
Fixing the partial_order comparison algorithm

Document #: P0863R1
Date: 2018-10-08
Project: Programming Language C++
Audience: Library Evolution
Reply-to: Jeff Snyder <jeff-isocpp@caffeinated.me.uk>

1 Introduction

At the Albuquerque 2017 meeting, the committee reviewed the Consistent Comparison
proposal[P0515R3], and had consensus to merge it and its companion library wording
paper[P0768R1] into the C++ working draft.

During the meeting, it was noticed that something does not seem quite right about the
fallback to operator== and operator< in the specification of partial_order: it checks
a == b and a < b, but does not check b < a. Moreover, there is no circumstance in
which it will return partial_order::unordered, and so it must be returning something
else when the inputs are unordered and this fallback is used.

It was suggested that this should be handled as an LWG issue, but discussions with those
involved in designing these fallbacks revealed that this was in fact the intended design.
As I understand it—and I do not claim to understand it well—the rationale for the
current design is based on assuming that operator< provides at least a weak order, and
so it follows that !(a == b) && !(a < b) implies a > b, regardless of whether the user
called weak_order or partial_order. This design has some unfortunate consequences.

2 Discussion

If the comparison algorithms are to have fallbacks written in terms of operator== and
operator<, what are the desirable properties of these fallbacks? These might include:

1. If strong_order(a, b) is called with objects of a type for which operator==
and operator< implement a strong ordering, then the strong_ordering values
returned provide a genuine strong order.

2. If weak_order(a, b) is called with objects of a type for which operator== and
operator< implement a weak ordering, then the weak_ordering values returned
provide a genuine weak order.

1

mailto:jeff-isocpp@caffeinated.me.uk


3. If partial_order(a, b) is called with objects of a type for which operator==
and operator< implement a partial ordering, then the partial_ordering values
returned provide a genuine partial order.

4. If strong_order(a, b) is called with objects of a type for which operator==
and operator< implement a strong ordering and returns strong_order::less,
strong_order::equal or strong_order::greater, then weak_order(a, b) re-
turns weak_order::less, weak_order::equivalent or weak_order::greater,
respectively.

5. If strong_order(a, b) is called with objects of a type for which operator==
and operator< implement a strong ordering and returns strong_order::less,
strong_order::equal or strong_order::greater, then partial_order(a, b)
returns partial_order::less, partial_order::equivalent or partial_order::greater,
respectively.

6. If weak_order(a, b) is called with objects of a type for which operator== and
operator< implement a weak ordering and returns weak_order::less, weak_-
order::equivalent or weak_order::greater, then partial_order(a, b) re-
turns partial_order::less, partial_order::equivalent or partial_order::greater,
respectively.

7. If strong_order(a, b) returns strong_order::less, strong_order::equal or
strong_order::greater, then weak_order(a, b) returns weak_order::less, weak_-
order::equivalent or weak_order::greater, respectively.

8. If strong_order(a, b) returns strong_order::less, strong_order::equal or
strong_order::greater, then partial_order(a, b) returns partial_order::less,
partial_order::equivalent or partial_order::greater, respectively.

9. If weak_order(a, b) returns weak_order::less, weak_order::equivalent or
weak_order::greater, then partial_order(a, b) returns partial_order::less,
partial_order::equivalent or partial_order::greater, respectively.

2.1 The value of the fallback clauses

Properties 1, 2 and 3 allow users to compare two values of a type that does not implement
operator<=>, but get the result as one of the x_ordering types, if the user knows what
type of ordering the type’s operator== and operator< implement. This seems like
valuable functionality for bridging between pre- and post-C++20 code.

Properties 4, 5 and 6 also seem very desirable—they make the substitution of a correct
use1of strong_order or weak_order with weak_order or partial_order (respectively)
behave the same as calling the former and converting the returned value to the result
type of the latter.

1By a “correct use” here, I mean one where the underlying type’s == and < operators implement an

2



Properties 7, 8 and 9 are harder to justify—they concern the behaviour of these functions
when they are used on types whose == and < operators implement an ordering that does
not have the properties of the ordering being requested, e.g. calling weak_order on
values of a partially ordered type.

The current wording supports all of these properties except for property 3. Let us examine
the consequences of this in more detail. Suppose we have a simple wrapper type for a
double, which exists for the purpose of improving type safety:

struct price
{

constexpr explicit price(double v) : m_value{v} {}
constexpr explicit operator double() const { return m_value; }
constexpr friend bool operator==(price a, price b)
{ return a.m_value == b.m_value; }
constexpr friend bool operator<(price a, price b)
{ return a.m_value < b.m_value; }

private:
double m_value;

}

If we consider that objects of type price could contain NaN values, we can achieve some
surprising results:

static_assert(std::partial_order(price{std::nan("")}, price{1})
== std::partial_ordering::greater); // OK

static_assert(std::partial_order(price{1}, price{std::nan("")})
== std::partial_ordering::greater); // OK

We can redefine partial_order to avoid this pitfall, by having it test b < a as well as
a < b, and return partial_ordering::unordered if both return false. This, however,
comes at a cost2: properties 8 and 9 will no longer hold after this modification.

How valuable are those properties? They pertain to what happens when strong_order or
weak_order is called on a partially ordered3type. This is already a nonsensical operation—
these functions will yield values of type strong_ordering and weak_ordering respec-
tively, but these results are unsound. Treating these ordering values as a strong order or
a weak order, and relying on the properties of strong or weak ordering respectively, will
yield an incorrect program.

I would therefore argue that there is no value in properties 7, 8 and 9 that is not provided
by properties 4, 5 and 6, and that we should modify partial_order as described above.

ordering at least as strong as the one being requested.
2There is also a performance cost, but I am going to ignore this since there is little use in returning

an incorrect result quickly.
3“partially ordered” here specifically means that the type is only partially ordered, i.e. that the partial

ordering is not also a weak ordering or a strong ordering.

3



2.2 The cost of the fallback clauses

If there is no value in being able to call strong_order or weak_order on a type for
which the == and < operators provide a partial order4, then we should also consider the
cost of allowing strong_order(a, b) and weak_order(a, b) to be valid expressions
when a and b are values of such a type. If these expressions are valid regardless of the
semantics of the operators that they are implemented in terms of, then SFINAE tests on
these expressions cannot tell us anything useful about the comparison semantics of the
type. strong_order will happily yield values of type strong_ordering when applied to
a type that isn’t even partially ordered.

This is of great concern to anyone hoping to use these new comparison algorithms in
generic code. These comparison algorithms are useful as customisation points, e.g. they
let a type that has a “natural” weak order expose a strong order to algorithms that
require a strong ordering, but this usefullness is greatly compromised if there are many
types for which strong_order(a, b) compiles but provides unsound results.

The set of such types is large, as it includes all types which have a floating-point value
amongst their salient attributes. We should therefore consider removing the fallbacks
to operator== and operator< entirely, such that (e.g.) std::strong_order(a, b) is
defined as deleted (or, better yet, does not participate in overload resolution) if the type
of a and b does not have an operator<=> returning std::strong_ordering.

We could then consider introducing a parallel set of comparison algorithms for the purpose
of integration with types that do not support operator<=>.

3 Proposals

3.1 Option A

Alter the wording of partial_order such that it behaves correctly when used on a
partially ordered pre-C++20 type.

3.2 Option B

Remove the fallbacks to operator== and operator< from all comparison algorithms, so
that the comparison algorithms are closer to being useful as customisation points.

Furthermore, remove the compare_3way algorithm entirely since it is identical to calling
operator<=> after the fallbacks are removed.

4See footnote 3

4



3.3 Option C

Remove the comparison algorithms entirely, so that they can be more thoroughly consid-
ered in the C++23 timeframe.

4 Wording

4.1 Wording for Option A

Change paragraph [cmp.alg] (16.11.4)p3 as follows:
template<class T>

constexpr partial_ordering partial_order(const T& a, const T& b);

Effects: Compares two values and produces a result of type partial_ordering:

• Returns a <=> b if that expression is well-formed and convertible to
partial_ordering.

• Otherwise, if the expression a <=> b is well-formed, then the function
shall be defined as deleted.

• Otherwise, if the expressions a == b and a < b are each well-formed
and convertible to bool, returns partial_ordering::equivalent when
a == b is true, otherwise returns partial_ordering::less when a <
b is true, otherwise returns partial_ordering::greater when b < a
is true, and otherwise returns partial_ordering::greaterunordered

• Otherwise, the function shall be defined as deleted.

4.2 Wording for Option B

Change paragraph [cmp.alg] (16.11.4)p1 as follows:
template<class T>

constexpr strong_ordering strong_order(const T& a, const T& b);

Effects: Compares two values and produces a result of type strong_ordering:

• If numeric_limits<T>::is_iec559 is true, returns a result of type
strong_ordering that is consistent with the totalOrder operation as
specified in ISO/IEC/IEEE 60559.

5



• Otherwise, returns a <=> b if that expression is well-formed and con-
vertible to strong_ordering.

• Otherwise, if the expression a <=> b is well-formed, then the function
shall be defined as deleted.

• Otherwise, if the expressions a == b and a < b are each well-formed
and convertible to bool, returns strong_ordering::equal when a == b
is true, otherwise returns strong_ordering::less when a < b is true,
and otherwise returns strong_ordering::greater.

• Otherwise, the function shall be defined as deleted.

Change paragraph [cmp.alg] (16.11.4)p2 as follows:
template<class T>

constexpr weak_ordering weak_order(const T& a, const T& b);

Effects: Compares two values and produces a result of type weak_ordering:

• Returns a <=> b if that expression is well-formed and convertible to
weak_ordering.

• Otherwise, if the expression a <=> b is well-formed, then the function
shall be defined as deleted.

• Otherwise, if the expressions a == b and a < b are each well-formed
and convertible to bool, returns weak_ordering::equivalent when
a == b is true, otherwise returns weak_ordering::less when a < b
is true, and otherwise returns weak_ordering::greater.

• Otherwise, the function shall be defined as deleted.

Change paragraph [cmp.alg] (16.11.4)p3 as follows:
template<class T>

constexpr partial_ordering partial_order(const T& a, const T& b);

Effects: Compares two values and produces a result of type partial_ordering:

• Returns a <=> b if that expression is well-formed and convertible to
partial_ordering.

• Otherwise, if the expression a <=> b is well-formed, then the function
shall be defined as deleted.

• Otherwise, if the expressions a == b and a < b are each well-formed
and convertible to bool, returns partial_ordering::equivalent when
a == b is true, otherwise returns partial_ordering::less when a < b
is true, and otherwise returns partial_ordering::greater.

6



• Otherwise, the function shall be defined as deleted.

Change paragraph [cmp.alg] (16.11.4)p4 as follows:
template<class T>

constexpr strong_equality strong_equal(const T& a, const T& b);

Effects: Compares two values and produces a result of type strong_equality:

• Returns a <=> b if that expression is well-formed and convertible to
strong_equality.

• Otherwise, if the expression a <=> b is well-formed, then the function
shall be defined as deleted.

• Otherwise, if the expression a == b is well-formed and convertible to
bool, returns strong_equality::equal when a == b is true, and otherwise
returns strong_equality::nonequal.

• Otherwise, the function shall be defined as deleted.

Change paragraph [cmp.alg] (16.11.4)p5 as follows:
template<class T>

constexpr weak_equality weak_equal(const T& a, const T& b);

Effects: Compares two values and produces a result of type weak_equality:

• Returns a <=> b if that expression is well-formed and convertible to
weak_equality.

• Otherwise, if the expression a <=> b is well-formed, then the function
shall be defined as deleted.

• Otherwise, if the expression a == b is well-formed and convertible to
bool, returns weak_equality::equivalent when a == b is true, and
otherwise returns weak_equality::nonequivalent.

• Otherwise, the function shall be defined as deleted.

Change paragraph [alg.3way] (23.7.11p1) as follows:

template<class T, class U> constexpr auto compare_3way(const T& a, const U& b);

Effects: Compares two values and produces a result of the strongest
applicable comparison category type:

• Returns a <=> b if that expression is well-formed.

• Otherwise, if the expressions a == b and a < b are each well-formed
and convertible to bool, returns strong_ordering::equal when a == b

7



is true, otherwise returns strong_ordering::less when a < b is
true, and otherwise returns strong_ordering::greater.

• Otherwise, if the expression a == b is well-formed and convertible
to bool, returns strong_equality::equal when a == b is true, and
otherwise returns strong_equality::nonequal.

• Otherwise, the function is defined as deleted.

Change paragraph [alg.3way] (23.7.11p3) as follows:

template<class InputIterator1, class InputIterator2>
constexpr auto

lexicographical_compare_3way(InputIterator1 b1, InputIterator1 e1,
InputIterator2 b2, InputIterator2 e2);

Effects: Equivalent to:
return lexicographical_compare_3way(b1, e1, b2, e2,

[](const auto& t, const auto& u) {
return compare_3way(t, u)

t <=> u;
});

4.3 Wording for Option C

Remove section [cmp.alg] (16.11.4).

Change paragraph [alg.3way] (23.7.11p1) as follows:

template<class T, class U> constexpr auto compare_3way(const T& a, const U& b);

Effects: Compares two values and produces a result of the strongest
applicable comparison category type:

• Returns a <=> b if that expression is well-formed.

• Otherwise, if the expressions a == b and a < b are each well-formed
and convertible to bool, returns strong_ordering::equal when a == b
is true, otherwise returns strong_ordering::less when a < b is
true, and otherwise returns strong_ordering::greater.

• Otherwise, if the expression a == b is well-formed and convertible
to bool, returns strong_equality::equal when a == b is true, and
otherwise returns strong_equality::nonequal.

• Otherwise, the function is defined as deleted.

8



Change paragraph [alg.3way] (23.7.11p3) as follows:

template<class InputIterator1, class InputIterator2>
constexpr auto

lexicographical_compare_3way(InputIterator1 b1, InputIterator1 e1,
InputIterator2 b2, InputIterator2 e2);

Effects: Equivalent to:
return lexicographical_compare_3way(b1, e1, b2, e2,

[](const auto& t, const auto& u) {
return compare_3way(t, u)

t <=> u;
});

5 Changelog

5.1 Revision 1

• Updated section numbers to be based on N4762

• Changed the wording of option B to also remove bullet points that were made
redundant by the proposed changes in R0

• Updated option B to also remove compare_3way

• Added option C

6 Acknowledgements

Many thanks to Graham Snyder and Gene Novark for proofreading and commenting on
drafts of this paper.

References

[P0515R3] Herb Sutter. Consistent comparison. Proposal P0515R3, ISO/IEC
JTC1/SC22/WG21, November 2017.

[P0768R1] Walter E. Brown. Library Support for the Spaceship (Comparison) Operator.
Proposal P0768R1, ISO/IEC JTC1/SC22/WG21, November 2017.

9


	1 Introduction
	2 Discussion
	2.1 The value of the fallback clauses
	2.2 The cost of the fallback clauses

	3 Proposals
	3.1 Option A
	3.2 Option B
	3.3 Option C

	4 Wording
	4.1 Wording for Option A
	4.2 Wording for Option B
	4.3 Wording for Option C

	5 Changelog
	5.1 Revision 1

	6 Acknowledgements

