

Returns: the smallest i such that X::eq(p[i], charT()) is true.

There is no such i when p is null. Thus, basic_string view(null char_ptr) is undefined.

Conversely, basic_string view() and basic_string view(null char_ptr, ©) are both
defined to construct an object with size == @ and data_ == nullptr [string.view.cons].



mailto:ahedberg@google.com
http://wg21.link/string.view.cons
http://wg21.link/char.traits.require
http://wg21.link/string.view.cons

Motivation

Having a well-defined basic_string view(null char_ptr) makes migrating char* APIs to
string_view APIs easier. Here's an example APl which we may wish to migrate to
string_view:

void foo(const char* p) {
if (p == nullptr) return;
// Process p

}

Callers of foo can pass null or non-null pointers without worry. However, this function cannot be
safely migrated to accept string_view unless one can statically determine that no null char*
is ever passed to it:

void foo(std::string view sv) {
if (sv.empty()) return; // Too late - constructing sv from null is undefined!
// Process sv

}

If basic_string view(null_char_ptr) becomes well-defined, APIs currently accepting
char* or const string& can all move to std: :string_view without worrying about whether
parameters could ever be null.

This change also makes instantiating empty string view objects more consistent across
constructors. basic_string view(), basic_string view(null char_ptr), and
basic_string view(null char_ptr, @) will all construct an object with size == © and
data_ == nullptr. Furthermore, it increases consistency across library versions without
penalty. libstdc++, the proposed std: :span, absl::string view, and gsl::string_span
already support constructing a string_view-like object from a null pointer with no size; libc++
and MSVC do not.

Proposed Wording

Change the requirements and effects for basic_string view(const charT* str) as follows
[string.view.cons]:

Requires: iflstr 1= nullptr, [str, str + traits::length(str)) is a valid range.

Effects: Constructs a basic_string_view, with the postconditions in Table 56:

Table 56 -- basic_string_view(const charT*) effects


http://wg21.link/p0122
http://wg21.link/p0122
http://wg21.link/string.view.cons

Change History

Element Value
data_ str
size Qif str == nullptr; else traits::length(str)

R1 makes the following changes as a result of LEWG feedback in Jacksonville:
Removes suggested changes to basic_string.
Makes the previous "alternate wording" the "proposed wording".

Adds clarifying wording that the proposed change affects dynamically null pointers as

well as statically null pointers.

Acknowledgements

Titus Winters for proposing that | write this proposal.

Matt Calabrese for assistance in navigating existing committee papers, notes. etc.
Titus Winters, Matt Calabrese, John Olson for providing feedback on drafts of this

proposal.



http://wiki.edg.com/bin/view/Wg21jacksonville2018/P0903







