
Deprecate Certain Declarations in the Global Namespace

Document #: WG21 P0657R2
Date: 2018-10-07
Project: JTC1.22.32 Programming Language C++
Audience: LEWG ⇒ LWG
Reply to: Walter E. Brown <webrown.cpp@gmail.com>

Contents

1 Background 1
2 Discussion and proposal 2
3 Proposed wording 3
4 Addenda 4

4.1 Possible additional deprecations 4

4.2 Note for the future 4
5 Acknowledgments 4
6 Bibliography 4
7 Document history 5

Abstract

C library facilities are provided by C++ headers <cname>. As in all C++ headers, these entities’
names are declared within namespace std. Unlike other C++ headers, the <cname> headers may
optionally also declare these same names within the global namespace. This paper proposes to
deprecate these headers’ declarations at global namespace scope.

But what about your true name? It is not necessarily your given name.
But it is the one to which you are most eager to respond when called.

— VERA NAZARIAN

If you can’t see past my name, you can’t see me.
— DASHANNE STOKES

But he that filches from me my good name / Robs me of that which not
enriches him, / And makes me poor indeed.

— WILLIAM SHAKESPEARE

1 Background

According to [headers]/3–4, “The facilities of the C standard library are provided” by the contents
of the following headers,1 collectively known as <cname> headers:

<cassert>
<cctype>
<cerrno>
<cfenv>
<cfloat>
<cinttypes>

<climits>
<clocale>
<cmath>
<csetjmp>
<csignal>
<cstdarg>

<cstddef>
<cstdint>
<cstdio>
<cstdlib>
<cstring>
<ctime> <cu

char> <cw
char> <cwc
type>

Copyright c© 2017, 2018 by Walter E. Brown. All rights reserved.
1These headers, specified in Table 19, are related to, but distinct from, the now-deprecated “C standard library

headers” specified in Table 136 and collectively known as <name.h> headers.

1

mailto:webrown.cpp@gmail.com

2 P0657R2: Deprecate Certain Declarations in the Global Namespace

Let us briefly explore what namespaces are involved in declaring the names of these facilities:

• According to [contents]/2, “All library entities . . . are defined within the namespace std or
namespaces nested within namespace std.”

• In addition, footnote 167 immediately notes that “the C++ headers for C library facilities
(15.5.1.2) may also define names within the global namespace.”

• More precisely, [headers]/4 specifies that “Except as noted [elsewhere], the contents of each
header cname is the same as that of the corresponding header name.h as specified in the
C standard library (Clause 2). In the C++ standard library, however, the declarations . . .
are within namespace scope (6.3.6) of the namespace std. It is unspecified whether these
names . . . are first declared within the global namespace scope and are then injected into
namespace std by explicit using-declarations (9.8).”

• Finally, [depr.c.headers.other]/4 provides a clarifying Example: “The header <cstdlib>
assuredly provides its declarations and definitions within the namespace std. It may also
provide these names within the global namespace.”

In sum, these <cname> headers (a) declare all their entities’ names to be members of std, and
(b) may, but need not, additionally declare some or all their entities’ names to be members of
the global namespace. However, even if the <cname> headers declare none of their names in the
global namespace, those names are nonetheless reserved therein:

• [extern.names]/3: “Each name from the C standard library declared with external linkage
is reserved to the implementation for use as a name with extern "C" linkage, both in
namespace std and in the global namespace.”

• [extern.names]/4: “Each function signature from the C standard library declared with
external linkage is reserved to the implementation for use as a function signature with both
extern "C" and extern "C++" linkage, or as a name of namespace scope in the global
namespace.”

• [extern.names]/footnote 181: “The function signatures declared in <cuchar>, <cwchar>, and
<cwctype> are always reserved, notwithstanding the restrictions imposed in subclause 4.5.1
of Amendment 1 to the C Standard for these headers.”

• [extern.types]/1: “For each type T [itemized in footnote 182] from the C standard library, the
types ::T and std::T are reserved to the implementation and, when defined, ::T shall be
identical to std::T.”

2 Discussion and proposal

Why are names from the <cname> headers reserved in the global namespace as specified above?
Consider the following coding dilemmas for portable programs that #include one or more of these
headers:

1. Such programs can’t rely on having names from these headers available in the global
namespace, as those names “may, but need not” be declared there.

2. At the same time, such programs must account for the possibility that names from these
headers may have been declared in the global namespace and thus can possibly overload or
collide with user-declared names in that namespace.

In other words, portable programs must pretend that these declarations are in the global name-
space scope, but must avoid using them from there. The only way to use these names safely as
user-declared names is to avoid any use of the standard library.2

2Any header may #include one or more of the <cname> headers,: thus, indirect inclusion is always possible.

P0657R2: Deprecate Certain Declarations in the Global Namespace 3

Accordingly, to be safe, portable programs would have to treat all names declared in any
<cname> header as reserved in the global namespace, even had [extern.names] and [extern.types]
not already so specified. These seem unfortunate restrictions.

Footnote 173 already discourages programs from relying on these names in the global name-
space:

The “.h” headers dump all their names into the global namespace, whereas the
newer [“cname”] forms keep their names in namespace std. Therefore, the newer
forms are the preferred forms for all uses except for C++ programs which are
intended to be strictly compatible with C.

Taking the next step along this path, we now propose to deprecate, in these <cname> headers,
every entity’s declaration within the global namespace scope. Note that other C++ entities
declared at global scope (notably ::operator new and ::operator delete) are not affected by
this proposal. Names of macros are also unaffected, of course.

3 Proposed wording3

3.1 Adjust footnote 167 (attached to [contents]/2) as shown:

167) The C standard library headers (D.6) also define names within the global namespace,. while Although
a deprecated practice, the C++ headers for C library facilities (15.5.1.2) may also define names within the
global namespace.

3.2 Adjust [headers]/4 as shown:

4 Except as noted in Clause 20 through Clause 30 and Annex D, the contents of each header
cname is the same as that of the corresponding header name.h as specified in the C standard
library (Clause 2). In the C++ standard library, however, the declarations (except for names which
are defined as macros in C) are within namespace scope (6.3.6) of the namespace std. It is
unspecified whether these names (including any overloads added in Clause 16 through Clause
30 and Annex D) are first declared within the global namespace scope and are then injected into
namespace std by explicit using-declarations (9.8); however, declaring such names within the
global namespace scope is a deprecated practice for any C++ header.

3.3 Adjust [headers]/9 as shown:

9 Annex K of the C standard describes a large number of functions, with associated types and
macros, which “promote safer, more secure programming” than many of the traditional C library
functions. The names of the functions have a suffix of _s; most of them provide the same service
as the C library function with the unsuffixed name, but generally take an additional argument
whose value is the size of the result array. If any C++ header is included, it is implementation-
defined whether any of these names is declared in the global namespace. (None of them is
declared in namespace std.) However, declaring such names within the global namespace scope
is a deprecated practice for any C++ header.

3All proposed additions and deletions are relative to Working Draft [N4762]. Editorial notes are displayed against a
gray background.

4 P0657R2: Deprecate Certain Declarations in the Global Namespace

3.4 Adjust [res.on.headers]/1 as shown:

1 A C++ header may include other C++ headers, but should not include any C header. A C++
header shall provide the declarations and definitions that appear in its synopsis. A C++ header
shown in its synopsis as including other C++ headers shall provide the declarations and definitions
that appear in the synopses of those other headers.

3.5 Adjust [depr.c.headers.other]/2 as shown:

4 [Example: The header <cstdlib> assuredly provides its declarations and definitions within
the namespace std. ItAlthough a deprecated practice, <cstdlib> may also provide these names
within the global namespace. The header <stdlib.h> assuredly provides the same declarations
and definitions within the global namespace, much as in the C Standard. It may also provide
these names within the namespace std. — end example]

4 Addenda

4.1 Possible additional deprecations
We considered additionally deprecating the reciprocal relationship that allows <name.h> headers
to “also provide these names within the namespace std.” Since these headers are already
deprecated per [depr.c.headers], it seems pointless to do so. However, we are willing to provide
such wording if LEWG so directs.

4.2 Note for the future
If WG21 adopts this paper, we hope that at some future date the practice of injecting standard
library names into the global namespace will become a thing of the past. To accomplish this goal
will require that the already-deprecated <name.h> headers be excised from C++,4 and that we
then follow up on the measures proposed herein.

5 Acknowledgments

Many thanks to the readers of early drafts of this paper for their thoughtful comments.

6 Bibliography

[N4687] Richard Smith: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N4687 (post-Toronto mailing), 2017–07–30. http://wg21.link/n4687.

[N4762] Richard Smith: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N4762 (corrected post-Rappersville mailing), 2018–07–07. http://wg21.
link/n4762.

[P0619R1] Alisdair Meredith, Stephan T. Lavavej, and Tomasz Kamiński: “Reviewing Deprecated Facilities
of C++17 for C++20.” ISO/IEC JTC1/SC22/WG21 document P0619R1 (pre-Toronto mailing),
2017–03–19. http://wg21.link/p0619r1.

4See [P0619R1] for another view.

http://wg21.link/n4687
http://wg21.link/n4762
http://wg21.link/n4762
http://wg21.link/p0619r1

P0657R2: Deprecate Certain Declarations in the Global Namespace 5

7 Document history

Rev. Date Changes

0 2017-06-11 • Published as P0657R0, pre-Toronto.

1 2017-10-10 • Updated relative to post-Toronto Working Draft. • Cited paper by Meredith, et
al. • Adapted citations to use wg21.link. • Incorporated minor editorial improve-
ments. • Published as P0657R1, pre-Albuquerque.

2 2018-10-07 • Rebased on Working Draft [N4762]. • Published as P0657R2, pre-San Diego.

wg21.link

	Title
	Contents
	Abstract
	1 Background
	2 Discussion and proposal
	3 Proposed wording
	– Footnote 167
	– [headers]/4
	– [headers]/9
	– [res.on.headers]/1
	– [depr.c.headers.other]/2

	4 Addenda
	4.1 Possible additional deprecations
	4.2 Note for the future

	5 Acknowledgments
	6 Bibliography
	7 Document history

