
N. Josuttis: P0884R0: Extending the noexcept Policy

 1

Project: ISO JTC1/SC22/WG21: Programming Language C++
Doc No: WG21 P0884R0
Date: 2018-02-10
Reply to: Nicolai Josuttis (nico@josuttis.de)
Audience: LEWG
Prev. Version:

Extending the noexcept Policy, Rev0
The way, we currently use noexcept in the C++ standard library following the rules of N3279:

 No library destructor should throw. They shall use the implicitly supplied
(nonthrowing) exception specification.

 Each library function having a wide contract, that the LWG agree cannot throw,
should be marked as unconditionally noexcept.

 If a library swap function, move-constructor, or move-assignment operator is
conditionally-wide (i.e. can be proven to not throw by applying the noexcept
operator) then it should be marked as conditionally noexcept. No other function
should use a conditional noexcept specification.

 Library functions designed for compatibility with “C” code (such as the atomics
facility), may be marked as unconditionally noexcept.

However, more than once we now had the case that we had types wrapped or extended in a
way that the original behavior of the type should only changed as small as possible to make the
wrapping/extension as transparent as possible.
Examples are:

 std::atomic<> (see P0883)
 std::function_ref (proposed in P0792)

So,	I	propose	the	following	new	rules:	

a) No library destructor should throw. They shall use the implicitly supplied (nonthrowing)
exception specification.

b) Each library function having a wide contract (i.e., does not specify undefined behavior
due to a precondition) that the LWG agree cannot throw, should be marked as
unconditionally noexcept.

c) If a library swap function, move-constructor, or move-assignment operator is
conditionally-wide (i.e. can be proven to not throw by applying the noexcept operator)
then it should be marked as conditionally noexcept.

d) If a library type has wrapping semantics to transparently provide the same behavior as
the underlying type, then default constructor, copy constructor, and copy-assigment
operator should be marked as conditionally noexcept the underlying exception
specification still holds.

e) No other function should use a conditional noexcept specification.
f) Library functions designed for compatibility with “C” code (such as the atomics facility),

may be marked as unconditionally noexcept.

Acknowledgements
Thanks to a lot of people who discussed the issue, proposed information and possible wording.

Feature Test Macro
This is a pure design guideline for the C++ library and needs no feature macro.

