
Document No: WG21 N4722
Date: 2018-02-04
Project: Programming Language C++
References: SC22 N5250, ISO/IEC PDTS 21544 , C++ Extensions for Modules
Reply to: Barry Hedquist, PL22.16 IR
Email: beh@peren.com

Attached are responses to National Body Comments for ISO/IEC PDTS 21544, C++ Extensions for
Modules Document numbers referenced in the attached comments are WG21 documents
unless otherwise stated.

I wish to acknowledge the work of Gabriel Dos Reis who acted as Chair and Editor for the
development of this Technical Specification. Without his outstanding effort, this document
would not have been completed.

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 1 of 40

US
001

ge We have concerns regarding the ability of tools
(e.g., SWIG, static analyzers), to consume source

code that contains module import declarations.
We feel that a requirement must be added to

ensure that it be possible to programmatically
rewrite a module import declaration in terms of

textual inclusion such that the included text
(however obtained) matches the semantic

behaviour of the module import declaration it
replaces.

This concern is motivated by observations that
module artifacts produced by compilers are being

(internally) distributed within real world build
environments in lieu of source code. In such

scenarios, tools are unable to construct their own
module artifacts in order to satisfy module import

declarations. We are hopeful that compiler
implementers will be willing and able to provide

tools that, given a module artifact, will generate
source code suitable for use as a textual inclusion

substitution for a module import declaration, or
suitable for constructing a module artifact

appropriate for the tool in question. The ability to
do so depends on the requirement indicated

above.

We will follow up with a paper detailing this

concern.

Add a requirement effectively stating that it must be
possible to mimic the effects of any module import
declaration with textual inclusion such that name
lookup and overload resolution produce the same
results.

Reject

There was no consensus to
adopt this change.

US
002

 Ge It is essential that the module design supports
users deploying a phased adoption, retaining a
non-module (#include) interface to their existing
code along-side a parallel module-interface for
newer clients. Remote clients need to be able to
indirectly import the contents of such a module
through both interfaces in the same translation
unit.

As the #included interface will live in the global
module, we need a means for an interface module
to adopt and export a restricted subset of the global
module. We will provide a more detailed paper with
potential solutions before the Albuquerque meeting.
It was previously suggested that simply ‘using’ the
global module names would suffice, but that does
not work with the TS as specified.

Accept with Modification

See P0832R0

For elaboration of the
original comment.

The specification of exported
using-declaration is clarified.

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2017/p0832r0.html

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 2 of 40

US
003

 Ed There is no Annex A collecting all the grammar
changes.

Add Annex A collecting all the grammar changes,
corresponding to Annex A in the C++ standard.

Reject

There was no consensus to
adopt this change.

US
004

 Ed There is no compatibility annex. Add Annex C for compatibility with C++17, at a
minimum noting that new keywords remove
previously valid identifiers from the users.

Rejected.

There was no consensus to
adopt this change at this
time, however an issue has
been opened, Modules Issue
18, for future consideration.

US
005

 01

paragraph 1 Ed It is customary to refer to Clauses with text of the
form “Clause 2”.

Use “Clause 2” instead of “2”. Accept

CA

006

 01

paragraph 2 Ge The normative interpretation of the document is
established by the subject paragraph to require
accurate perception of a specific colour. This
barrier to accessibility was not present in
documents such as ISO/IEC TS 19217:2015(E).

Follow the recommendations in Clause 4 of
ISO/IEC Guide 71:2014(E). The specific barrier
identified is listed as a design consideration under
ISO/IEC Guide 71:2014(E) subclause 7.2.2.3. A
possible mitigation is to include text markers for
delimiting added text and deleted text.

Accept - Editorial

CA

007

 01

paragraph 2 Te The editing instructions in the document do not
apply to ISO/IEC 14882. As of this writing, the
corresponding dated reference would be to
ISO/IEC 14882:2014. The document, as
presented, is not usable.

Refer to a suitable base document in an
appropriate manner.

Accept - Editorial

US
008

 02

paragraph 1 Ed The title given for the document in the subject
paragraph does not match that of the referenced
document (JTC 1/SC 22/WG 21 N 4660).
Additionally, N4660 is not a unique document
identifier. ISO/IEC DIS 14882:2017 is preferable.

Reference ISO/IEC DIS 14882:2017 appropriately. Accept

US
009

 02

paragraph 1 Ed It is not customary to use the capitalization in
“Clauses” as opposed to that of “clauses” when

Replace “Clauses” with “clauses” in each instance
within the subject paragraph.

Accept

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0501r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0501r3.pdf

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 3 of 40

referring to clauses in general.

CA

010

 02

paragraph 1 Ed The form required by ISO/IEC Directives, Part 2,
2016 subclause 15.5.1 is not followed.

Use the introductory text provided by the Directives. Accept

CA

011

 03

 Ed The introductory text from the ISO/IEC Directives,
Part 2, 2016 subclause 16.5.2 is not present.

Use the introductory text provided by the Directives. Accept

US
012

 04.01

paragraph 1 Te The wording does not clearly establish that
conformance with the TS is to be interpreted as
conformance with the document that results from
applying the editing instructions to the base
document as opposed to conformance with the
vanilla base document.

Replace “C++ Standard” with “C++ Standard as
modified by the editing instructions contained in this
document”.

Accept with Modification

Append the following to the

first sentence of paragraph
4.1/1:

Conformance requirements
for this specification are the

same as those defined in 4.1
in the C++ Standard, except

that references to the C++
Standard therein shall be

taken as referring to the
document that is the result of

applying the editing
instructions. Similarly, all

references to the C++
Standard in the resulting

document shall be taken as
as referring to the resulting

document itself.

CA

013

 04.01

paragraph 1 Te The wording does not clearly establish that
conformance with the TS is to be interpreted as
conformance with the document that results from
applying the editing instructions to the base
document as opposed to conformance with the
vanilla base document.

Replace “C++ Standard” with “C++ Standard as
modified by the editing instructions contained in this
document”.

Accept with Modification

Append the following to the
first sentence of paragraph

4.1/1:

Conformance requirements

for this specification are the

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 4 of 40

same as those defined in 4.1
in the C++ Standard, except

that references to the C++
Standard therein shall be

taken as referring to the
document that is the result of

applying the editing
instructions. Similarly, all

references to the C++
Standard in the resulting

document shall be taken as
as referring to the resulting

document itself.

CA
014

 05.11

 Ed Presumably, the note in paragraph 1 of the subject
subclause in the base document should be

updated to no longer claim that the export keyword
is unused.

Add an editing instruction to adjust the note
appropriately.

Accept

CA

015

 05.11

paragraph 1 Te Table 3 does not exist within subclause 5.11 in
WG 21 document N 4660.

Replace “Table 3” with “Table 5”. Accept - Editorial

GB
016

 06

 Te Modules should not be entities.

Various wording changes throughout the TS make
a module an entity, with a point of definition. This
appears to achieve nothing and should be struck.

Revert the changes to 6/3, 6.1, 6.3.2. Remove the
last sentence of 10.7/1 and the exclusion in 10.7/4:
"A namespace-scope declaration D of an entity
(other than a module)"

Reject

There was no consensus to
adopt this change at this
time, however an issue has
been added to the Modules
Issue List, Issue 19, for
future consideration.

GB
017

 06.01

 Ed Change to 6.1 does not follow surrounding
formatting

C++17 uses a bulleted list here. The proposed
addition does not make sense, and should in any
case include context showing how and where to
add the specified text.

Convert text to bulleted list. Provide the text prior to
the bulleted list as context. Merge the new example
text into the existing example in p2.

Accept

US 06.01 2 Te Clause 10 does not define a module-declaration or
proclaimed-ownership-declaration as being a

Don't mention them here either. Accept

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0501r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0501r3.pdf

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 5 of 40

018

declaration (although the latter contains one) since
they are the other possibilities for top-level-
declaration.

US
019

 06.01
[basic.def]

2 Ed This list is a bullet list in the latest draft of the
standard, so the comma-separated list should be
integrated into the bullet list.

Rewrite comma list as appending bullets to the
current bullet list, using ‘it is ‘ phrasing.

Accept

US
020

 06.02

 Ed The first editing instruction under the 6.2 heading
applies instead to 6.5 (as it says it does).

Move that text to section 6.5 in the TS. Accept

US
021

 06.02

 te In the “seventh bullet” to be added:

If all possible definitions of D appear in the purview
of the same module, then this bullet is only
reached if there is more than one definition of D in
the owning module. The statement that there can
be at most one definition of D in the owning
module seems paradoxical. Even a friendly
reading of this wording leaves questions over
whether inline functions defined in the purview of a
module in one module unit can be odr-used in
other translation units, and similarly whether
implicit instantiation may occur merely by importing
or through the use of module linkage. As well,
there seems to be deficiency in where class types
may be used in a way that requires the class type
to be complete.

Modify to instead add the new content to
immediately before the sentence involving the list in
the base document. Respectively replace the first
and second instances of “D” with “such an entity”
and “the entity”. Replace “can” with “shall”.

Modify [dcl.inline] to adjust the requirement that an
inline function or variable shall be defined in each
translation unit in which it is odr-used.

In particular, a definition in any module unit should
suffice for an inline function with module linkage. In
the case of an exported inline function, the
aggregate result would be that there can only be
one translation unit that exports the function.

It would make sense to

For example, require that the definition be in the
module interface unit if the inline function is odr-
used in a translation unit other than the one where
it is defined.

Accept with Modification

Replace the editing

instruction with "Modify
paragraph 6.2/6": as follows:

There can be more than one
definition of a class type

(Clause 12), enumeration
type (10.2), inline function

with external linkage
(10.1.6), inline variable with

external linkage (10.1.6),
class template (Clause 17),

non-static function template
(17.5.6), static data member

of a class template
(17.5.1.3), member function

of a class template
(17.5.1.1), or template

specialization for which
some template parameters

are not specified (17.7,
17.5.5) in a program

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 6 of 40

Modify [basic.def.odr] to adjust the similar (but
restricted to odr-use outside of a discarded
statement) requirement.

Similarly, modify [temp] to adjust the requirement
that various forms of templated entities be defined
in every translation unit in which it they are implicitly
instantiated.

As well, modify [basic.def.odr] to adjust the
requirement that a definition of a class is required in
a translation unit if the class is used such that the
class type needs to be complete.

provided that each definition

appears in a different

translation unit no prior
definition is visible at the

point where a definition
appears, and provided the

definitions satisfy the
following requirements. For

an entity with an exported
declaration, there shall be

only one definition of that
entity. [Note: If the definition

is not in the interface unit,
then at most one translation

unit can have and make use
of the definition.] Given such

an entity named D defined in
more than one translation

unit, then …

An issue (Module Issue 25)

was also created to
investigate to correct uses of

the term "translation units".

Similarly,

Module Issue 26 was

created to investigate uses
of the term "visibility".

Additionally, Module Issue

27 was created to check
uses of the term "prior" in the

base standards document.

GB
022

 06.02

 Ed Edit to 6.5/3 needs moving

The change "Modify bullet (3.2) of paragraph 6.5/3
as follows" appears in the section 6.2 One-
definition rule [basic.def.odr] rather than in 6.5
Program and linkage [basic.link]

Move the change to 6.5/3 from section 6.2 into
section 6.5

Accept

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0501r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0501r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0501r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0501r3.pdf

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 7 of 40

JP
023

 06.02

 Ed A modification for the subclause 6.5 in the original
document is described in the subclause 6.2.

Move to the subclause 6.5. Accept

CA

024

 06.02

 te In the “seventh bullet” to be added:

If all possible definitions of D appear in the purview
of the same module, then this bullet is only
reached if there is more than one definition of D in
the owning module. The statement that there can
be at most one definition of D in the owning
module seems paradoxical. Even a friendly
reading of this wording leaves questions over
whether inline functions defined in the purview of a
module in one module unit can be odr-used in
other translation units, and similarly whether
implicit instantiation may occur merely by importing
or through the use of module linkage. As well,
there seems to be deficiency in where class types
may be used in a way that requires the class type
to be complete.

Modify to instead add the new content to
immediately before the sentence involving the list in
the base document. Respectively replace the first
and second instances of “D” with “such an entity”
and “the entity”. Replace “can” with “shall”.

Modify [dcl.inline] to adjust the requirement that an
inline function or variable shall be defined in each
translation unit in which it is odr-used. For example,
require that the definition be in the module interface
unit if the inline function is odr-used in a translation
unit other than the one where it is defined. Modify
[basic.def.odr] to adjust the similar (but restricted to
odr-use outside of a discarded statement)
requirement.

Similarly, modify [temp] to adjust the requirement
that various forms of templated entities be defined
in every translation unit in which it they are implicitly
instantiated.

As well, modify [basic.def.odr] to adjust the
requirement that a definition of a class is required in
a translation unit if the class is used such that the
class type needs to be complete.

Accept with Modification

See US 021

CA

025

 06.02

 Ed The editing instruction for a paragraph under
subclause 6.5 in the base document appears out-
of-place in subclause 6.2.

Move the editing instruction to subclause 6.5. Accept

US
026

 06.02

6 Te This rule applies even to the global module,
prohibiting all multiply-defined entities.

Write "purview of a named module" instead of
"purview of a module".

Accept

US
027

 06.02 6 te This new bullet is under the heading "Given such
an entity named D defined in more than one

Rephrase as a prohibition (for multiply-defined D)
on appearing in a module at all.

Accept

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 8 of 40

translation unit, then", but prohibits multiple
definitions of D.

US
028

 06.02

6 Ge Some users have described an important path to
module adoption involving grouping existing
components into modules without prejudicing their
use via header files. Since exported entities have
the same external linkage they have always had,
the compatibility seems doable.

Change the rule to apply only when D's first
declaration is in a named module. Alternatively,
deliberately support the "export using" trick by
allowing using-declarations in different modules.

Accept

GB
029

 06.02

6 Ed New bullet in 6.2/6 does not fit enclosing context

The context of 6.2's bullets is "Given such an entity
named D defined in more than one translation unit,

then". It does not make sense to follow this with a
bullet that ends with "there can be at most one

definition of D".

Also, it does not make sense to constrain

declarations here. And that constraint is
unnecessary since it is not possible to redeclare

such an entity anywhere other than in the module
interface or a proclaimed-ownership-declaration

due to the linkage rules.

Replace the bullet with:

"there shall not be a definition of D within the

purview of a module (10.7)"

(Possibly add a note about module declaration if

this seems unobvious)

Accept

US
030

 06.03.6

 te In paragraph 6.3.6/1 of the base document as
modified by the PDTS:

There appears to be no requirement that an
exported name be declared in the module interface
unit of its owning module. The wording in the
subject paragraph appears to rely on such a
requirement.

Require in [dcl.module] or a subclause thereof that
an exported name be declared in the module
interface unit. In the alternative, extend the potential
scope of exported name X0 of a member of a
namespace N0 (regardless of whether the name is
declared in the module interface unit) as
appropriate.

Accept

US
031

 06.03.6

 te In paragraph 6.3.6/1 of the base document as
modified by the PDTS:

There appears to be neither a requirement that a
namespace is uniquely owned by a particular
module, nor a requirement that a namespace be
not in scope prior to importing a module that
exports it. The wording in the subject paragraph
appears to claim that the potential scope extends
“backwards” from an import declaration. It is also

Fully specify the effect of the positioning of an
import declaration in [basic.scope] and
[basic.lookup], or subclauses of the foregoing.

Accept

Addition of section 10.7.6 to

specifying "reachable
semantic properties", and

new paragraphs 5.2/2, 5.2/3,
and 5.2/4.

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 9 of 40

unclear how the positioning of an import
declaration interacts with the notion of “before” in
unqualified name lookup.

CA

032

 06.03.6

 te In paragraph 6.3.6/1 of the base document as
modified by the PDTS:

There appears to be no requirement that an
exported name be declared in the module interface
unit of its owning module. The wording in the
subject paragraph appears to rely on such a
requirement.

Require in [dcl.module] or a subclause thereof that
an exported name be declared in the module
interface unit. In the alternative, extend the potential
scope of exported name X0 of a member of a
namespace N0 (regardless of whether the name is
declared in the module interface unit) as
appropriate.

Accept

CA

033

 06.03.6

 te In paragraph 6.3.6/1 of the base document as
modified by the PDTS:

There appears to be neither a requirement that a
namespace is uniquely owned by a particular
module, nor a requirement that a namespace be
not in scope prior to importing a module that
exports it. The wording in the subject paragraph
appears to claim that the potential scope extends
“backwards” from an import declaration. It is also
unclear how the positioning of an import
declaration interacts with the notion of “before” in
unqualified name lookup.

Fully specify the effect of the positioning of an
import declaration in [basic.scope] and
[basic.lookup], or subclauses of the foregoing.

Accept

Addition of section 10.7.6 to

specifying "reachable
semantic properties", and

new paragraphs 5.2/2, 5.2/3,
and 5.2/4.

US
034

 06.03.6

1 te The rule's use of namespace-definition (a grammar
production) prevents it from applying in its own
example.

Write "If a name X is declared in a namespace N in
the module interface unit of a module M, the
potential scope of X includes the namespace N in
every module unit of M and, if the name X is
exported, in every translation unit that imports M.".

Accept with Modification

Modify paragraph 6.3.6/1 as

follows:

...

If the a name X of a
namespace member(not

having internal linkage) is
declared in a namespace-

definition of a namespace N
in the purview of in the

module interface unit of a
module M, the potential

scope of X includes the
namespace-definition s of

portion of the namespace N
in the purview of in every

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 10 of 40

module implementation unit
of M and, if the name X is

exported, in every translation
unit that imports M after an

import-declaration
nominating M.

US
035

 06.03.6

1 te The potential scope of such an X is extended
backwards in the interface unit.

Add "implementation" to "every module unit of M". Accept

US
036

 06.03.6
[basic,scope.
namespace]

1 Te Example to illustrate exporting namespace
members does not actually use namespace.

Add namespaces to the example, rather than
exporting from the global namespace.

Reject

There was no consensus to
adopt this change.

US
037

 06.03.6,
10.7.1

1, 1 te Exported names should not be visible before a
module is imported or declared (in an
implementation unit; these two paragraphs
disagree on this point).

Specify that the potential scope begins after such
an import/declaration. Rely on that scope rather
than on the names being "visible" (which is the stuff
of [basic.scope.hiding]).

Accept

Addition of section 10.7.6 to

specifying "reachable
semantic properties", and

new paragraphs 5.2/2, 5.2/3,
and 5.2/4.

CA
038

 06.04.2

 ed With regards to the example being added to the

second paragraph of the subclause in the base
document, the line indicated as being ill-formed

does not provide sufficient justification. In
particular, the declaration of g_impl in namespace

Q, an associated namespace of Q::X, is found in
the template definition context of g1; the g_impl so

declared is a candidate function according to WG
21 N 4660 subclause 17.6.4.2

[temp.dep.candidate].

Change the example to reflect either additional

reasoning for its claim of ill-formedness or remove
said claim. Move the example to subclause 17.6.4

[temp.dep.res] or a subclause thereof.

Accept

Updated example:

// Header file X.h

namespace Q {

struct X { };

}

// Interface unit of M1

#include "X.h" // global
module

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 11 of 40

namespace Q {

void g_impl(X, X);

}

export module M1;

export template<typename
T>

void g(T t) {

g_impl(t, Q::X{ }); // #1: ADL

in definition context

// finds Q::g_impl

}

// Interface unit of M2

#include "X.h"

import M1;

export module M2;

void h(Q::X x) {

g(x); // OK

}

GB
039

 06.04.2

2 Ed Inconsistent header name in example 6.4.2/2

The example in paragraph 6.4.2/2 has a comment
"Header file X.h" but the code in the interface unit
for M1 contains #include "H.h"

Change example to #include "X.h" Accept

US
040

 06.04.2

4 ed "module M other than the global module" is (now)
unnecessarily circuitous.

Use "named module M". Accept

US
041

 06.04.2

4 ge It is surprising that ADL can see non-exported
functions/templates, although there is some
precedent in the form of invisible friend functions.
Much more surprising is that it can see those
whose names have internal linkage or none at all.

Restrict the visibility, or add an example justifying
such insight on the part of ADL.

Accept

Example:

// Interface unit of Std

export module Std;

export template<typename

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 12 of 40

Iter>

void indirect_swap(Iter lhs,

Iter rhs)

{

swap(*lhs, *rhs);

// swap can be found only via

ADL

}

// Interface unit of M

import Std;

export module M;

struct S { /*... */ };

void swap(S& x, S& y) // #1

{ /* ...*/ }

void f(S* p, S* q)

{

indirect_swap(p, q);

// instantiation finds #1 via

ADL.

}

US
042

 06.05

 te A proclaimed-ownership-declaration can contain
any non-defining declaration (e.g., a module-
import-declaration, a static_assert-declaration, or
an export-declaration).

Add semantic or (preferably) grammar restrictions
to prevent nonsense.

Accept

US
043

 06.05

 te A proclaimed-ownership-declaration cannot refer
to a member of any (non-global) namespace: it
cannot appear in a namespace and cannot use a
qualified-id because it would have to have already
been declared (which is precluded by the new
6.2/6.7).

Allow a proclaimed-ownership-declaration to
appear in a namespace.

Accept

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 13 of 40

US
044

 06.05

 ge A proclaimed-ownership-declaration requires the
sort of NDR agreement-at-a-distance that modules
are supposed to preclude.

Remove them until a concrete use case (e.g., an
insurmountable performance problem) is known.

Reject

There was no consensus to
adopt this change.

US
045

 06.05

 te It is unclear if entities are intended to have both
module linkage and external linkage in some cases
as is the status quo of the PDTS given the
provisions of [basic.link]/4 in WG 21 N 4660. This
extends to cases where it appears that an entity
declared in the purview of a module may be found
to have module linkage in one translation unit and
not to have such linkage in another translation unit.

Of particular interest is the interaction with
[basic.link]/9 of WG 21 N 4660 with regards to
whether declarations of names with module
linkage are intended to declare different entities in
different modules even if they would be required to
declare the same entity if external linkage was
involved.

If the status quo of the normative text is intended,
add notes and examples to support the
interpretation. If the status quo is not intended,
modify the normative text to implement the intent.

Accept with Modification

5.1/2: Modify as follows:

[Note: Previously translated

translation units and
instantiation units can be

preserved individually or in
libraries. The separate

translation units of a
program communicate (6.5)

by (for example) calls to
functions whose identifiers

have external or module
linkage, manipulation of

objects whose identifiers
have external or module

linkage, or manipulation of
data files. Translation units

can be separately translated
and then later linked to

produce an executable
program (6.5). —end note]

6.2/6:

There can be more than one
definition of a class type

(Clause 12), enumeration
type (10.2), inline function

with external or module
linkage (10.1.6), inline

variable with external or
module linkage (10.1.6),

class template (Clause 17),
non-static function template

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 14 of 40

(17.5.6), static data member
of a class template

(17.5.1.3), member function
of a class template

(17.5.1.1), or template
specialization for which

some template parameters
are not specified (17.7,

17.5.5) in a program
provided that each definition

appears in a different
translation unit, and provided

the definitions satisfy the
following requirements.

Given such an entity named
D defined in more than one

translation unit, then ...

6.5/3: Modify as follows

a non-inline variable of non-

volatile const-qualified type
that is neither explicitly

declared extern nor
previously declared to have

external or module linkage;

or ...

6.5/8 bullet 6: Modify as

follows:

A type without linkage shall

not be used as the type of a
variable or function with

external or module linkage
unless

6.5/9 bullet 1: Modify as

follows:

both names have external

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 15 of 40

linkage, or both names have
module linkage and declared

in the purview of the same
module, or else both names

have internal linkage and are
declared in the same

translation unit; and …

10.1.6/6: Modify as follows :

Some definition for A an

inline function or variable
shall be defined reachable in

every translation unit in
which it is odr-used and the

function shall have exactly
the same definition in every

case (6.2). [Note: A call to
the inline function or a use of

the inline variable may be
encountered before its

definition appears in the
translation unit. —end note]

If the definition of a function
or variable appears in a

translation unit before its first
declaration as inline, the

program is ill-formed. If a
function or variable with

external or module linkage is
declared reachable via an

inline declaration in one
translation unit, it shall be

declared reachable via an
inline declaration in all

translation units in which it
appears is reachable; no

diagnostic is required. An
inline function or variable

with external or module
linkage shall have the same

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 16 of 40

address in all translation
units. [Note: A static local

variable in an inline function
with external or module

linkage always refers to the
same object. A type defined

within the body of an inline
function with external or

module linkage is the same
type in every translation unit.

—end note]

16.5.8/7: Modify as follows:

[Note: Literal operators and
literal operator templates are

usually invoked implicitly
through user-defined literals

(5.13.8). However, except for
the constraints described

above, they are ordinary
namespace-scope functions

and function templates. In
particular, they are looked up

like ordinary functions and
function templates and they

follow the same overload
resolution rules. Also, they

can be declared inline or
constexpr, they may have

internal, module, or external
linkage, they can be called

explicitly, their addresses
can be taken, etc. —end

note]

17.6.4.1/7: Modify as follows:

The instantiation context of

an expression that depends

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 17 of 40

on the template arguments is
the set of declarations with

external or module linkage
declared prior to the point of

instantiation of the template
specialization in the same

translation unit.

17.6.4.2/1: Modify as follows:

...

If the call would be ill-formed
or would find a better match

had the lookup within the
associated namespaces

considered all the function
declarations with external or

module linkage introduced in
those namespaces in all

translation units, not just
considering those

declarations found in the
template definition and

template instantiation
contexts, then the program

has undefined behavior.

US
046

 06.05

 te In the new paragraph to be added before
paragraph 6.5/8 of the base document:

Presumably, an entity that is exported should not
be given module linkage. If it is possible to declare
an exported entity with a non-exported declaration,
then the wording results in module linkage in too
many cases.

Replace “that is introduced by a non-exported
declaration” with “that is not exported”.

Accept - editorial

CA
047

 06.05

 ed The other bullets of the list in paragraph 2 of

[basic.link] in WG 21 N 4660 all describe the ability
of names (plural) declared in other scopes to

denote the same entity as the name being said to
have linkage. The text of the new bullet to be

In the bullet to be added, change “name” in “can be

referred to by name from other scopes” to “names”.

Accept

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 18 of 40

added is not consistent with that aspect of the
existing bullets.

CA

048

 06.05

 te It is unclear if entities are intended to have both
module linkage and external linkage in some cases
as is the status quo of the PDTS given the
provisions of [basic.link]/4 in WG 21 N 4660. This
extends to cases where it appears that an entity
declared in the purview of a module may be found
to have module linkage in one translation unit and
not to have such linkage in another translation unit.

Of particular interest is the interaction with
[basic.link]/9 of WG 21 N 4660 with regards to
whether declarations of names with module
linkage are intended to declare different entities in
different modules even if they would be required to
declare the same entity if external linkage was
involved.

If the status quo of the normative text is intended,
add notes and examples to support the
interpretation. If the status quo is not intended,
modify the normative text to implement the intent.

Accept with Modification

See US 045.

CA
049

 06.05

 te If it is intended that external linkage does not apply
to names that are not exported, then the treatment
of the language linkage of names should be
reviewed.

In the code below, partial specialization matching
for Q depends on the language linkage of the
name of B::foo(int); in turn, that language linkage
depends on whether the name has external
linkage (N4660 subclause 10.5 [dcl.link]/4).

Which function name is exported depends on the
result of the partial specialization matching.

export module M;
namespace A {
 extern "C" void foo(int);
}
namespace B {
 extern "C" void foo(int);
 void foo(float);
}
extern "C" { typedef void (&ty)(int); }

template <ty, ty>

Add the example (or a similar one) with annotations

indicating the intended treatment. Change
normative text to produce that treatment as

necessary.

Accept with Modification

Clarified normatively.

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 19 of 40

struct Q { using ty = int; };

template <ty F> struct Q<F, F> {
 using ty = float;
};

namespace A { export void foo(int); }
namespace B {
 export void foo(Q<A::foo, foo>::ty);
}

CA

050

 06.05

 te In the new paragraph to be added before
paragraph 6.5/8 of the base document:

Presumably, an entity that is exported should not
be given module linkage. If it is possible to declare
an exported entity with a non-exported declaration,
then the wording results in module linkage in too
many cases.

Replace “that is introduced by a non-exported
declaration” with “that is not exported”.

Accept - editorial.

US
051

2 06.05

1 Te Add a required indication of global module content
at the top of a translation unit (see

http://wg21.link/p0713).

Require something like “module;” as the first token
after preprocessing (i.e., ignoring comments and
whitespace).

Rejected

There was no consensus to
adopt this change at this
time, however an issue will
be generated and added to
the Modules Issues List for
future consideration.

US
052

 06.05

6 ge It is surprising that an external-linkage entity first
declared at block scope is owned by the global
module even if the declaration appears within the
purview of a named module and even though the
entity may become a member of a namespace
contained entirely by a named module.

Give the entity module linkage (just as if the
declaration had appeared in the namespace and
was not exported).

Accept with Modification.

Modify paragraph 6.5/6 as
follows:

The name of a function
declared in block scope and

the name of a variable
declared by a block scope

extern declaration have
linkage. If there is a visible

declaration of an entity with
linkage having the same

name and type, ignoring
entities declared outside the

innermost enclosing
namespace scope, the block

http://wg21.link/p0713
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0501r3.pdf

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 20 of 40

scope declaration declares
that same entity and

receives the linkage of the
previous declaration. If that

entity was exported by an
imported module or if the

containing block scope is in
the purview of a named

module, the program is ill-
formed. If there is more than

one such matching entity,
the program is ill-formed.

Otherwise, if no matching
entity is found, the block

scope entity receives
external linkage and is

owned by the global module.

US
053

 06.05

8 te Since "the purview of a module" includes the global
module, this grants everything module linkage.

Specify "purview of a named module". Accept

US
054

 06.05

8 te This contradicts /4 by giving names that were
already given their (normal) namespace's external
linkage (as well as, technically, namespaces not
explicitly exported) module linkage instead.

Alter /4 to avoid giving external linkage to module
members. Rephrase /8 in terms of "exported" rather
than "non-exported declaration".

Accept - editorial

US
055

 06.05
[basic.link]

2 Te The set of modules units in a module M is
essentially an open set, as new module units can
be created at any time. It is not clear how a module
unit can look into all other module units to
determine if a name is available through module
linkage.

Provide a means to close the set of module units
that comprise a module./

Reject

There was no consensus to
adopt this change.

US
056

 10 ed The colons for the new productions aren't green. Make them green! Accept

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 21 of 40

US
057

 10 ed The grammar for module-import-declaration is mis-
indented.

Align it with the others. Accept

US
058

 10 ge Needlessly, a template-declaration can contain an
export-declaration: "template<class T> export int
i;".

Introduce a grammar production to prevent this
(which could also remove the need for explicitly
prohibiting “export export int I;”).

Accept with Modification

Modify paragraph 17/2 as
follows:

A template-declaration can
appear only as a namespace

scope or class scope
declaration. Its declaration

shall not be an export-
declaration or a proclaimed-

ownership-declaration. In a
function template

declaration, the last
component of the declarator-

id shall not be a template-id.

US
059

 10.01.2

 te In the added paragraph “7”:

The definition of “owning module” in [dcl.module]
relates a module to a declaration, and does not
relate a module to an entity. The use of “owning
module” in the subject paragraph requires the
latter. The statement regarding how an entity is
“owned” by a module in [basic.link] appears to
apply only to non-exported entities.

Provide a suitable definition for “owning module” or
replace its use here.

Accept

CA

060
 10.01.2

 te In the added paragraph “7”:

The definition of “owning module” in [dcl.module]
relates a module to a declaration, and does not
relate a module to an entity. The use of “owning

Provide a suitable definition for “owning module” or
replace its use here.

Accept

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 22 of 40

 module” in the subject paragraph requires the
latter. The statement regarding how an entity is
“owned” by a module in [basic.link] appears to
apply only to non-exported entities.

US
061

 10.01.2

7 te Why do we need to specify that a single function
has the same address in each translation unit?
There is already only one function (without the
ODR's help). (If we did need to, it would be wrong
to restrict it to the ones importing the module and
leave out the module implementation units.)

Remove the stipulation. Accept

GB
062

 10.01.2

7 Ed [dcl.fct.spec]p7 second sentence should be a note

The second sentence "An exported inline function
has the same address in each translation unit[…]"
is a special case of the general rule that an inline
function has the same address in every translation
unit.

Change the second sentence to a note. Accept with Modification

See US 061

GB
063

 10.01.2

7 Te [dcl.fct.spec]p7 first sentence conflicts with inline
function rules

[dcl.inline]p6 says "An inline function or variable
shall be defined in every translation unit in which it
is odr-used", meaning that it is not possible to use
an exported inline function from an importing
translation unit.

Add changes to p6 excepting this case from the
normal rule.

Accept

CA

064

 10.03

 ed In the editing instruction at the end of the subject
subclause, “10.7” is referred to as a “section”
where it may be categorized in a better manner as
a subclause. The “as follows” is also odd across a
subclause boundary.

Replace “section” with “subclause”.

Replace “as follows:” with “with the content in
subclause 10.7 of this document”.

Accept

US
065

 10.03

1 ge [basic.link]/9 prohibits a namespace (with external
linkage, as most have since they are automatically
exported) in a module implementation unit from
sharing a name with (say) a function in another
translation unit.

Rename non-exported entities defined in a module
implementation unit to avoid the collision.

Reject

There was no consensus to
adopt this change.

GB
066

 10.03

1 Te Not all namespaces should be exported

Part of the purpose of the Modules TS is to permit
stronger encapsulation. Implicitly exporting all

Export a namespace only if it is either declared

within an export-declaration or contains an export-
declaration.

Reject

There was no consensus to
adopt this change.

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 23 of 40

namespaces violates this purpose and should be
reconsidered.

US
067

 10.03

3 te The statement in terms of grammar productions
prevents the auto-export in a namespace from
being recursive.

Write "Declarations in an exported namespace-
definition are implicitly exported.".

Accept

GB
068

 10.07

4 Te Do modules own namespaces?

"A namespace-scope declaration D of an entity
(other than a module) in the purview of a module M
is said to be owned by M". Should this only apply
to declarations that *define* entities? A namespace
is unusual in that it can be split over several TUs
(and its declarations are also a kind of definition) ;
should namespaces be added to the exclusion list?

Change the exclusion to "(other than a module or a

namespace)"

Note: exclusion wording also needs changing if the

change to remove modules from the list of entities
is accepted.

Accept

US
069

 10.07.1

1 ed The definition of "interface" is out of place among
the constraints.

Put the sentences beginning "The interface of...",
"The names of...", and "All entities with..." in a new
paragraph.

Accept with Modification.

Original paragraph is now
split into two paragraphs.

US
070

 10.07.1

1 ge Entities cannot be in the interface of a module,
since the interface is a set of declarations, not
entities.

Write "The names introduced in the interface of a
module...".

Accept with Modification

Modify 10.7.1/1 as follows:

... The names of all entities

in the interface of a module
are visible to any translation

unit importing that module.
All entities The names with

linkage other than internal
linkage declared introduced

or made visible (via an
import-declaration) in the

purview of the module
interface unit of a module M

are visible in the purview of
all module implementation

units of M.

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 24 of 40

US
071

 10.07.1

1 te It is left implied that an export-declaration has the
effect of its contained declaration(s).

Say so. Accept

US
072

 10.07.1

1 ge "export struct A; struct A {}; export struct A;" is said
to export the class definition iff the last declaration
is present, but no rule establishes completeness
as an attribute that can be exported or not.

Add after "importing that module" text describing
what the visible names designate (and how that
depends on the placement of export-declarations).

Accept with Modification

From US 034:

Modify paragraph 6.3.6/1 as
follows:

...

If thea name X of a

namespace member(not
having internal linkage) is

declared in a namespace-
definition of a namespace N

in the purview of in the
module interface unit of a

module M, the potential
scope of X includes the

namespace-definition s of
portion of the namespace N

in the purview of in every
module implementation unit

of M and, if the name X is
exported, in every translation

unit that imports M after an
import-declaration

nominating M.

US
073

 10.07.1

1 te The phrase "entities with linkage other than
internal linkage" is incorrect, since names are what
have (that sort of) linkage.

Rephrase in terms of name visibility (as in the
previous sentence).

Accept

GB
074

 10.07.1

1 Te Interface of a module does not contain entities.

The interface of a module is defined to be a set of

Modify the wording to make clear which entities are

exported by an export-declaration.

Accept

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 25 of 40

 export-declarations, which is not a set of entities.
But paragraph 1 goes on to talk about "entities in
the interface of a module", which leaves it unclear
precisely which entities are being discussed.

US
075

 10.07.1

2 te The phrase "types with external linkage" is wrong:
a type merely has linkage or not.

Rephrase in terms of the types' names (for linkage
purposes).

Accept with Modification

See GB 076

GB
076

 10.07.1

2 Te Type restrictions on exported declarations are
overly strict.

The type of an exported declaration is required to
only involve types with external linkage. That
disallows types without linkage, such as closure
types and local types, disallowing in practice many
uses of deduced return types. Example:

error, cannot be exported because return type has

no linkage
export auto f() {

 return [] { … };

}

Delete the type restriction in paragraph 2. Accept

US
077

 10.07.1

paragraph 1 te Namespaces with external linkage that are
exported only by virtue of [basic.namespace] are
not specified to form part of the interface of the
module from which it is exported.

Insert “all namespace-definitions excluding the
namespace-body and” before “all export-
declarations”.

Accept

US
078

 10.07.1

paragraph 1 te The statement regarding names being visible
should follow from the specification of
[basic.scope] and [basic.lookup]. The statement
here is not precise, and has the character of being
a candidate for a note.

The statement regarding entities being visible
should instead deal in names.

Have [basic.scope] and [basic.lookup] contain all of
the normative wording regarding names being
visible in relation to module units and translation
units importing a module. Use a note to cross
reference the appropriate subclauses from the
subject paragraph.

Accept

.

CA 10.07.1

paragraph 1 te Namespaces with external linkage that are
exported only by virtue of [basic.namespace] are

Insert “all namespace-definitions excluding the
namespace-body and” before “all export-

Accept

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 26 of 40

079

not specified to form part of the interface of the
module from which it is exported.

declarations”.

CA

080

 10.07.1

paragraph 1 te The statement regarding names being visible
should follow from the specification of
[basic.scope] and [basic.lookup]. The statement
here is not precise, and has the character of being
a candidate for a note.

The statement regarding entities being visible
should instead deal in names.

Have [basic.scope] and [basic.lookup] contain all of
the normative wording regarding names being
visible in relation to module units and translation
units importing a module. Use a note to cross
reference the appropriate subclauses from the
subject paragraph.

Accept

US
081

 10.07.1

paragraph 2 te Presumably, the requirement for external linkage
does not apply to “[e]very name” introduced by an
export-declaration. Instead the requirement applies
to names introduced by the declaration or
declaration-seq of an export-declaration as
interpreted through Clause 10 [dcl.dcl] paragraph 4
of N4660 (with further refinement to allow
enumerators, which have no linkage, of unscoped
enumerations with linkage). That is,

export auto f(int x) -> decltype(x);

is allowed instead of being ill-formed from the
presence of “x” and tenuous applicability of Clause
10 paragraph 4.

Replace “Every name introduced by an export-
declaration” with “Names introduced by the
declaration or declaration-seq of an export-
declaration”.

Immediately after “external linkage” insert “, or be
the name of an enumerator”.

Replace “an entity” with “such a name for an entity”.

Accept with Modification

Modify paragrah 10.7.1/2 as

follows:

Every A name introduced or
redeclared by an export-
declaration shall not have
external internal or module
linkage.

CA

082

 10.07.1

paragraph 2 te Presumably, the requirement for external linkage
does not apply to “[e]very name” introduced by an
export-declaration. Instead the requirement applies
to names introduced by the declaration or
declaration-seq of an export-declaration as
interpreted through Clause 10 [dcl.dcl] paragraph 4
of N4660 (with further refinement to allow
enumerators, which have no linkage, of unscoped
enumerations with linkage). That is,

export auto f(int x) -> decltype(x);

is allowed instead of being ill-formed from the
presence of “x” and tenuous applicability of Clause
10 paragraph 4.

Replace “Every name introduced by an export-
declaration” with “Names introduced by the
declaration or declaration-seq of an export-
declaration”.

Immediately after “external linkage” insert “, or be
the name of an enumerator”.

Replace “an entity” with “such a name for an entity”.

Accept with Modification

Modify paragrah 10.7.1/2 as
follows:

Every A name introduced or
redeclared by an export-
declaration shall not have

external internal or module
linkage.

US 10.07.1 Ed Exports define the interface of a module, but there Change "An export-declaration shall only appear in Accept with Modification

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 27 of 40

083

[dcl.module.in
terface]

doesn't seem to be anything prohibiting export in a
module implementation unit.

the purview of a module unit" to "An export-
declaration shall only appear in the purview of a
module interface unit"

Resolved by US 030.

US
084

 10.07.1
[dcl.module.in
terface]

 Te If a class declaration is exported from an interface
module, are the members exported from the class
definition found in an implementation module? It is
not clear if this is supported, and is essential
behaviour for a phased adoption of modules,
retaining a traditional #include interface in parallel.

Clarify if necessary, or add missing specification.

Add an example to make intent of the final spec
clear on this matter, even if other changes are
rejected.

Accept with Modification

The class is exported as an
incomplete class.

Add example to 10.7.1/1

// Interface unit of M

export module M;

export struct S;

// S exported as incomplete

// Implementation unit of M

module M;

struct S {

 int i;

};

// main program TU

import M;

int main() {

 return S{45}.i;

 // ill-formed: S is incomplete

}

US
085

 10.07.1
[dcl.module.in
terface]

 Te If an implementation module can provide an
exported class’s definition, how can we export
friend functions defined inside a class template,
whose signature cannot otherwise be written?

Add an example for the export of swap in this
template:

template <class T>
class Wrap {
 T data;

Reject

There was no consensus to
adopt this change.

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 28 of 40

 friend void swap(Wrap& lhs, Wrap& rhs) {
 using namespace std;
 swap(lhs.data, rhs.data);
 }
};

US
086

 10.07.1, 6.2

4, 6.7 ge These two paragraphs say that modules own
declarations, but 6.4.2/4.4, 6.5/2.2, 6.5/6, and
17.7/7 and /8 all refer instead to entities being
owned by modules.

Standardize on declarations; there is no
significance attached to the ownership of entities.
Alternatively, drop the "own" word entirely in favour
of purview.

Reject

There was no consensus to
adopt this change.

US
087

 10.07.2

paragraph 1 te The statement regarding making the exported
declarations visible to name lookup should be a
note referring to [basic.lookup] or subclauses
thereof.

Have [basic.scope] and [basic.lookup] contain all of
the normative wording regarding names being
visible in relation to module units and translation
units importing a module. Use a note to cross
reference the appropriate subclauses from the
subject paragraph.

Accept

CA

088

 10.07.2

paragraph 1 te The statement regarding making the exported
declarations visible to name lookup should be a
note referring to [basic.lookup] or subclauses
thereof.

Have [basic.scope] and [basic.lookup] contain all of
the normative wording regarding names being
visible in relation to module units and translation
units importing a module. Use a note to cross
reference the appropriate subclauses from the
subject paragraph.

Accept

US
089

 10.07.3

1 te "export module B; export import A;" does not make
the names from A exported names of B, so a
further "export import B;" will fail to propagate
them.

Rephrase in terms of altering the export set of B to
supply the expected transitivity.

Accept

CH
090

 10.07.3

1 ed Module names in the document are inconsistent,
especially using "M'" in this paragraph can be
confusing.

s/M'/M1/ or similar pronounceable and clearly
distinguishable name for the two mentioned
modules. Other places could be affected as well

Accept

US
091

 10.07.4

1 te This paragraph does not say what a proclaimed
ownership declaration is for—that is, why it would
be used—or what effect it has on clients of the
module. (Note: this feature is not mentioned in the
referenced proposal.)

Add such an explanation. A commented example
would also be helpful.

Accept

Added an example.

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 29 of 40

US
092

 10.07.4

paragraph 2 te There is no established “owning module” “in” a
proclaimed-ownership-declaration.

Replace “owning module” with “nominated module”. Accept

CA

093

 10.07.4

paragraph 2 te There is no established “owning module” “in” a
proclaimed-ownership-declaration.

Replace “owning module” with “nominated module”. Accept

US
094

 17.06.4

 ed In the examples being added in this subclause, the
purported module interface units do not contain a
module-declaration with the export keyword. This
does not match the definition of module interface
units from [dcl.module].

Add the export keyword in the appropriate place to
the module-declaration in each intended module
interface unit in the examples.

Accept

US
095

 17.06.4

 ed In the editing instruction, “a new paragraphs” does
not read like proper English.

Replace “a new paragraphs” with “new
paragraphs”.

Accept

GB
096

 17.06.4

 Ed Missing 'export' in some examples.

The examples in 17.6.4 are missing 'export' for the
module-declarations in the module interface units.

Prepend "export " to the module declarations for

each of F, M, A, B, and C.

Accept

CA
097

 17.06.4

 ed In the examples being added in this subclause,

one of the primary aspects to consider is the point-
of-instantiation of the enclosing template. The

examples do not describe the reasoning for why
their respective lookups of interest do or do not

succeed.

Change the examples to add an indication of the

relevant points-of-instantiation for the instantiation
context.

Accept

CA
098

 17.06.4

 ed The second example being added in the subject
subclause seems to imply that the impact of the

lookup rules leads to a reliable diagnostic as
opposed to cases with no diagnostic required or

Provide an example where the lookup rules lead to
undefined behaviour due to having, in addition to a

viable candidate that would be found in either case,
a better candidate that would only be found if the

Accept

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 30 of 40

undefined behaviour from provisions in 17.6.4.1
[temp.point]/8 and 17.6.4.2 [temp.dep.candidate]/1

of WG 21 N 4660.

lookup rules were modified to take additional
instantiation context into account.

CA

099

 17.06.4

 ed In the examples being added in this subclause, the
purported module interface units do not contain a
module-declaration with the export keyword. This
does not match the definition of module interface
units from [dcl.module].

Add the export keyword in the appropriate place to
the module-declaration in each intended module
interface unit in the examples.

Accept

US
100

1 17.06.4

3 Te The TS should not be issued until a means of
writing the currently ill-formed example, without

requiring the header file to be modified.

Clarify that the lookup context includes the names
visible in the set of modules from which types used
in the instantiation originated.

Reject

There was no consensus to
adopt this change.

US
101

 17.06.4

Temp.dep.res

3 te This example illustrates a problem, but doesn't
show the seriousness of it. The Modules TS
support for legacy header does not work. Consider
this code:

foo.h:

struct A {};

std::ostream &operator<<(std::ostream&, A);

namespace N {

struct B : A {

 // This could be a friend or a non-member
function

 // in namespace N

 friend std::ostream &operator<<(std::ostream&,
B);

};

}

bar.cppm:

#include "foo.h"

module bar;

The Modules TS must require implementations to
provide a solution that allows examples such as the
above to provide the obvious intended behavior.
For example, an implementation could track
unresolved argument dependent lookups in
templates in a module interface, and ensure that
any function that they could select is emitted.

Note that this is also fully addressed by the
changes proposed in http://wg21.link/p0273 and
http://wg21.link/p0529.

Reject

There was no consensus to
adopt this change.

http://wg21.link/p0273
http://wg21.link/p0529

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 31 of 40

template<typename T> struct Y {

 struct Z { N::B b; } z;

 void f() { std::cout << z.b; }

};

#ifndef NDEBUG

void dump(Y<int> y) { y.f(); }

#endif

baz.cpp:

import bar;

int main() {

 Y<int> y;

 y.f();

}

For a release build (when NDEBUG is defined),
this example silently does the wrong thing: only the
A base class of the B object is printed. The reason
is that foo.h is visible to unqualified lookup (which
finds the operator<< for A), but not visible to
argument-dependent lookup when instantiating
Y<int>::f (so operator<< for B can't be found).

Worse, for a debug build (when NDEBUG is not
defined), the instantiation context of Y<int>::f()
changes to be module bar, changing the behavior
of the program. So the bug does not appear when
debugging!

The proposed TS, in the paragraph cited,
describes this issue as an open question. We think
this is insufficient.

US
102

 17.06.4

3 ge There are known cases where this ADL failure
changes the meaning of a program instead of

Consider carefully whether it is unreasonably
expensive to provide the intuitively correct behavior.

Reject

There was no consensus to

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 32 of 40

making it ill-formed. If it is, provide that (more damaging) example to
make it clear for TS users how dangerous the
behavior is.

adopt this change.

GB
103

 17.06.4

3 Ed Duplication of 'current'

"This example is currently ill-formed by the current
specification."

Strike 'currently' Accept

US
104

 17.06.4

[temp.dep.res

]

2 and 3 Ed Module interface units have export in the module-

declaration, but the examples do not.

Change for example,

 module F

to

 export module F

Accept

US
105

 17.06.4
[temp.dep.res
]

3 Te It seems to be reasonable to assume this situation

happens fairly often for generic library code. The

requirement for having the operators for all the

types the template will be instantiated with

available at the point of definition of the template

seems to hinder the generality of the definition.

Make the example well-formed Reject

There was no consensus to
adopt this change.

US
106

 17.07

 ed Either the editing instruction is unclear as to where
the paragraphs are to be inserted, or the
paragraph numbering does not reflect the
numbering in WG 21 N 4660. There is an existing
paragraph numbered as 7 in N4660; the PDTS
identifies a new paragraph to be numbered as 7.

Renumber the paragraphs. Accept

US
107

 17.07

all te Template specializations do not have module or
external linkage (types can either have linkage or
not, but that is all).

If there is any way to name the "hidden"
specialization from outside the module, prohibit
doing so explicitly instead of invoking linkage

Accept with Modification

The paragraph was
removed. Furthermore an
issue was create to
investigate further the
ownership of specializations.

US
108

 17.07

all te The module ownership of template specializations
has no effect (they are not multiply defined
(6.2/6.7) and cannot be found by name lookup
(6.4.2/4.4)).

Drop the specification of the ownership. Accept

The paragraph was
removed. Furthermore an
issue was create to
investigate further the

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0501r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0501r3.pdf

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 33 of 40

 ownership of specializations.

US
109

 2 [intro.refs] 1 Ge Normative reference should be to a published
standard. N4660 is a working draft.

Replace reference to N4660 with a reference to
ISO 14882:2017

Accept

US
110

 4 [intro] Ge Address the third bullet of the committee design
principles proposal, P0559R0:

“When putting out a TS, a list of questions should
be prepared that need to be answered before
merging the TS into the C++ working paper. When
the questions have been answered, the effort to
merge the TS into the C++ WP should get high
priority”.

Insert a new sub clause within 4 General [intro]
containing the design questions we actively want
feedback on. In particular, how well does this
model reflect the concerns for Business
Requirements for Modules, P0678R0.

Reject

There was no consensus to
adopt this change.

US
111

 6 [basic] 3 Te Modules need to be able to export typedef names
for aliases to entities they do not own, in order to
be support purely additive adoption and
deployment, so typedef-names must also be
entities.

Add typedef-name to the list of entities, and alias

templates.
Accept with Modification

typedef-declarations and
alias-declarations can be
exported. However, they do
not declare entities as per
the base standards
document.

US
112

 6 [basic] 3 Te It is not clear how deduction guides interact with
modules, as they are non-members, part of a class
interface, but not entities.

Deduction guides should be exported alongside an
exported class from the owning module. A module
unit should not be allowed to add deduction guides
for a class that it does not own.

Reject

There was no consensus to
adopt this change.

US
113

 6 [basic] 3 Te Namespace aliases cannot be exported from an
exported namespace within a module, yet are
clearly an intended part of the interface.

Add a means to export namespace aliases. Accept

US
114

 6/3 ed "or this" is not in N4660 Update text being changed. Accept

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0559r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0678r0.pdf

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 34 of 40

US
115

 6/3 ge It does not seem useful to make modules be
entities; name lookup cannot find module names,
and the rules about declarations, definitions, and
linkage do nothing useful for modules.

Strike all changes to 6, 6.1, and 6.3.2 and the
sentence about name lookup in 10.7/1.

Reject

There was no consensus to
adopt this change.

US
116

 all ge We do not believe that the Modules TS in its
current form addresses specific, serious aspects of
the domain in which it exists: modularization,
exporting, and importing interfaces using a
semantic model rather than textual inclusion.
Specifically, it does not adequately enable
modules to be written which use and rely on non-
modular code. These limitations extend to both
exported interfaces and internal implementation
details.

We believe there are and will remain substantial
bodies of C++ code in shared libraries which do
not use modules -- for a variety of reasons -- for a
very long period of time (if not forever). This may
be required because some portion of users are
using older compilers, or merely because the
library is no longer being updated. Regardless, this
state will be commonplace and pervasive: it is
entirely analogous to the situation of many C
libraries, which remain to this day a fundamental
part of most real world C++ applications.

Given this, we think it is critical for a modules
system to ensure that these libraries will be able to
be used both in modular and non-modular builds.
The following use cases show how the current
Modules TS falls short of our needs:

Examine, refine, and eventually adopt changes
such as those proposed by http://wg21.link/p0273
and http://wg21.link/p0529 to address #1, #2, and
#3. (The mentioned papers include other changes
as well, but they are easily separated.)

Reject

There was no consensus to
adopt this change.

http://wg21.link/p0273
http://wg21.link/p0529

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 35 of 40

1) Use of non-modular library types within the
implementation details of a templated interface
exported by a module. Currently, the TS does not
specify ADL rules adequate to ensure users of an
exported templated interface would have
consistent and expected behavior (see the next
comment). Potential workarounds involve
untenable approaches, such as requiring all users
to #include an implementation detail header when
importing a module. Another potential workaround
involves using novel and surprising using
declarations to enumerate the details of the non-
modular library in a way that triggers re-export.
However, this would require the author of the
module to know the exact implementation details
of the non-modular library they are using and
encode them in their usage. Any change to the
non-modular interface would require updates in all
such users which, again, seems untenable.

2) Authoring a library whose API is made available
both through a header and a module, and where
the result is both syntax and ABI compatible. This
requires a rich ability to export entities whose one
definition is in a non-modular library through a
modular interface. The proposed mechanisms for
this are extremely cumbersome and impose severe
functional limitations. The approach also needs to
be viable for existing libraries to adopt at scale,
which we see as a requirement for modules
themselves to be adopted at scale. This means
that a usable approach must not presuppose a
dramatic redesign or reorganization of the APIs or
header files used by existing libraries. The
approach also must support fundamental API
facilities in widespread use, even if distasteful,
such as macros. Without this, adoption of the
modules system will be fragmented and slow, and
we believe it will ultimately not achieve its goals.

3) A non-modular existing library which exposes its

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 36 of 40

API through a module with the mechanisms of #2
must be able to *incrementally* move its API into a
fully modular form without breaking user code or
changing ABI. Again, for us this is an essential
property of a C++ modules system which we
expect to see widespread adoption.

Consider the process of incrementally adopting
modules across an existing, complex C++
codebase. One approach would be to modularize
"top down", or from the leaves of the project.
However, following this approach results in
problematic, buggy behavior due to the issues in
#1. Another approach would be "bottom up", or
from the lowest level components. However, the
lowest level component available will almost never
be the actual root. More often, it will depend on C
libraries and other non-modular code that cannot
be converted (either by lack of control, or by
explicit exclusion under the Modules TS -- such as
C libraries). Consequently, the modular "roots"
would require re-export of macros and other state
to preclude ODR violations when non-modular
code is exported transitively through modular code,
and back into other, non-modular code. The end
result is that there is no realistic incremental
adoption strategy for large existing codebases.
Instead, modules will only be usable when starting
from new components, in a new system.

A modules system lacking any of these facilities
and unable to be incrementally adopted at scale
will not be widely usable for our users. But we do
have a pressing need for solutions to the problems
that a modules system provides, we know about
the above issues, we know how to address them,
and have both a proposal addressing them and
extensive real-world implementation experience
with that approach. This different approach is
something we can adopt, and we suspect other

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 37 of 40

users of C++ will adopt it as well.

Our views and objections have been shaped by
iteratively developing and deploying a modular
model very close to the current TS. Early in that
effort, we discovered that these very low-level
minutiae are critical for widespread adoption.
Ignoring these considerations seems unwise for
such a substantial change to the C++ language --
especially as these objections are borne from
practical experience.

Beyond not being useful for addressing our needs
of a modules system in C++, we feel that
publishing the modules TS as-is, without
addressing these already known issues, will cause
fragmentation in the C++ ecosystem. Different
projects will adopt different systems, and the result
for users will be having to reason about two,
different modular systems. Given the ability to
avoid this confusion and the fact that we already
have strong understanding of these issues, we feel
that publishing the TS as is would harm the
community without providing significant benefit.

US
117

 ALL ge A module system without support for macros is
unshippable in our ecosystem.

Add support for macros. Reject

There was no consensus to
adopt this change.

US
118

 General ed The List of Tables contains no content. Remove the List of Tables. Accept

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 38 of 40

US
119

 General ed The document presented does not meet the
requirement in subclause 22.3.1 of the ISO/IEC
Directives, Part 2 that the clause numbering shall
be continuous: Clause 10 immediately follows
Clause 6, and Clause 17 immediately follows
Clause 10.

Renumber or add intervening Clauses. Reject

There was no consensus to
adopt this change.

US
120

 General ed The word “section” (and its plural form) appears in
various places of the PDTS document where the
corresponding form of “subclause” is probably
meant.

Replace “section” with “subclause” as appropriate
throughout the document. Do the same for the
corresponding plural forms.

Accept

CA

121

 General ge Further elaboration over the role of the module
interface unit would be helpful.

Either add notes through the editing instructions as
text to be applied to the base document, or make
recommendations on the use of module interface
units in an informative annex.

Reject

There was no consensus to
adopt this change.

CA

122

 General ge An exploration of possible implementation
strategies and models—considering what sort of
artifacts, extra payload, and configuration may be
necessary in the build environment at various
stages—would provide helpful information for
implementors and users alike.

Add an informative annex explaining various
models. Indicate in the informative annex how each
model would have different implications on the
subclauses labelled [lex.separate] and [lex.phases]
in WG 21 N 4660.

Reject

There was no consensus to
adopt this change.

CA

123

 General te Presumably in phase 8 of translation (from WG 21
N 4660 subclause 5.2 [lex.phases]), it is not meant
for it to be implementation-defined whether or not
the source of the translation units containing the
definitions of exported templates is required should
an instantiation be necessary. Alternatively, it is
probably meant for it to be implementation defined
whether or not the source of module interface
units, module units in general, or translation units
importing modules is required to be available in
phases 7 and 8.

Modify [lex.separate] and [lex.phases] to clarify
what, if any, source is intended to be required at
different stages of translation.

Accept with modification

Insert between the first note
and the second note of

paragraph 5.2/7 as follows:

It is implementation-defined
whether the source for the
module interface units of
modules nominated in
module-import-declarations
is required to be available.

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 39 of 40

CA

124

 General te It is unclear from the PDTS what the notion of a
global module is intended to achieve.

The PDTS wording produces surprising results in
various places when referring to the “purview of a
module” as opposed to the “purview of a named

module” in [basic.def.odr] (prohibiting multiple
definitions entirely) and in [basic.link] (granting
module linkage to many names).

Consider reducing the applicability of individual
rules to apply only to named modules (explicitly

noting cases where the global module is included).

Alternatively, reduce the purview of the global

module by requiring opt-in at the source level.

Accept

CA

125

 General te It is presumably not intended for main to be
possibly owned by a named module and not

exported.

Modify [basic.start.main] as necessary. Accept

CA
126

 General ed In subclause C.2.7 of WG 21 N 4660, it is

documented that export has been removed from
C++. The PDTS restores export in some form.

Add an editing instruction to update the subject

subclause.

Reject

There was no consensus to
adopt this change.

US
127

 General 05.2

te Presumably in phase 8 of translation (from WG 21
N 4660 subclause 5.2 [lex.phases]), it is not meant
for it to be implementation-defined whether or not
the source of the translation units containing the
definitions of exported templates is required should
an instantiation be necessary. Alternatively, it is
probably meant for it to be implementation defined
whether or not the source of module interface
units, module units in general, or translation units
importing modules is required to be available in
phases 7 and 8.

Modify [lex.separate] and [lex.phases] to clarify
what, if any, source is intended to be required at
different stages of translation.

Accept with modification

Insert between the first note

and the second note of
paragraph 5.2/7 as follows:

It is implementation-defined
whether the source for the
module interface units of
modules nominated in
module-import-declarations
is required to be available.

US
128

 General ALL ge Further elaboration over the role of the module
interface unit would be helpful.

Either add notes through the editing instructions as
text to be applied to the base document, or make
recommendations on the use of module interface
units in an informative annex.

Reject

There was no consensus to
adopt this change.

US
129

 General ALL ge An exploration of possible implementation
strategies and models—considering what sort of
artifacts, extra payload, and configuration may be

Add an informative annex explaining various
models. Indicate in the informative annex how each
model would have different implications on the

Reject

There was no consensus to

Responses to SC22 N5250, ISO/IEC PDTS 21544, C++ Extensions for Modules Date: 2018-02-04 Document: WG21 N4722 Project: 21544

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 40 of 40

necessary in the build environment at various
stages—would provide helpful information for
implementors and users alike.

subclauses labelled [lex.separate] and [lex.phases]
in WG 21 N 4660.

adopt this change.

D:\ISO\data\prod_iso_comment-collation\work\temp\ISO_IEC PDTS 21544 - JTC001-SC22-N5233_ANSI.docx: Collation successful

D:\ISO\data\prod_iso_comment-collation\work\temp\ISO_IEC PDTS 21544 - JTC001-SC22-N5233_BSI.doc: Collation successful

D:\ISO\data\prod_iso_comment-collation\work\temp\ISO_IEC PDTS 21544 - JTC001-SC22-N5233_JISC.doc: Collation successful

D:\ISO\data\prod_iso_comment-collation\work\temp\ISO_IEC PDTS 21544 - JTC001-SC22-N5233_SCC.doc: Collation successful

D:\ISO\data\prod_iso_comment-collation\work\temp\ISO_IEC PDTS 21544 - JTC001-SC22-N5233_SNV.doc: Collation successful

Collation of files was successful. Number of collated files: 5

SELECTED (number of files): 5

PASSED TEST (number of files): 5

FAILED TEST (number of files): 0

CCT - Version 4.0/2015

