
Doc. no.: P0903R1 
Date: 2018-02-16 
Reply to: Ashley Hedberg (​ahedberg@google.com​),  
Audience: LEWG/LWG 
 

Define ​basic_string_view(nullptr) 
Abstract 1 

Background 1 

Motivation 2 

Proposed Wording 2 

Change History 3 

Acknowledgements 3 
 

Abstract 
This paper proposes modifying the requirements of ​basic_string_view(const charT* str) 
such that it becomes well-defined for null pointers, both at compile-time and at runtime. 

Background 
Throughout this paper, ​null_char_ptr​ is a null pointer of type ​const char*​ (e.g. ​nullptr​, 
NULL​, ​0​). 
 
basic_string_view(null_char_ptr)​ is currently undefined behavior. Such code invokes the 
basic_string_view(const charT* str)​ constructor, which requires that ​[str, str + 
traits::length(str))​ is a valid range [​string.view.cons​]. The current wording on 
requirements for ​char_traits<T>::length​ is as follows [​char.traits.require​]: 

Returns​: the smallest ​i​ such that ​X::eq(p[i], charT())​ is ​true​. 
 
There is no such ​i​ when ​p​ is null. Thus, ​basic_string_view(null_char_ptr)​ is undefined.  
 
Conversely, ​basic_string_view()​ and ​basic_string_view(null_char_ptr, 0)​ are both 
defined to construct an object with ​size_ == 0​ and ​data_ == nullptr​ [​string.view.cons​]. 

mailto:ahedberg@google.com
http://wg21.link/string.view.cons
http://wg21.link/char.traits.require
http://wg21.link/string.view.cons


Motivation 
Having a well-defined ​basic_string_view(null_char_ptr)​ makes migrating ​char*​ APIs to 
string_view​ APIs easier. Here's an example API which we may wish to migrate to 
string_view​: 
 

void​ foo​(​const​ ​char​*​ p​)​ ​{ 
  ​if​ ​(​p ​==​ ​nullptr​)​ ​return​; 
  ​// Process p 
} 

 
Callers of ​foo​ can pass null or non-null pointers without worry. However, this function cannot be 
safely migrated to accept ​string_view​ unless one can ​statically​ determine that no null ​char* 
is ever passed to it: 
 

void​ foo​(​std​::​string_view sv​)​ ​{ 
  ​if​ ​(​sv​.​empty​())​ ​return​;​  ​// Too late - constructing sv from null is undefined! 
  ​// Process sv 
} 

 
If ​basic_string_view(null_char_ptr)​ becomes well-defined, APIs currently accepting 
char*​ or ​const string&​ can all move to ​std::string_view​ without worrying about whether 
parameters could ever be null. 
 
This change also makes instantiating empty ​string_view​ objects more consistent across 
constructors. ​basic_string_view()​, ​basic_string_view(null_char_ptr)​, and 
basic_string_view(null_char_ptr, 0)​ will all construct an object with ​size_ == 0​ and 
data_ == nullptr​. Furthermore, it increases consistency across library versions without 
penalty. libstdc++, ​the proposed ​std::span​, ​absl::string_view​, and ​gsl::string_span 
already support constructing a ​string_view​-like object from a null pointer with no size; libc++ 
and MSVC do not. 

Proposed Wording 
Change the requirements and effects for ​basic_string_view(const charT* str)​ as follows 
[​string.view.cons​]: 
Requires:​ ​if ​str != nullptr​, ​[str, str + traits​::​length(str))​ is a valid range. 
Effects​: Constructs a ​basic_​string_​view​, with the postconditions in Table 56: 
 

Table 56 -- ​basic_​string_​view(const charT*)​ effects 

http://wg21.link/p0122
http://wg21.link/p0122
http://wg21.link/string.view.cons


Element Value 

data_ str 

size_ 0 if ​str == nullptr​; else ​traits​::​length(str) 

 

Change History 
R1 makes the following changes as a result of ​LEWG feedback in Jacksonville​: 

● Removes suggested changes to ​basic_string​. 
● Makes the previous "alternate wording" the "proposed wording". 
● Adds clarifying wording that the proposed change affects dynamically null pointers as 

well as statically null pointers. 

Acknowledgements 
● Titus Winters for proposing that I write this proposal. 
● Matt Calabrese for assistance in navigating existing committee papers, notes. etc. 
● Titus Winters, Matt Calabrese, John Olson for providing feedback on drafts of this 

proposal. 

http://wiki.edg.com/bin/view/Wg21jacksonville2018/P0903





