
d0796r3.md 10/10/2018

1 / 34

P0796r3: Supporting Heterogeneous &
Distributed Computing Through Affinity
Date: 2018-10-08

Audience: SG1, LEWG, LWG, SG14

Authors: Gordon Brown, Ruyman Reyes, Michael Wong, H. Carter Edwards, Thomas
Rodgers, Mark Hoemmen

Contributors: Patrice Roy, Carl Cook, Jeff Hammond, Hartmut Kaiser, Christian Trott, Paul
Blinzer, Alex Voicu, Nat Goodspeed, Tony Tye, Paul Blinzer

Emails: gordon@codeplay.com, ruyman@codeplay.com, michael@codeplay.com,
hedwards@nvidia.com, rodgert@twrodgers.com, mhoemme@sandia.gov

Reply to: gordon@codeplay.com

Changelog

P0796r3 (SAN 2018)

Remove reference counting requirement from execution_resource.
Change lifetime model of execution_resource: it now either consistently identifies some
underlying resource, or is invalid; context creation rejects an invalid resource.ster
Remove this_thread::bind & this_thread::unbind interfaces.
Make execution_resources iterable by replacing execution_resource::resources with
execution_resource::begin and execution_resource::end.
Add size and operator[] for execution_resource.
Rename this_system::get_resources to this_system::discover_topology.
Introduce memory_resource to represent the memory component of a system topology.
Remove can_place_memory and can_place_agents from the execution_resource as these are
no longer required.
Remove memory_resource and allocator from the execution_context as these no longer
make sense.
Update the wording to describe how execution resources and memory resources are
structured.
Refactor affinity_query to be between an execution_resource and a memory_resource.

P0796r2 (RAP 2018)

Introduce a free function for retrieving the execution resource underlying the current thread
of execution.
Introduce this_thread::bind & this_thread::unbind for binding and unbinding a thread of
execution to an execution resource.

d0796r3.md 10/10/2018

2 / 34

Introduce bulk_execution_affinity executor properties for specifying affinity binding
patterns on bulk execution functions.

P0796r1 (JAX 2018)

Introduce proposed wording.
Based on feedback from SG1, introduce a pair-wise interface for querying the relative affinity
between execution resources.
Introduce an interface for retrieving an allocator or polymorphic memory resource.
Based on feedback from SG1, remove requirement for a hierarchical system topology
structure, which doesn't require a root resource.

P0796r0 (ABQ 2017)

Initial proposal.
Enumerate design space, hierarchical affinity, issues to the committee.

Abstract
This paper provides an initial meta-framework for the drives toward an execution and memory
affinity model for C++. It accounts for feedback from the Toronto 2017 SG1 meeting on Data
Movement in C++ [1] that we should define affinity for C++ first, before considering inaccessible
memory as a solution to the separate memory problem towards supporting heterogeneous and
distributed computing.

This paper is split into two main parts:

1. A series of executor properties which can be used to apply affinity requirements to bulk
execution functions.

2. An interface for discovering the execution resources within the system topology and querying
relative affinity of execution resources.

Motivation
Affinity refers to the "closeness" in terms of memory access performance, between running code,
the hardware execution resource on which the code runs, and the data that the code accesses. A
hardware execution resource has "more affinity" to a part of memory or to some data, if it has
lower latency and/or higher bandwidth when accessing that memory / those data.

On almost all computer architectures, the cost of accessing different data may differ. Most
computers have caches that are associated with specific processing units. If the operating system
moves a thread or process from one processing unit to another, the thread or process will no
longer have data in its new cache that it had in its old cache. This may make the next access to
those data slower. Many computers also have a Non-Uniform Memory Architecture (NUMA), which
means that even though all processing units see a single memory in terms of programming model,
different processing units may still have more affinity to some parts of memory than others. NUMA

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0687r0.pdf

d0796r3.md 10/10/2018

3 / 34

exists because it is difficult to scale non-NUMA memory systems to the performance needed by
today's highly parallel computers and applications.

One strategy to improve applications' performance, given the importance of affinity, is processor
and memory binding. Keeping a process bound to a specific thread and local memory region
optimizes cache affinity. It also reduces context switching and unnecessary scheduler activity.
Since memory accesses to remote locations incur higher latency and/or lower bandwidth, control
of thread placement to enforce affinity within parallel applications is crucial to fuel all the cores and
to exploit the full performance of the memory subsystem on NUMA computers.

Operating systems (OSes) traditionally take responsibility for assigning threads or processes to run
on processing units. However, OSes may use high-level policies for this assignment that do not
necessarily match the optimal usage pattern for a given application. Application developers must
leverage the placement of memory and placement of threads for best performance on current and
future architectures. For C++ developers to achieve this, native support for placement of threads
and memory is critical for application portability. We will refer to this as the affinity problem.

The affinity problem is especially challenging for applications whose behavior changes over time or
is hard to predict, or when different applications interfere with each other's performance. Today,
most OSes already can group processing units according to their locality and distribute processes,
while keeping threads close to the initial thread, or even avoid migrating threads and maintain first
touch policy. Nevertheless, most programs can change their work distribution, especially in the
presence of nested parallelism.

Frequently, data are initialized at the beginning of the program by the initial thread and are used
by multiple threads. While some OSes automatically migrate threads or data for better affinity,
migration may have high overhead. In an optimal case, the OS may automatically detect which
thread access which data most frequently, or it may replicate data which are read by multiple
threads, or migrate data which are modified and used by threads residing on remote locality
groups. However, the OS often does a reasonable job, if the machine is not overloaded, if the
application carefully uses first-touch allocation, and if the program does not change its behavior
with respect to locality.

Consider a code example (Listing 1) that uses the C++17 parallel STL algorithm for_each to
modify the entries of a valarray a. The example applies a loop body in a lambda to each entry of
the valarray a, using an execution policy that distributes work in parallel across multiple CPU
cores. We might expect this to be fast, but since valarray containers are initialized automatically
and automatically allocated on the master thread's memory, we find that it is actually quite slow
even when we have more than one thread.

// C++ valarray STL containers are initialized automatically.
// First-touch allocation thus places all of a on the master.
std::valarray<double> a(N);

// Data placement is wrong, so parallel update is slow.
std::for_each(std::execution::par, std::begin(a), std::end(a),
 [=] (double& a_i) { a_i *= scalar; });

// Use future affinity interface to migrate data at next

d0796r3.md 10/10/2018

4 / 34

// use and move pages closer to next accessing thread.
...
// Faster, because data are local now.
std::for_each(std::execution::par, std::begin(a), std::end(a),
 [=] (double& a_i) { a_i *= scalar; });

Listing 1: Parallel vector update example

The affinity interface we propose should help computers achieve a much higher fraction of peak
memory bandwidth when using parallel algorithms. In the future, we plan to extend this to
heterogeneous and distributed computing. This follows the lead of OpenMP [2], which has plans to
integrate its affinity model with its heterogeneous model [3]. (One of the authors of this document
participated in the design of OpenMP's affinity model.)

Background Research: State of the Art
The problem of effectively partitioning a systemʼs topology has existed for some time, and there
are a range of third-party libraries and standards which provide APIs to solve the problem. In
order to standardize this process for C++, we must carefully look at all of these approaches and
identify which we wish to adopt. Below is a list of the libraries and standards from which this
proposal will draw:

Portable Hardware Locality [4]
SYCL 1.2 [5]
OpenCL 2.2 [6]
HSA [7]
OpenMP 5.0 [8]
cpuaff [9]
Persistent Memory Programming [10]
MEMKIND [11]
Solaris pbind() [12]
Linux sched_setaffinity() [13]
Windows SetThreadAffinityMask() [14]
Chapel [15]
X10 [16]
UPC++ [17]
TBB [18]
HPX [19]
MADNESS [20][32]

Libraries such as the Portable Hardware Locality (hwloc) library provide a low level of hardware
abstraction, and offer a solution for the portability problem by supporting many platforms and
operating systems. This and similar approaches use a tree structure to represent details of CPUs
and the memory system. However, even some current systems cannot be represented correctly by
a tree, if the number of hops between two sockets varies between socket pairs [2].

https://link.springer.com/chapter/10.1007/978-3-642-30961-8_2
https://www.open-mpi.org/projects/hwloc/
https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-2.2.pdf
http://www.hsafoundation.com/standards/
http://www.openmp.org/wp-content/uploads/openmp-TR5-final.pdf
https://github.com/dcdillon/cpuaff
http://pmem.io/
https://github.com/memkind/memkind
https://docs.oracle.com/cd/E26502_01/html/E29031/pbind-1m.html
https://linux.die.net/man/2/sched_setaffinity
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686247(v=vs.85).aspx
https://chapel-lang.org/
http://x10-lang.org/
https://bitbucket.org/berkeleylab/upcxx/wiki/Home
https://www.threadingbuildingblocks.org/
https://github.com/STEllAR-GROUP/hpx
https://github.com/m-a-d-n-e-s-s/madness
http://dx.doi.org/10.1137/15M1026171
https://www.open-mpi.org/projects/hwloc/
https://link.springer.com/chapter/10.1007/978-3-642-30961-8_2

d0796r3.md 10/10/2018

5 / 34

Some systems give additional user control through explicit binding of threads to processors
through environment variables consumed by various compilers, system commands, or system
calls. Examples of system commands include Linux's taskset and numactl, and Windows' start
/affinity. System call examples include Solaris' pbind(), Linux's sched_setaffinity(), and
Windows' SetThreadAffinityMask().

Problem Space
In this paper we describe the problem space of affinity for C++, the various challenges which need
to be addressed in defining a partitioning and affinity interface for C++, and some suggested
solutions. These include:

How to represent, identify and navigate the topology of execution resources available within
a heterogeneous or distributed system.
How to query and measure the relative affinity between different execution resources within
a system.
How to bind execution and allocation particular execution resource(s).
What kind of and level of interface(s) should be provided by C++ for affinity.

Wherever possible, we also evaluate how an affinity-based solution could be scaled to support both
distributed and heterogeneous systems. We also have addressed some aspects of dynamic
topology discovery.

There are also some additional challenges which we have been investigating but are not yet ready
to be included in this paper, and which will be presented in a future paper:

How to migrate memory work and memory allocations between execution resources.
More general cases of dynamic topology discovery.
Fault tolerance, as it relates to dynamic topology.

Querying and representing the system topology

The first task in allowing C++ applications to leverage memory locality is to provide the ability to
query a system for its resource topology (commonly represented as a tree or graph) and traverse
its execution resources.

The capability of querying underlying execution resources of a given system is particularly
important towards supporting affinity control in C++. The current proposal for executors [22]
mentions execution resources in passing, but leaves the term largely unspecified. This is
intentional: execution resources will vary greatly between one implementation and another, and it
is out of the scope of the current executors proposal to define those. There is current work [23] on
extending the executors proposal to describe a typical interface for an execution context. In this
paper a typical execution context is defined with an interface for construction and comparison, and
for retrieving an executor, waiting on submitted work to complete and querying the underlying
execution resource. Extending the executors interface to provide topology information can serve as
a basis for providing a unified interface to expose affinity. This interface cannot mandate a specific
architectural definition, and must be generic enough that future architectural evolutions can still be
expressed.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0443r7.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0737r0.html

d0796r3.md 10/10/2018

6 / 34

Two important considerations when defining a unified interface for querying the resource topology
of a system, are (a) what level of abstraction such an interface should have, and (b) at what
granularity it should describe the typology's execution resources. As both the level of abstraction of
an execution resource and the granularity that it is described in will vary greatly from one
implementation to another, itʼs important for the interface to be generic enough to support any
level of abstraction. To achieve this we propose a generic hierarchical structure of execution
resources, each execution resource being composed of other execution resources recursively. Each
execution resource within this hierarchy can be used to place memory (i.e., allocate memory
within the execution resourceʼs memory region), place execution (i.e. bind an execution to an
execution resourceʼs execution agents), or both.

For example, a NUMA system will likely have a hierarchy of nodes, each capable of placing
memory and placing agents. A system with both CPUs and GPUs (programmable graphics
processing units) may have GPU local memory regions capable of placing memory, but not capable
of placing agents.

Nowadays, there are various APIs and libraries that enable this functionality. One of the most
commonly used is Portable Hardware Locality (hwloc). Hwloc presents the hardware as a tree,
where the root node represents the whole machine and subsequent levels represent different
partitions depending on different hardware characteristics. The picture below shows the output of
the hwloc visualization tool (lstopo) on a 2-socket Xeon E5300 server. Note that each socket is
represented by a package in the graph. Each socket contains its own cache memories, but both
share the same NUMA memory region. Note also that different I/O units are visible underneath.
Placement of these I/O units with respect to memory and threads can be critical to performance.
The ability to place threads and/or allocate memory appropriately on the different components of
this system is an important part of the process of application development, especially as hardware
architectures get more complex. The documentation of lstopo [21] shows more interesting
examples of topologies that appear on today's systems.

 Figure 1:
Example of Hwloc system topology report

https://www.open-mpi.org/projects/hwloc/
https://www.open-mpi.org/projects/hwloc/lstopo/

d0796r3.md 10/10/2018

7 / 34

The interface of thread_execution_resource_t proposed in the execution context proposal [23]
proposes a hierarchical approach where there is a root resource and each resource has a number
of child resources. However, systems are becoming increasingly non-hierarchical and a traditional
tree-based representation of a systemʼs resource topology may not suffice any more [24]. The
HSA standard solves this problem by allowing a node in the topology to have multiple parent
nodes [19].

The interface for querying the resource topology of a system must be flexible enough to allow
querying all execution resources available under an execution context, querying the execution
resources available to the entire system, and constructing an execution context for a particular
execution resource. This is important, as many standards such as OpenCL [6] and HSA [7] require
the ability to query the resource topology available in a system before constructing an execution
context for executing work.

For example, an implementation may provide an execution context for a particular execution
resource such as a static thread pool or a GPU context for a particular GPU device, or an
implementation may provide a more generic execution context which can be constructed
from a number of CPU and GPU devices query-able through the system resource topology.

Topology discovery & fault tolerance

In traditional single-CPU systems, users may reason about the execution resources with standard
constructs such as std::thread, std::this_thread and thread_local. This is because the C++
machine model requires that a system have at least one thread of execution, some memory,
and some I/O capabilities. Thus, for these systems, users may make some assumptions about
the system resource topology as part of the language and its supporting standard library. For
example, one may always ask for the available hardware concurrency, since there is always at
least one thread, and one may always use thread-local storage.

This assumption, however, does not hold on newer, more complex systems, especially on
heterogeneous systems. On these systems, even the type and number of high-level resources
available in a particular system is not known until the physical hardware attached to a particular
system has been identified by the program. This often happens as part of a run-time initialization
API [6] [7] which makes the resources available through some software abstraction. Furthermore,
the resources which are identified often have different levels of parallel and concurrent execution
capabilities. We refer to this process of identifying resources and their capabilities as topology
discovery, and we call the point at the point at which this occurs the point of discovery.

An interesting question which arises here is whether the system resource topology should be fixed
at the point of discovery, or whether it should be allowed to change during later program
execution. We can identify two main reasons for allowing the system resource topology to be
dynamic after the point of discovery: (a) dynamic resource discovery, and (b) fault tolerance.

In some systems, hardware can be attached to the system while the program is executing. For
example, users may plug in a USB-compute device [31] while the application is running to add
additional computational power, or users may have access to hardware connected over a network,
but only at specific times. Support for dynamic resource discovery would let programs target these
situations natively and be reactive to changes to the resources available to a system.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0737r0.html
https://docs.google.com/viewer?a=v&pid=sites&srcid=bGJsLmdvdnxwYWRhbC13b3Jrc2hvcHxneDozOWE0MjZjOTMxOTk3NGU3
https://www.khronos.org/registry/OpenCL/specs/opencl-2.2.pdf
http://www.hsafoundation.com/standards/
https://www.khronos.org/registry/OpenCL/specs/opencl-2.2.pdf
http://www.hsafoundation.com/standards/
https://developer.movidius.com/

d0796r3.md 10/10/2018

8 / 34

Other applications, such as those designed for safety-critical environments, must be able to
recover from hardware failures. This requires that the resources available within a system can be
queried and can be expected to change at any point during the execution of a program. For
example, a GPU may overheat and need to be disabled, yet the program must continue at all
costs. Fault tolerance would let programs query the availability of resources and handle failures.
This could facilitate reliable programming of heterogeneous and distributed systems.

From a historic perspective, programming models for traditional high-performance computing
(HPC) have taken different approaches to dynamic resource discovery. MPI (Message Passing
Interface) [25] originally (in MPI-1) did not support dynamic resource discovery. All processes
which were capable of communicating with each other would be identified and fixed at the point of
discovery, which (from the programmer's perspective) is MPI_Init. PVM (Parallel Virtual Machine)
[26] enabled resources to be discovered at run time, using an alternative execution model of
manually spawning processes from the main process. This led MPI-2 to introduce the feature.
However, MPI programs do not commonly use this feature, and generally prefer the execution
model of having all processes fixed at initialization. Some distributed-memory parallel
programming models for HPC support dynamic process spawning, but the typical way that HPC
users access large-scale computing resources requires fixed-size batch allocations that restrict
truly dynamic process spawning.

Some of these programming models also address fault tolerance. In particular, PVM has native
support for this, providing a mechanism [27] which can notify a program when a resource is
added or removed from a system. MPI lacks a native fault tolerance mechanism, but there have
been efforts to implement fault tolerance on top of MPI [28] or by extensions[29].

Due to the complexity involved in standardizing dynamic resource discovery and fault tolerance,
these are currently out of the scope of this paper. However, we leave open the possibility of
accommodating both in the future, by not over constraining resources' lifetimes (see next section).

Reporting errors in topology discovery

As querying the topology of a system can invoke a number of different system and third-party
library, we have to consider what will happen when a call to one of these fails. Firstly we want to
be able to report this failure so that it can be reported or handled in user code. Secondly as there
will often be more than one source of topology discovery we have to avoid short-circuiting the
discovery on an error and preventing potentially valid topology information being reported to
users. For example if a system were to report both Hwloc and OpenCL execution resources and
one of these failed we want the other to still be able to return it's resources.

A potential solution to this could be support partial errors in topology discovery, where querying
the system for it's topology could be permitted to fail but still return a valid topology structure
representing the topology that was discovered successfully. The way in which these errors are
reported (i.e. exceptions or error values) would have to be decided, exceptions could be
problematic as it could unwind the stack before capturing important topology information so
perhaps an error value based approach would be preferable.

Resource lifetime

http://mpi-forum.org/docs/
http://www.csm.ornl.gov/pvm/
http://etutorials.org/Linux+systems/cluster+computing+with+linux/Part+II+Parallel+Programming/Chapter+11+Fault-Tolerant+and+Adaptive+Programs+with+PVM/11.2+Building+Fault-Tolerant+Parallel+Applications/
http://journals.sagepub.com/doi/10.1177/1094342013488238
http://www.mcs.anl.gov/~lusk/papers/fault-tolerance.pdf

d0796r3.md 10/10/2018

9 / 34

The initial solution may only target systems with a single addressable memory region. It may thus
exclude devices like discrete GPUs. However, in order to maintain a unified interface going forward,
the initial solution should consider these devices and be able to scale to support them in the
future. In particular, in order to support heterogeneous systems, the abstraction must let the
interface query the resource topology of the system in order to perform device discovery.

The resource objects returned from the topology discovery interface are opaque, implementation-
defined objects. They would not perform any scheduling or execution functionality which would be
expected from an execution context, and they would not store any state related to an execution.
Instead, they would simply act as an identifier to a particular partition of the resource topology.
This means that the lifetime of a resource retrieved from an execution context must not be tied to
the lifetime of that execution context.

The lifetime of a resource instance refers to both validity and uniqueness. First, if a resource
instance exists, does it point to a valid underlying hardware or software resource? That is, could an
instance's validity ever change at run time? Second, could a resource instance ever point to a
different (but still valid) underlying resource? It suffices for now to define "point to a valid
underlying resource" informally. We will elaborate this idea later in this proposal.

Creation of a context expresses intent to use the resource, not just to view it as part of the
resource topology. Thus, if a resource could ever cease to point to a valid underlying resource,
then users must not be allowed to create a context from the resource instance, or launch
executions with that context. Context construction, and use of an executor with that context to
launch an execution, both assert validity of the context's resource.

If a resource is valid, then it must always point to the same underlying thing. For example, a
resource cannot first point to one CPU core, and then suddenly point to a different CPU core.
Contexts can thus rely on properties like binding of operating system threads to CPU cores.
However, the "thing" to which a resource points may be a dynamic, possibly software-managed
pool of hardware. Here are three examples of this phenomenon:

1. The "hardware" may actually be a virtual machine (VM). At any point, the VM may pause,
migrate to different physical hardware, and resume. If the VM presents the same virtual
hardware before and after the migration, then the resources that an application running on
the VM sees should not change.

2. The OS may maintain a pool of a varying number of CPU cores as a shared resource among
different user-level processes. When a process stops using the resource, the OS may reclaim
cores. It may make sense to present this pool as an execution resource.

3. A low-level device driver on a laptop may switch between a "discrete" GPU and an
"integrated" GPU, depending on utilization and power constraints. If the two GPUs have the
same instruction set and can access the same memory, it may make sense to present them
as a "virtualized" single execution resource.

In summary, a resource either identifies a thing uniquely, or harmlessly points to nothing. The
section that follows will justify and explain this.

Permit dynamic resource lifetime

d0796r3.md 10/10/2018

10 / 34

We should not assume that resource instances have the same lifetime as the running application.
For example, some hardware accelerators like GPUs require calling an initialization function before
a running application may use the accelerator, and calling a finalization function after using the
accelerator. The software interface for the accelerator may not even be available at application
launch time. For instance, the interface may live in a dynamic library that users may load at run
time. In the case of a pool of CPU cores managed by the operating system, the application might
have to request access to the pool at run time, and the operating system may have to do some
work in order to reserve CPU cores and set them up for use in the pool. Applications that do not
use the pool should not have to pay this setup cost. The more general cases of dynamic resource
discovery and fault tolerance, that we discussed above, also call for dynamic resource lifetimes.

Resources should not reference count

We considered mandating that execution resources use reference counting, just like shared_ptr.
This would clearly define resources' lifetimes. However, there are several arguments against
requiring reference counting.

1. Holding a reference to the execution resource would prevent execution from shutting down,
thus (potentially) deadlocking the program.

2. Not all kinds of resources may have lifetimes that fit reference counting semantics. Some
kinds of GPU resources only exist during execution, for example; those resources cannot be
valid if they escape the scope of code that executes on the GPU. In general, programming
models that let a "host" processor launch code on a "different processor" have this issue.

3. Reference counting could have unattractive overhead if accessed concurrently, especially if
code wants to traverse a particular subset of the resource topology inside a region executing
on the GPU (e.g., to access GPU scratch memory).

4. Since users can construct arbitrary data structures from resources in a resource hierarchy,
the proposal would need another resource type analogous to weak_ptr, in order to avoid
circular dependencies that could prevent releasing resources.

5. There is no type currently in the Standard that has reference-counting semantics, but does
not have shared_ in its name (e.g., shared_ptr and shared_future). Adding a type like this
sets a bad precedent for types with hidden costs and correctness issues (see (4)).

What does validity of a resource mean?

Here, we elaborate on what it means for a resource to be "valid." This proposal lets users
encounter a resource either while traversing the resource topology, or through a context that uses
the resource. "Viewing" the resource in the resource topology implies a lower level of
"commitment" or "permanence" than using the resource in a context. In particular,

1. Querying the system topology returns a structure of opaque identifiers, the
execution_resources, representing a snapshot of the current state of the system.

2. The query may require temporarily initializing underlying resources, but those underlying
resources need not stay active after the query.

3. Ability to iterate a resource's children in the resource topology need not imply ability to
create a context from that resource.

4. Creating a context from a resource asserts resource validity. If the resource is invalid,
context creation must fail. (Compare to how MPI functions report an error if they are called

d0796r3.md 10/10/2018

11 / 34

after MPI_Finalize has been called on that process.)
5. Use of a context to launch execution asserts resource validity, and must thus fail if the

resource is no longer valid.

Here is a concrete example. Suppose that company "Aleph" makes an accelerator that can be
viewed as a resource, and that has its own child resources. Users must call Aleph_initialize() in
order to see the accelerator and its children as resources in the resource topology. Users must call
Aleph_finalize() when they are done using the accelerator.

Questions:

1. What should happen if users are traversing the resource topology, but never use the
accelerator's resource (other than to iterate past it), and something else concurrently calls
Aleph_finalize()?

2. What should happen if users are traversing the accelerator's child resources, and something
else concurrently calls Aleph_finalize()?

3. What should happen if users try to create an execution context from the accelerator's
resource, after Aleph_finalize() has been called?

4. What should happen to outstanding execution contexts that use the accelerator's resource, if
something calls Aleph_finalize() after the context was created?

Answers:

1. Nothing bad must happen. Topology queries return a snapshot. Users must be able to iterate
past an invalidated resource. If users are iterating a resource R's children and one child
becomes invalid, that must not invalidate R or the iterators to its children.

2. Iterating the children after invalidation of the parent must not be undefined behavior, but the
child resources remain invalid. Attempts to view and iterate the children of the child
resources may (but need not) fail.

3. Context creation asserts resource validity. If the resource is invalid, context creation must
fail. (Compare to how MPI functions report an error if they are called after MPI_Finalize has
been called on that process.)

4. Use of a context in an executor to launch execution asserts resource validity, and must thus
fail if the resource is not longer valid.

Querying the relative affinity of partitions

In order to make decisions about where to place execution or allocate memory in a given systemʼs
resource topology, it is important to understand the concept of affinity between different execution
resources. This is usually expressed in terms of latency between two resources. Distance does not
need to be symmetric in all architectures.

The relative position of two components in the topology does not necessarily indicate their affinity.
For example, two cores from two different CPU sockets may have the same latency to access the
same NUMA memory node.

This feature could be easily scaled to heterogeneous and distributed systems, as the relative
affinity between components can apply to discrete heterogeneous and distributed systems as well.

d0796r3.md 10/10/2018

12 / 34

Proposal

Overview
In this paper we propose an interface for discovering the execution resources within a system,
querying the relative affinity metric between those execution resources, and then using those
execution resources to allocate memory and execute work with affinity to the underlying hardware
those execution resources represent. The interface described in this paper builds on the existing
interface for executors and execution contexts defined in the executors proposal [22].

Interface granularity

In this paper is split into two main parts:

A series of executor properties describe desired behavior when using parallel algorithms or
libraries. These properties provide a low granularity and is aimed at users who may have
little or no knowledge of the system architecture.
A series of execution resource topology mechanisms for discovering detailed information
about the system's topology and affinity properties which can be used to hand optimize
parallel applications and libraries for the best performance. These mechanisms provide a
high granularity and is aimed at users who have a high knowledge of the system
architecture.

Executor properties
Bulk execution affinity

In this paper we propose an executor property group called bulk_execution_affinity which
contains the nested properties none, balanced, scatter or compact. Each of these properties, if
applied to an executor enforce a particular guarantee of execution agent binding to the execution
resources associated with the executor in a particular pattern.

Below (Listing 2) is an example of executing a parallel task over 8 threads using bulk_execute,
with the affinity binding bulk_execution_affinity.scatter.

{
 auto exec = executionContext.executor();

 auto affExec = execution::require(exec, execution::bulk,
 execution::bulk_execution_affinity.scatter);

 affExec.bulk_execute([](std::size_t i, shared s) {
 func(i);
 }, 8, sharedFactory);
}

Listing 2: Example of using the bulk_execution_affinity property

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0443r7.html

d0796r3.md 10/10/2018

13 / 34

Execution resource topology
System topology

The system topology is comprised of a directed acyclic graph (DAG) of execution resources and
memory resources, representing unique hardware and software components available within the
system capable of executing work, and representing addressable memory regions, respectively.
The root node of the DAG is the system execution resource and represents the entire system.

Each execution resource may have any number of child execution resources representing a
finer granularity of the parent execution resource. Every execution resource within the system
topology (including the system execution resource) is exposed via an execution_resource
object.

Each execution resource may point to a number of memory resources representing the
memory regions on which memory can be allocated from that execution resource.

Each memory resource may also have any number of child memory resources representing a
finer granularity of the parent memory resource. A memory resource can be pointed to by
multiple execution resources. Every execution resource within the system topology is exposed
via an memory_resource object.

The system topology can be discovered by calling this_system::discover_topology. This will
discover all execution resources and memory resources available within the system and
construct the system topology DAG, describing a read-only snapshot at the point of the call, and
then return an execution_resource object exposing the system execution resource.

A call to this_system::discover_topology may invoke C++ library, system or third party library
API calls required to discover certain execution resources. However,
this_system::discover_topology must be thread safe and must initialize and finalize any OS or
third-party state before returning.

Below (Figure 2) is an example of what a typical system topology could look like.

Figure 2: Example system topology DAG

Execution resources

An execution_resource is a lightweight structure which identifies a particular execution resource
within a snapshot of the system topology. It can be queried for a name via name.

An execution_resource object can be queried for a pointer to its parent execution_resource via
member_of, and can also iterate over its children execution_resources via begin and end or access

d0796r3.md 10/10/2018

14 / 34

a particular child via operator[].

An execution_resource object can also be queried for the amount concurrency it can provide, the
total number of threads of execution supported by the associated execution resource.

An execution_resource object can be queried for a pointer to the root memory_resource
representing the memory resource which the associated execution resource can access via
memory_resource.

[Note: There may be a number of memory resources which an execution resource can
access, but the memory_resource pointer returned from memory_resource should represent
the most coarse grained of these. We may want to expand on this interface in the future. --
end note]

Below (Listing 3) is an example of iterating over every execution resource within the system
topology.

void print_topology(const execution::execution_resource &resource, int indent = 0)
{
 for (int i = 0; i < indent; i++) { std::cout << " "; }
 std::cout << resource.name() << ": " << resource.concurrency() << "\n";
 for (const execution::execution_resource child : resource) {
 print_topology(child, indent + 1);
 }
}

int main(int argc, char * argv[]) {
 auto systemResource = this_system::discover_topology();
 print_topology(systemResource);
}

Listing 3: Example of printing out all execution resources

Memory resources

An memory_resource is a lightweight structure which inherits from pmr::memory_resource and
identifies a particular memory resource within a snapshot of the system topology. It can be
queried for a name via name.

A memory_resource object can be queried for a pointer to its parent memory_resource via
member_of, and can also iterate over its children memory_resources via begin and end or access a
particular child via operator[].

An allocator capable of allocating memory in the memory region of the memory resource
represented by a memory_resource object by constructing a pmr::polymorphic_allocator from the
memory_resource object.

Querying relative affinity

d0796r3.md 10/10/2018

15 / 34

The affinity_query class template provides an abstraction of the relative affinity between an
execution_resource and a memory_resource for a particular affinity_operation and
affinity_metric. The affinity_query takes the affinity_operation and affinity_metric as
template parameters, and is constructed from an execution_resource and a memory_resource.

An affinity_query is not generally meaningful on its own. Instead, users are meant to compare
two affinity_querys via comparison operators, in order to get a relative magnitude of affinity. If
necessary, the underlying value of an affinity_query can be queried through native_affinity,
though the return value of this is implementation defined.

Below (listing 4) is an example of how to query the relative affinity between an
execution_resource and a memory_resource.

auto systemResource = this_system::discover_topology();

auto relativeLatency0 =
execution::affinity_query<execution::affinity_operation::read,
 execution::affinity_metric::latency>(systemResource[0],
systemResource.memory_resource());

auto relativeLatency1 =
execution::affinity_query<execution::affinity_operation::read,
 execution::affinity_metric::latency>(systemResource[1],
systemResource.memory_resource());

auto relativeLatency = relativeLatency1 > relativeLatency0;

Listing 4: Example of querying affinity between an execution_resource and a memory_resource.

[Note: This interface for querying relative affinity is a very low-level interface designed to be
abstracted by libraries and later affinity policies. --end note]

Execution context

The execution_context class provides an abstraction for managing a number of lightweight
execution agents executing work on an execution_resource and any execution_resources
encapsulated by it. An execution_context can then provide an executor for submitting work to the
execution_context. The execution_context is constructed with an execution_resource.

Below (Listing 5) is an example of how this extended interface could be used to construct an
execution_context from an execution_resource which is retrieved from
this_system::discover_topology.

auto systemResource = std::this_system::discover_topology();

execution::execution_context execContext(systemResource[0]);

auto &execResource = execContext.resource();

d0796r3.md 10/10/2018

16 / 34

// systemResource[0] should be equal to execResource

Listing 5: Example of constructing an execution_context from an execution_resource

When creating an execution_context from a given execution_resource, the executors associated
with it are bound to that execution_resource and any execution_resources encapsulated by it.
For example, when creating an execution_resource from a CPU socket resource, all executors
associated with the given socket will spawn execution agents with affinity to the socket partition of
the system (Listing 6).

auto systemResource = std::this_system::discover_topology();

// find_socket_resource is a user-defined function that finds a resource that is
// a CPU socket in the given resource list
auto socket = find_socket_resource(systemResource);

// Create an execution_context and executor associated with the CPU socket
execution_context context{socket};
auto executor = context.executor();

// Create an allocator from the memory resource associated with the GPU socket
pmr::polymorphic_allocator<int> alloc{socket.memory_resource()};

pmr::vector<int> vec(100, alloc);
std::generate(par.on(executor), std::begin(vec), std::end(vec), genFunc);

Listing 6: Example of executing and allocating with affinity

The construction of an execution_context on an execution_resource implies affinity (where
possible) to the given resource. This guarantees that all executors created from that
execution_context can access the resources and the internal data structures required to
guarantee the binding of execution agents.

Only developers that care about resource placement need to care about obtaining executors from
the correct execution_context object. Existing code for vectors and STL (including the Parallel STL
interface) remains unaffected.

If a particular policy or algorithm requires to access placement information, the resources
associated with the passed executor can be retrieved via the link to the execution_context.

Current resource

The execution_resource which underlies the current thread of execution can be queried through
this_thread::get_resource.

[Note: Binding threads of execution can provide performance benefits when used in a way
which compliments the application, however incorrect usage can lead to denial of service
and therefore can cause loss of performance. --end note]

d0796r3.md 10/10/2018

17 / 34

Header <execution> synopsis

namespace std {
namespace experimental {
namespace execution {

/* Bulk execution affinity properties */

struct bulk_execution_affinity_t;

constexpr bulk_execution_affinity_t bulk_execution_affinity;

/* Execution resource */

class execution_resource {
 public:

 using value_type = execution_resource;
 using pointer = execution_resource *;
 using const_pointer = const execution_resource *;
 using iterator = see-below;
 using const_iterator = see-below;
 using reference = execution_resource &;
 using const_reference = const execution_resource &;
 using size_type = std::size_t;

 execution_resource() = delete;
 execution_resource(const execution_resource &);
 execution_resource(execution_resource &&);
 execution_resource &operator=(const execution_resource &);
 execution_resource &operator=(execution_resource &&);
 ~execution_resource();

 size_type size() const noexcept;

 const_iterator begin() const noexcept;
 const_iterator end() const noexcept;

 const_reference operator[](std::size_t child) const noexcept;

 const_pointer member_of() const noexcept;

 size_t concurrency() const noexcept;

 std::string name() const noexcept;

 memory_resource::pointer memory_resource() const noexcept;

};

d0796r3.md 10/10/2018

18 / 34

/* Memory resource */

class memory_resource : public pmr::memory_resource {
 public:

 using value_type = memory_resource;
 using pointer = memory_resource *;
 using const_pointer = const memory_resource *;
 using iterator = see-below;
 using const_iterator = see-below;
 using reference = memory_resource &;
 using const_reference = const memory_resource &;
 using size_type = std::size_t;

 memory_resource() = delete;
 memory_resource(const memory_resource &);
 memory_resource(memory_resource &&);
 memory_resource &operator=(const memory_resource &);
 memory_resource &operator=(memory_resource &&);
 ~memory_resource();

 size_type size() const noexcept;

 const_iterator begin() const noexcept;
 const_iterator end() const noexcept;

 const_reference operator[](std::size_t child) const noexcept;

 const_pointer member_of() const noexcept;

 std::string name() const noexcept;

};

/* Execution context */

class execution_context {
 public:

 using executor_type = see-below;

 execution_context(const execution_resource &) noexcept;

 ~execution_context();

 execution_resource &resource() const noexcept;

 executor_type executor() const;

};

d0796r3.md 10/10/2018

19 / 34

/* Affinity query */

enum class affinity_operation { read, write, copy, move, map };
enum class affinity_metric { latency, bandwidth, capacity, power_consumption };

template <affinity_operation Operation, affinity_metric Metric>
class affinity_query {
 public:

 using native_affinity_type = see-below;
 using error_type = see-below

 affinity_query(const execution_resource &, const memory_resource &) noexcept;

 ~affinity_query();

 native_affinity_type native_affinity() const noexcept;

 friend expected<size_t, error_type> operator==(const affinity_query&, const
affinity_query&);
 friend expected<size_t, error_type> operator!=const affinity_query&, const
affinity_query&);
 friend expected<size_t, error_type> operator<(const affinity_query&, const
affinity_query&);
 friend expected<size_t, error_type> operator>(const affinity_query&, const
affinity_query&);
 friend expected<size_t, error_type> operator<=(const affinity_query&, const
affinity_query&);
 friend expected<size_t, error_type> operator>=(const affinity_query&, const
affinity_query&);

};

} // execution

/* This system */

namespace this_system {
 execution_resource discover_topology();
}

/* This thread */

namespace this_thread {
 std::experimental::execution::execution_resource get_resource() noexcept;
}

} // experimental
} // std

d0796r3.md 10/10/2018

20 / 34

Listing 7: Header synopsis

Bulk execution affinity properties
The bulk_execution_affinity_t property describes what guarantees executors provide about the
binding of execution agents to the underlying execution resources.

bulk_execution_affinity_t provides nested property types and objects as described below. These
properties are behavioral properties as described in [22] so must adhere to the requirements of
behavioral properties and the requirements described below.

Nested Property Type Nested Property Name Requirements

bulk_execution_affinity_t::none_t bulk_execution_affinity_t::none

A call to an
executor's bulk
execution
function may
or may not
bind the
execution
agents to the
underlying
execution
resources. The
affinity binding
pattern may or
may not be
consistent
across
invocations of
the executor's
bulk execution
function.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0443r7.html

d0796r3.md 10/10/2018

21 / 34

Nested Property Type Nested Property Name Requirements

bulk_execution_affinity_t::scatter_t bulk_execution_scatter_t::scatter

A call to an
executor's bulk
execution
function must
bind the
execution
agents to the
underlying
execution
resources such
that they are
distributed
across the
execution
resources
where each
execution
agent far from
it's preceding
and following
execution
agents. The
affinity binding
pattern must
be consistent
across
invocations of
the executor's
bulk execution
function.

d0796r3.md 10/10/2018

22 / 34

Nested Property Type Nested Property Name Requirements

bulk_execution_affinity_t::compact_t bulk_execution_compact_t::compact

A call to an
executor's bulk
execution
function must
bind the
execution
agents to the
underlying
execution
resources such
that they are
in sequence
across the
execution
resources
where each
execution
agent close to
it's preceding
and following
execution
agents. The
affinity binding
pattern must
be consistent
across
invocations of
the executor's
bulk execution
function.

d0796r3.md 10/10/2018

23 / 34

Nested Property Type Nested Property Name Requirements

bulk_execution_affinity_t::balanced_t bulk_execution_balanced_t::balanced

A call to an
executor's bulk
execution
function must
bind the
execution
agents to the
underlying
execution
resources such
that they are
in sequence
and evenly
spread across
the execution
resources
where each
execution
agent is close
to it's
preceding and
following
execution
agents and all
execution
resources are
utilized. The
affinity binding
pattern must
be consistent
across
invocations of
the executor's
bulk execution
function.

[Note: The requirements of the bulk_execution_affinity_t nested properties do not
enforce a specific binding, simply that the binding follows the requirements set out above
and that the pattern is consistent across invocations of the bulk execution functions. --end
note]

[Note: If two executors e1 and e2 invoke a bulk execution function in order, where
execution::query(e1, execution::context) == query(e2, execution::context) is true
and execution::query(e1, execution::bulk_execution_affinity) == query(e2,
execution::bulk_execution_affinity) is false, this will likely result in e1 binding execution

d0796r3.md 10/10/2018

24 / 34

agents if necessary to achieve the requested affinity pattern and then e2 rebinding to
achieve the new affinity pattern. --end note]

[Note: The terms used for the bulk_execution_affinity_t nested properties are derived
from the OpenMP properties [33] including the Intel specific balanced affinity binding [[34] -
-end note]

Class execution_resource
The execution_resource class provides an abstraction over an execution resource, that can
execute work on lightweight execution agents. An execution_resource can represent further
execution_resources. We say that these execution_resources are members of this
execution_resource.

[Note: Creating an execution_resource may require initializing the underlying software
abstraction when the execution_resource is constructed, in order to discover other
execution_resources accessible through it. However, an execution_resource is nonowning.
--end note]

execution_resource member types

iterator

Requires: iterator satisfies the Cpp17RandomAccessIterator requirements and
is_same_v<iterator_traits<iterator>::value_type, execution_resource::value_type> is well-
formed and resolves to true.

const_iterator

Requires: const_iterator satisfies the Cpp17RandomAccessIterator requirements and
is_same_v<iterator_traits<const_iterator>::value_type, execution_resource::value_type> is
well-formed and resolves to true.

execution_resource constructors

execution_resource() = delete;

[Note: An implementation of execution_resource is permitted to provide non-public
constructors to allow other objects to construct them. --end note]

execution_resource assignment

http://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-affinity.html
https://software.intel.com/en-us/node/522518

d0796r3.md 10/10/2018

25 / 34

execution_resource(const execution_resource &);
execution_resource(execution_resource &&);
execution_resource &operator=(const execution_resource &);
execution_resource &operator=(execution_resource &&);

execution_resource destructor

~execution_resource();

execution_resource operations

size_t concurrency() const noexcept;

Returns: The total concurrency available to this resource. More specifically, the number of threads
of execution collectively available to this execution_resource and any resources which are
members of, recursively.

size_type size() const noexcept;

Returns: The number of child execution_resources.

const_iterator begin() const noexcept;

Returns: A const iterator to the beginning of the child execution_resources.

const_iterator end() const noexcept;

Returns: A const iterator to the end of the child execution_resources.

const_reference operator[](std::size_t child) const noexcept;

Returns: A const reference to the specified child execution_resources.

const_pointer member_of() const noexcept;

d0796r3.md 10/10/2018

26 / 34

Returns: The parent execution_resource.

std::string name() const noexcept;

Returns: An implementation defined string.

Class memory_resource
The memory_resource class provides an abstraction which represents a memory resource, that
can allocate memory. A memory_resource can represent further memory_resources. We say that
these memory_resources are members of this memory_resource.

The memory_resource class must inherit from the pmr::memory_resource class.

[Note: Creating an memory_resource may require initializing the underlying software
abstraction when the memory_resource is constructed, in order to discover other
memory_resources accessible through it. However, an memory_resource is nonowning. --end
note]

memory_resource member types

iterator

Requires: iterator satisfies the Cpp17RandomAccessIterator requirements and
is_same_v<iterator_traits<iterator>::value_type, execution_resource::value_type> is well-
formed and resolves to true.

const_iterator

Requires: const_iterator satisfies the Cpp17RandomAccessIterator requirements and
is_same_v<iterator_traits<const_iterator>::value_type, execution_resource::value_type> is
well-formed and resolves to true.

memory_resource constructors

memory_resource() = delete;

[Note: An implementation of memory_resource is permitted to provide non-public
constructors to allow other objects to construct them. --end note]

memory_resource assignment

d0796r3.md 10/10/2018

27 / 34

memory_resource(const memory_resource &);
memory_resource(memory_resource &&);
memory_resource &operator=(const memory_resource &);
memory_resource &operator=(memory_resource &&);

memory_resource destructor

~memory_resource();

memory_resource operations

size_type size() const noexcept;

Returns: The number of child memory_resources.

const_iterator begin() const noexcept;

Returns: A const iterator to the beginning of the child memory_resources.

const_iterator end() const noexcept;

Returns: A const iterator to the end of the child memory_resources.

const_reference operator[](std::size_t child) const noexcept;

Returns: A const reference to the specified child memory_resources.

const_pointer member_of() const noexcept;

Returns: The parent memory_resource.

std::string name() const noexcept;

Returns: An implementation defined string.

d0796r3.md 10/10/2018

28 / 34

Class execution_context
The execution_context class provides an abstraction for managing a number of lightweight
execution agents executing work on an execution_resource and any execution_resources
encapsulated by it. The execution_resource which an execution_context encapsulates is referred
to as the contained resource.

execution_context member types

using executor_type = see-below;

Requires: executor_type is an implementation defined class which satisfies the general executor
requires, as specified by [22].

execution_context constructors

execution_context(const execution_resource &) noexcept;

Effects: Constructs an execution_context with the provided resource as the contained resource.

execution_context destructor

~execution_context();

Effects: May or may not block to wait any work being executed on the contained resource.

execution_context operators

execution_resource &resource() const noexcept;

Returns: A const-reference to the contained resource.

executor_type executor() noexcept;

Returns: An executor of type executor_type capable of executing work with affinity to the
contained resource.

Class template affinity_query
The affinity_query class template provides an abstraction for a relative affinity value between
two execution_resources, derived from a particular affinity_operation and affinity_metric.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0443r7.html

d0796r3.md 10/10/2018

29 / 34

affinity_query types

using native_affinity_type = see-below;

Requires: native_affinity_type is an implementation defined integral type capable of storing a
native affinity value.

using error_type = see-below;

Requires: error_type is an implementation defined integral type capable of storing the an error
code value.

affinity_query constructors

affinity_query(const execution_resource &, const memory_resource &) noexcept;

affinity_query destructor

~affinity_query();

affinity_query operators

native_affinity_type native_affinity() const noexcept;

Returns: Unspecified native affinity value.

affinity_query comparisons

friend expected<size_t, error_type> operator==(const affinity_query&, const
affinity_query&);
friend expected<size_t, error_type> operator!=const affinity_query&, const
affinity_query&);
friend expected<size_t, error_type> operator<(const affinity_query&, const
affinity_query&);
friend expected<size_t, error_type> operator>(const affinity_query&, const
affinity_query&);
friend expected<size_t, error_type> operator<=(const affinity_query&, const
affinity_query&);
friend expected<size_t, error_type> operator>=(const affinity_query&, const
affinity_query&);

d0796r3.md 10/10/2018

30 / 34

Returns: An expected<size_t, error_type> where,

if the affinity query was successful, the value of type size_t represents the magnitude of the
relative affinity;
if the affinity query was not successful, the error is an error of type error_type which
represents the reason for affinity query failed.

[Note: An affinity query is permitted to fail if affinity between the two execution resources
cannot be calculated for any reason, such as the resources are of different vendors or
communication between the resources is not possible. --end note]

[Note: The comparison operators rely on the availability of the expected class template (see
P0323r4: std::expected [30]), if this does not become available then an alternative
error/value construct will be adopted instead. --end note]

Free functions
this_system::discover_topology

The free function this_system::discover_topology is provided for discovering the system
topology.

execution_resource discover_topology();

Returns: An execution_resource object exposing the system execution resource.

Requires: If this_system::discover_topology().size() > 0, this_system::discover_topology()
[0] be the execution_resource use by std::thread. Calls to this_system::discover_topology()
may not introduce a data race with any other call to this_system::discover_topology().

Effects: Discovers all execution resources available within the system and constructs the system
topology DAG, describing a read-only snapshot at the point of the call.

Throws: Any exception thrown as a result of system topology discovery.

this_thread::get_resource

The free function this_thread::get_resource is provided for retrieving the execution_resource
underlying the current thread of execution.

std::experimental::execution::execution_resource get_resource() noexcept;

Returns: The execution_resource underlying the current thread of execution.

[Note: The execution_resource underlying the current thread of execution may not
necessarily be reachable from "top-level" resources visible through this_system. --end note]

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0323r4.html

d0796r3.md 10/10/2018

31 / 34

Future Work

How should we define the execution context?
This paper currently defines the execution context as a concrete type which provides the essential
interface requires to be constructed from an execution_resource and to provide an executor.

However going forward there are a few different directions the execution context could take:

A) The execution context could be the standard execution context type, which can be used
polymorphically in place of any concrete execution context type in a similar way to the
polymorphic executor [22]. This approach allows it to interoperate well with any concrete
execution context type, however it may be very difficult to define exactly what this type
should look like as the different kinds of execution contexts are still being developed and all
the different requirements are still to be fully understood.
B) The execution context could be a concrete executor type itself, used solely for the purpose
of being constructed from and managing a set of execution_resources. This approach would
allow the execution context to be tailored specifically for its intended purpose, but would
hinder interoperability with other concrete execution context types.
C) The execution context could be simply a concept, similar to OnewayExecutor or
BulkExecutor for executors, that requires the execution context type to provide the required
interface for managing execution_resources. This approach would allow for any concrete
execution context type to support the necessary interface for managing execution resources
by simply implementing the requirements of the concept. It would also avoid defining any
concrete or generic execution context type.

Straw Poll

Should the execution context be a generic polymorphic execution context, as described above in
option A?

Should the execution context be a concrete type specifically for the purpose of managing
execution resources, as described above in option B?

Should the execution context be a concept, as described above in option C?

Who should have control over bulk execution affinity?
This paper currently proposes the bulk_execution_affinity_t properties and it's nested properties
for allowing an executor to make guarantees as to how execution agents are bound to the
underlying execution resources. However providing control at this level may lead to execution
agents being bound to execution resources within a critical path. A possible solution to this is to
allow the execution context to be configured with bulk_execution_affinity_t nested properties,
either instead of the executor property or in addition. This would allow the binding of threads of
execution to be performed at the time of the execution context creation.

Straw Poll

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0443r7.html

d0796r3.md 10/10/2018

32 / 34

Straw Poll

Should the execution context be able to manage the binding of all threads of execution which it
manages using the bulk_execution_affinity_t nested properties?

Should the executor be able to manage the binding of all execution agents which it manages
using the bulk_execution_affinity_t nested properties?

Should both the execution context and the executor be able to manage the binding of threads of
execution and subsequently execution agents using the bulk_execution_affinity_t nested
properties?

Migrating data from memory allocated in one partition to another
With the ability to place memory with affinity comes the ability to define algorithms or memory
policies which describe at a higher level how memory is distributed across large systems. Some
examples of these are pinned, first touch, and scatter. This is outside the scope of this paper,
though we would like to investigate this in a future paper.

Straw Poll

Should the interface provide a way of migrating data between partitions?

Level of abstraction
The current proposal provides an interface for querying whether an execution_resource can
allocate and/or execute work, it can provide the concurrency it supports and it can provide a
name. We also provide the affinity_query structure for querying the relative affinity metrics
between two execution_resources. However, this may not be enough information for users to take
full advantage of the system. For example, they may also want to know what kind of memory is
available or the properties by which work is executed. We decided that attempting to enumerate
the various hardware components would not be ideal, as that would make it harder for
implementers to support new hardware. We think a better approach would be to parameterize the
additional properties of hardware such that hardware queries could be much more generic.

We may wish to mirror the design of the executors proposal [22] and have a generic query
interface using properties for querying information about an execution_resource. We expect that
an implementation may provide additional nonstandard, implementation-specific queries.

Straw Poll

Is this the correct approach to take? If so, what should such an interface look like and what kind
of hardware properties should we expose?

Acknowledgments
Thanks to Christopher Di Bella, Toomas Remmelg, and Morris Hafner for their reviews and
suggestions.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0443r7.html

d0796r3.md 10/10/2018

33 / 34

References
[1] P0687r0: Data Movement in C++

[2] The Design of OpenMP Thread Affinity

[3] Euro-Par 2011 Parallel Processing: 17th International, Affinity Matters

[4] Portable Hardware Locality

[5] SYCL 1.2.1

[6] OpenCL 2.2

[7] HSA

[8] OpenMP 5.0

[9] cpuaff

[10] Persistent Memory Programming

[11] MEMKIND

[12] Solaris pbind()

[13] Linux sched_setaffinity()

[14] Windows SetThreadAffinityMask()

[15] Chapel

[16] X10

[17] UPC++

[18] TBB

[19] HPX

[20] MADNESS

[21] Portable Hardware Locality Istopo

[22] A Unified Executors Proposal for C++

[23] P0737r0 : Execution Context of Execution Agents

[24] Exposing the Locality of new Memory Hierarchies to HPC Applications

[25] MPI

[26] Parallel Virtual Machine

[27] Building Fault-Tolerant Parallel Applications

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0687r0.pdf
https://link.springer.com/chapter/10.1007/978-3-642-30961-8_2
https://www.open-mpi.org/projects/hwloc/
https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-2.2.pdf
http://www.hsafoundation.com/standards/
http://www.openmp.org/wp-content/uploads/openmp-TR5-final.pdf
https://github.com/dcdillon/cpuaff
http://pmem.io/
https://github.com/memkind/memkind
https://docs.oracle.com/cd/E26502_01/html/E29031/pbind-1m.html
https://linux.die.net/man/2/sched_setaffinity
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686247(v=vs.85).aspx
https://chapel-lang.org/
http://x10-lang.org/
https://bitbucket.org/berkeleylab/upcxx/wiki/Home
https://www.threadingbuildingblocks.org/
https://github.com/STEllAR-GROUP/hpx
https://github.com/m-a-d-n-e-s-s/madness
https://www.open-mpi.org/projects/hwloc/lstopo/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0443r7.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0737r0.html
https://docs.google.com/viewer?a=v&pid=sites&srcid=bGJsLmdvdnxwYWRhbC13b3Jrc2hvcHxneDozOWE0MjZjOTMxOTk3NGU3
http://mpi-forum.org/docs/
http://www.csm.ornl.gov/pvm/
http://etutorials.org/Linux+systems/cluster+computing+with+linux/Part+II+Parallel+Programming/Chapter+11+Fault-Tolerant+and+Adaptive+Programs+with+PVM/11.2+Building+Fault-Tolerant+Parallel+Applications/

d0796r3.md 10/10/2018

34 / 34

[28] Post-failure recovery of MPI communication capability

[29] Fault Tolerance in MPI Programs

[30] p0323r4 std::expected

[31]: Intel® Movidius™ Neural Compute Stick

[32] MADNESS: A Multiresolution, Adaptive Numerical Environment for Scientific Simulation

[33] OpenMP topic: Affinity

[34] Balanced Affinity Type

http://journals.sagepub.com/doi/10.1177/1094342013488238
http://www.mcs.anl.gov/~lusk/papers/fault-tolerance.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0323r4.html
https://developer.movidius.com/
http://dx.doi.org/10.1137/15M1026171
http://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-affinity.html
https://software.intel.com/en-us/node/522518

