
Executors Design Document P0761R1

Title: Executors Design Document
Document Number: P0761R1
Authors: Jared Hoberock, jhoberock@nvidia.com

Michael Garland, mgarland@nvidia.com
Chris Kohlhoff, chris@kohlhoff.com
Chris Mysen, mysen@google.com
Carter Edwards, hcedwar@sandia.gov
Gordon Brown, gordon@codeplay.com
Michael Wong, michael@codeplay.com

Date: 2017-10-16
Audience: SG1 - Concurrency and Parallelism
Reply-to: sg1-exec@googlegroups.com
Abstract: This paper is a companion to P0443 and describes

the executors programming model it specifies. This
paper is directed toward readers who want to
understand in detail the mechanics of P0443’s
programming model, and the rationale underpinning
the choices of that model’s design.

1 Introduction

Execution is a fundamental concern of C++ programmers. Every piece of every program executes somehow
and somewhere. For example, the iterations of a for loop execute in sequence on the current thread, while a
parallel algorithm may execute in parallel on a pool of threads. A C++ program’s performance depends
critically on the way its execution is mapped onto underlying execution resources. Naturally, the ability to
reason about and control execution is crucial to the needs of performance-conscious programmers.

In general, there is no standard and ubiquitous way for a C++ programmer to control execution, but there
should be. Instead, programmers control execution through diverse and non-uniform facilities which are often
coupled to low-level platform details. This lack of common interface is an obstacle to programmers that wish
to target execution-creating facitilies because each must be targeted idiosyncratically. For example, consider
the obstacles a programmer must overcome when targeting a simple function at one of many facilities for
creating execution:

void parallel_for(int facility, int n, function<void(int)> f) {
if(facility == OPENMP) {

#pragma omp parallel for
for(int i = 0; i < n; ++i) {

f(i);
}

}
else if(facility == GPU) {

parallel_for_gpu_kernel<<<n>>>(f);
}
else if(facility == THREAD_POOL) {

global_thread_pool_variable.submit(n, f);
}

}

Complexity. The first obstacle highlighted by this example is that each facility’s unique interface necessitates
an entirely different implementation. As the library introduces new facilities, each introduction intrudes upon
parallel_for’s implementation. Moreover, the problem worsens as the library introduces new functions.

1

http://wg21.link/P0443

Executors Design Document P0761R1

While the maintainance burden of a single simple function like parallel_for might be manageable, consider
the maintainance complexity of the cross product of a set of parallel algorithms with a set of facilities.

Synchronization. Execution created through different facilities has different synchronization properties.
For example, an OpenMP parallel for loop is synchronous because the spawning thread blocks until the loop
is complete due to an implicit barrier at the end of the parallel region by default. In contrast, the execution
of GPU kernels is typically asynchronous; kernel launches return immediately and the launching thread
continues its execution without waiting for the kernel’s execution to complete. Work submitted to a thread
pool may or may not block the submitting thread. Correct code must account for these synchronization
differences or suffer data races. To minimize the possibility of races, these differences should be exposed by
library interfaces.

Non-Expressivity. Our parallel_for example restricts its client to a few simple modes of execution
through the use of a single integer choosing which facility to use. These modes are so restrictive that even
simple generalizations are out of reach. For example, suppose the programmer wants to supply their own
thread pool rather than use the global thread pool, or perhaps the global pool augmented with some notion
or priority or affinity? Similarly, perhaps the programmer may wish to target a specific GPU or collection of
GPUs rather than some GPU implied by the surrounding environment. The vocabulary of parallel_for’s
interface is not rich enough to express these subtleties.

This example illustrates the kinds of problems we propose to solve with executors, which we envision as
a standard way to create execution in C++. There has already been considerable work within the C++
Standards Committee to standardize a model of executors. Google’s proposal interfaced executors to thread
pools and was briefly incorporated into a draft of the Concurrency TS [1, 2, 11–14]. Next, Chris Kohlhoff’s
proposal focused on asynchronous processing central to the requirements of the Networking TS [10]. Finally,
NVIDIA’s proposal focused on bulk execution for the parallel algorithms of the Parallelism TS [3–5]. A
unification of this work [6, 7] specifies the most current version [7] of the executor model this paper describes.
Our goal in this document is to outline our vision for programming with executors in C++ and explain how
we believe our design achieves this vision.

2 Terminology

We envision executors as an abstraction of diverse underlying facilities responsible for implementing execution.
This abstraction will introduce a uniform interface for creating execution which does not currently exist
in C++. Before exploring this vision, it will be useful to define some terminology for the major concepts
involved in our programming model: execution resources, execution contexts, execution functions, execution
agents and executors.

An execution resource is an instance of a hardware and/or software facility capable of executing a callable
function object. Different resources may offer a broad array of functionality and semantics and exhibit
different performance characteristics of interest to the performance-conscious programmer. For example, an
implementation might expose different processor cores, with potentially non-uniform access to memory, as
separate resources to enable programmers to reason about locality.

Typical examples of an execution resource can range from SIMD vector units accessible in a single thread to
an entire runtime managing a large collection of threads.

A program may require creating execution on multiple different kinds of execution resources, and these
resources may have significantly different capabilities. For example, callable function objects invoked on
a std::thread have the repertoire of a Standard C++ program, including access to the facilities of the
operating system, file system, network, and similar. By contrast, GPUs do not create standard threads of
execution, and the callable function objects they execute may have limited access to these facilities. Moreover,
functions executed by GPUs typically require special identification by the programmer and the addresses
of these functions are incompatible with those of standard functions. Because execution resources impart

2

Executors Design Document P0761R1

different freedoms and restrictions to the execution they create, and these differences are visible to the
programmer, we say that they are heterogeneous.

Our proposal does not currently specify a programming model for dealing with heterogeneous execution
resources. Instead, the execution resources representable by our proposal are implicitly homogeneous and
execute Standard C++ functions. We envision that an extension of our basic executors model will deal
with heterogeneity by exposing execution resource architecture. However, the introduction of a notion
of concrete architecture into C++ would be a departure from C++’s abstract machine. Because such a
departure will likely prove controversial, we think a design for heterogeneous resources is an open question
for future work.

An execution context is a program object that represents a specific collection of execution resources and the
execution agents that exist within those resources. In our model, execution agents are units of execution,
and a 1-to-1 mapping exists between an execution agent and an invocation of a callable function object.
An agent is bound1 to an execution context, and hence to one or more of the resources that the context
represents.

Typical examples of an execution context are a thread pool or a distributed or heterogeneous runtime.

An execution agent is a unit of execution of a specific execution context that is mapped to a single invocation
of a callable function on an execution resource. An execution agent can too have different semantics which
are derived from the execution context.

Typical examples of an execution agent are a CPU thread or GPU execution unit.

An executor is an object associated with a specific execution context. It provides one or more execution
functions for creating execution agents from a callable function object. The execution agents created are
bound to the executor’s context, and hence to one or more of the resources that context represents.

Executors themselves are the primary concern of our design.

3 Using Executors

We expect that the vast majority of programmers will interact with executors indirectly by composing them
with functions that create execution on behalf of a client.

3.1 Using Executors with the Standard Library

Some functions, like a new executor-aware overload of std::async, will receive executors as parameters
directly:

// get an executor through some means
my_executor_type my_executor = ...

// launch an async using my executor
auto future = std::async(my_executor, [] {

std::cout << "Hello world, from a new execution agent!" << std::endl;
});

This use of std::async has semantics similar to legacy uses of std::async, but there are at least two
important differences. First, instead of creating a new (internal) std::thread, this overload of std::async
uses my_executor to create an execution agent to execute the lambda function. In this programming
model, execution agents act as units of execution, and every use of an executor to create execution creates

1An execution agent is bound to an execution context and thus is restricted to execute only on the associated specific
collection of execution resources. For example, if a context includes multiple threads then the agent may execute on any of those
threads, or migrate among those threads.

3

Executors Design Document P0761R1

one or more execution agents. Secondly, the type of future object returned by this overload of std::async
depends on the type of my_executor. We will discuss executor-defined future types in a later section.

Other functions will receive executors indirectly. For example, algorithms will receive executors via execution
policies:

// get an executor through some means
my_executor_type my_executor = ...

// execute a parallel for_each "on" my executor
std::for_each(std::execution::par.on(my_executor), data.begin(), data.end(), func);

In this example, the expression par.on(my_executor) creates a parallel execution policy whose associated
executor is my_executor. When std::for_each creates execution it will use the executor associated with
this execution policy to create multiple execution agents to invoke func in parallel.

3.2 Using Executors with the Networking TS

The Networking TS provides numerous asynchronous operations, which are operations that allow callers
to perform network-related activities without blocking the initiating thread. Whenever an asynchronous
operation is initiated, the caller supplies a completion handler – a function object to be invoked when the
operation completes and passed the results of the operation. The Networking TS uses executors to determine
when, where and how a completion handler should be invoked. Every completion handler has an associated
executor, and a conforming asynchronous operation queries the completion handler to obtain this executor
object.

By default, a completion handler is associated to the system executor. This means that when the user writes:

// obtain an acceptor (a listening socket) through some means
tcp::acceptor my_acceptor = ...

// perform an asynchronous operation to accept a new connection
acceptor.async_accept(

[](std::error_code ec, tcp::socket new_connection)
{

...
}

);

the user places no constraints on when and where the completion handler (a lambda in this example) will be
invoked. (In practice, other things will constrain the invocation to specific threads. For example, if the user
is only running the std::experimental::net::io_context object from a single thread then invocation will
occur only on that thread.)

Instead, if the user wants the completion handler to be invoked using a particular set of rules, they may
specify an associated executor using the std::experimental::net::bind_executor function:

// obtain an acceptor (a listening socket) through some means
tcp::acceptor my_acceptor = ...

// obtain an executor for a specific thread pool
auto my_thread_pool_executor = ...

// perform an asynchronous operation to accept a new connection
acceptor.async_accept(

std::experimental::net::bind_executor(my_thread_pool_executor,
[](std::error_code ec, tcp::socket new_connection)

4

Executors Design Document P0761R1

{
...

}
)

);

The example above runs the completion handler on a specific thread pool. Other common reasons for an
associated executor include guaranteeing non-concurrency for a group of completion handlers (by using a
std::experimental::net::strand executor), or to embellish invocation with logging or tracing.

The std::experimental::net::bind_executor function is a convenience function for specifying the as-
sociated executor. For user-defined completion handler types, the association may also be established by
providing a nested executor_type typedef and get_executor member function, or by specializing the
std::experimental::net::associated_executor trait.

The vast majority of Networking TS users are expected to be pure consumers of asynchronous operations,
as illustrated above. However, more advanced uses may require the development of custom asynchronous
operations. In this case the library user will write code to interact with the associated executor directly. This
interaction will adhere to the following pattern.

To begin, an asynchronous operation will obtain the associated executor from the completion handler by
calling the get_associated_executor function:

auto ex = std::experimental::net::get_associated_executor(completion_handler)

If an asynchronous operation completes immediately (that is, within the asynchronous operation’s initiating
function), the completion handler is scheduled for invocation using a never-blocking executor created from
the original executor ex:

auto never_blocking_ex = std::execution::require(ex, std::execution::never_blocking);

never_blocking_ex.execute(
[h = std::move(completion_handler), my_result]() mutable
{

h(my_result);
}

);

A never-blocking executor is required to ensure that operations that always complete immediately do not
lead to deadlock or stack exhaustion.

Otherwise, to inform the executor that there is now a pending operation, the asynchronous operation specifies
that execution::outstanding_work is a preferred property of the executor.

auto work_ex = std::execution::prefer(ex, std::execution::outstanding_work);

The asynchronous operation keeps a copy of this executor until the operation is complete.

When the asynchronous operation completes some time later, it invokes the completion handler using a
(preferably) possibly-blocking executor:

auto possibly_blocking_ex = std::execution::prefer(work_ex, std::execution::possibly_blocking);

possibly_blocking_ex.execute(
[h = std::move(completion_handler), my_result]() mutable
{

h(my_result);
}

);

This allows the result to be delivered to the application code with minimal latency.

5

Executors Design Document P0761R1

Finally, if an asynchronous operation consists of multiple intermediate steps, these steps may be scheduled
using an executor which may execute submitted tasks as continuations of the calling execution agent:

auto continuation_ex = std::execution::prefer(work_ex, std::execution::continuation);

// asynchronous operation consists of multiple steps
continuation_ex.execute(my_intermediate_complete_handler);

This informs the executor of the relationship between the intermediate completion handlers, and allows it to
optimize the scheduling and invocation accordingly.

3.3 Using Executors with Application-Level Libraries

When composing executors with functions which use them to create execution agents, we use the following
convention. When a function uses an executor to create a single agent, the first parameter is an executor.
When a function uses an executor to create multiple agents at once, the first parameter is an execution policy
whose associated executor is the implied executor to use. The rationale is that the requirements imposed
by execution policies include ordering among agents organized into a group executing as a unit. Logically,
requirements that only apply to agents executing as a group are nonsensical to functions which only create a
single agent.

3.3.1 Executors Associated with Execution Policies

For example, the library interface for a numerical solver of systems of linear equations might parameterize a
solve function like this:

template<class ExecutionPolicy>
void solve(ExecutionPolicy policy, const matrix& A, vector& x, const vector& b) {

// invert the matrix using the policy
matrix A_inverse = invert(policy, A);

// multiply b by A's inverse to solve for x
x = multiply(A_inverse, b);

}

By organizing solve’s implementation around an execution policy, it is insulated from the details of creating
execution. This frees the implementer to apply their expertise to the application domain – namely, numerical
linear algebra – rather than orthogonal problems introduced by execution. Simultaneously, this organization
decouples solve from any particular kind of execution. Because an execution policy is exposed in solve’s
interface and forwarded along through its calls to lower-level functions, solve’s client is in complete control
over its execution.

This is a powerful way to compose libraries. For example, a client of solve may initially choose to execute
solve sequentially:

solve(std::execution::seq, A, x, b);

Later, the client may introduce parallelism as an optimization:

solve(std::execution::par, A, x, b);

A further optimization might locate solve’s execution nearer to the memory it accesses in order to avoid the
performance hazards of non-uniform access. Associating an executor with affinity for particular processor
cores could constrain solve to execute on those cores:

executor_with_affinity exec = ...

6

Executors Design Document P0761R1

solve(std::execution::par.on(exec), A, s, b);

In the meantime, the efficiency of solve or the quality of its output may have been improved through the
use of a more sophisticated algorithm. Composing libraries around execution policies and executors allows
these two programming activities to proceed independently.

3.3.2 Executors for Coarse-Grained Tasks

A similar argument holds for application library interfaces that consume executors directly in order to create
execution agents one by one. For example, consider a library function that executes some long-running
task. To avoid requiring clients to wait for its completion, this function immediately returns a future object
corresponding to its completion:

template<class Executor>
std::execution::executor_future_t<Executor,void>
long_running_task(const Executor& exec) {

// first, start two subtasks asynchronously
auto future1 = subtask1(exec);
auto future2 = subtask2(exec);

// finally, start subtask3 when the first two are complete
return subtask3(exec, future1, future2);

}

Consider long_running_task’s interface. Because the ordering requirements imposed by an execution
policy are irrelevant to long_running_task’s semantics, it is parameterized by an executor instead of
an execution policy. The type of future object returned by long_running_task is given by the type
trait std::execution::executor_future_t, which names the type of future returned when asynchronous
execution is created by the type of executor used as its template parameter. The implementation forwards
along the executor similarly to our previous example. First, the executor is passed to calls to two independent,
asynchronous subtasks. Then, the two futures corresponding to these subtasks along with the executor are
used to call the third subtask. Its asynchronous result becomes the overall resulting future object.

3.4 Obtaining Executors

So far, we have not addressed the issue of actually obtaining an executor to use. We believe that there will
be many different sources of executors.

Executors from contexts. Though our proposal makes no such requirement, we believe many execution
contexts will provide methods to create executors bound to them. For example, our proposal defines
static_thread_pool, which is an execution context representing a simple, manually-sized thread pool.
Clients may receive an executor which creates work on a static_thread_pool by calling its .executor
method:

// create a thread pool with 4 threads
static_thread_pool pool(4);

// get an executor from the thread pool
auto exec = pool.executor();

// use the executor on some long-running task
auto task1 = long_running_task(exec);

Executors from policies. Another standard source of executors will be the standard execution policies,
which will each have a similar .executor method:

7

Executors Design Document P0761R1

// get par's associated executor
auto par_exec = std::execution::par.executor();

// use the executor on some long-running task
auto task2 = long_running_task(par_exec);

System executors. We may also decide to provide access to implied “system” executors used by various
Standard Library functions. For example, the legacy overload std::async(func) could be redefined in terms
of executors in a way that also preserves its semantics. If the implied executor used by the legacy overload
std::async(func) were made available, programmers porting their existing codes to our proposed new
overload std::async(exec, func) could target executors in a way that preserved the original program’s
behavior.

Executor adaptors. Still other executors may be “fancy” and adapt some other type of base executor. For
example, consider a hypothetical logging executor which prints output to a log when the base executor is
used to create execution:

// get an executor from a thread pool
auto exec = pool.executor();

// wrap the thread pool's executor in a logging_executor
logging_executor<decltype(exec)> logging_exec(exec);

// use the logging executor in a parallel sort
std::sort(std::execution::par.on(logging_exec), my_data.begin(), my_data.end());

We do not believe this is an exhaustive list of executor sources. Like other adaptable, user-defined types
ubiquitous to C++, sources of executors will be diverse.

4 Building Control Structures

The previous section’s examples illustrate that for the vast majority of programmers, executors will be opaque
objects that merely act as abstract representations of places where execution happens. The mechanics of
direct interaction with executors to create execution are irrelevant to this audience. However, these mechanics
are relevant to the small audience of programmers implementing control structures. By control structure,
we mean any function which uses an executor, directly or indirectly, to create execution. For example,
std::async, the parallel algorithms library, solve, and long_running_task are all examples of control
structures because they use a client’s executor to create execution agents. In particular, our proposal adds
executor support to the following control structures from the Standard Library and technical specifications.

Table 2: The control structures we propose to introduce.

Standard Library Concurrency TS Parallelism TS Networking TS
invoke future::then define_task_block post
async shared_future::then define_task_block-

_restore_thread
dispatch

parallel algorithms task_block::run defer
asynchronous
operations

8

Executors Design Document P0761R1

Standard Library Concurrency TS Parallelism TS Networking TS
strand<> (N.B.
although an executor
itself, a strand acts as
a control structure
over other executors in
order to guarantee
non-concurrent
execution)

4.1 Fundamental Interactions with Executors via Execution Functions

Some control structures (e.g., solve) will simply forward the executor to other lower-level control structures
(invert and multiply) to create execution. However, at some low level of the call stack, one or more control
structures must actually interact with the executor at a fundamental level. std::async is an illustrative
example. Consider a possible implementation:

template<class Executor, class Future, class... Args>
execution::executor_future_t<Executor,auto>
async(const Executor& exec, Function&& f, Args&&... args) {

// bind together f with its arguments
auto g = bind(forward<Function>(f), forward<Args>(args)...);

// introduce single-agent, two-way execution requirements
auto new_exec = execution::require(exec, execution::single, execution::twoway);

// implement with execution function twoway_execute
return new_exec.twoway_execute(g);

}

The implementation proceeds in three steps. First, we package f along with its arguments into a nullary
function, g. Next, using execution::require, we introduce requirements for single-agent, two-way executor
properties. This step uses exec to produce a new executor, new_exec which encapsulates these requirements.
Finally, we call an execution function. Execution functions are the fundamental executor interactions
which create execution. In this case, that execution functions is .twoway_execute, which creates a single
execution agent to invoke a nullary function. The agent’s execution is asynchronous, and .twoway_execute
returns a future corresponding to its completion.

Before describing the precise semantics of execution functions in detail, we will first describe executor
properties which affect the way they behave.

4.1.1 Executor Properties

Executor properties are objects associated with an executor. Through calls to execution::require and
execution::prefer, users may either strongly or weakly associate a property with a given executor. Such
reassociations may transform the executor’s type in the process. For example, in our example implementation
of std::async, we use execution::require to strongly require the single and twoway properties from
exec. This operation produces new_exec, whose type may be different from the type of the original executor,
exec.

4.1.1.1 Standard Properties

9

Executors Design Document P0761R1

Our design includes eight sets of properties we have identified as necessary to supporting the immediate
needs of the Standard Library and other technical specifications. Two of these sets describe the directionality
and cardinality of executor member functions which create execution. When a user requests these properties,
they are implicitly requesting an executor which provides the execution functions implied by the request.

Directionality. Some execution functions return a future object corresponding to the eventual completion
of the created execution. Other execution functions allow clients to “fire-and-forget” their execution and
return void. We refer to fire-and-forgetful execution functions as “one-way” while those that return a future
are “two-way”2. Two-way execution functions allow executors to participate directly in synchronization
rather than require inefficient synchronization out-of-band. On the other hand, when synchronization is not
required, one-way execution functions avoid the cost of a future object.

The directionality properties are execution::oneway, execution::twoway, and execution::then. An
executor with the execution::oneway property has either or both of the one-way execution functions:
.execute() or .bulk_execute(). An executor with the execution::twoway property has either or both
of the two-way execution functions: .twoway_execute() or .bulk_twoway_execute(). An executor with
the execution::then property has either or both of the then_ execution functions: then_execute() or
bulk_then_execute(). Because a single executor type can have one or more of these member functions all
at once, these properties are not mutually exclusive.

Cardinality. Cardinality describes how many execution agents the use of an execution function creates,
whether it be a single agent or multiple agents. We include bulk agent creation in our design to enable
executors to amortize the cost of execution agent creation over multiple agents. By the same token, support
for single-agent creation enables executors to apply optimizations to the important special case of a single
agent.

There are two cardinality properties: execution::single and execution::bulk. An executor with the
execution::single property has at least one execution function which creates a single execution agent
from a single call: .execute(), twoway_execute(), or then_execute(). Likewise, an executor with the
execution::bulk property has at least one execution function which creates multiple execution agents in
bulk from a single call: .bulk_execute(), bulk_twoway_execute(), or .bulk_then_execute(). Like the
directionality properties, the cardinality properties are not mutually exclusive, because it is possible for a
single executor type to have both kinds of execution functions.

Unlike the directionality and cardinality properties, which imply the existence of certain execution functions,
other properties modify the behavior of those execution functions. Moreover, those properties modify the
behavior of all of an executor’s execution functions.

Blocking. An executor’s execution functions may or may not block their client’s execution pending the
completion of the execution they create. Depending on the relationship between client and executed task,
blocking guarantees may be critical to either program correctness or performance. An executor may guarantee
that its execution functions never block, possibly block, or always block their clients.

There are three mutually-exclusive blocking properties : execution::never_blocking, execution::possibly-
_blocking, and execution::always_blocking. The blocking properties guarantee the blocking behavior of
all of an executor’s execution functions. For example, when .execute(task) is called on an executor whose
blocking property is execution::never_blocking, then the forward progress of the calling thread will never
be blocked pending the completion of the execution agent created by the call. The same guarantee holds for
every other execution function of that executor. The net effect is that the blocking behavior of execution
functions is completely a property of the executor type. However, that property can be changed at will by
transforming the executor into a different type through a call to require().

Continuations. There are two mutually-exclusive properties to indicate that a task submitted
to an executor represents a continuation of the calling thread: execution::continuation and
execution::not_continuation. A client may use the execution::continuation property to indicate

2We think that the names “one-way” and “two-way” should be improved.

10

Executors Design Document P0761R1

that a program may execute more efficiently when tasks are executed as continuations of the client’s calling
thread.

Future task submission. There are two mutually-exclusive properties to indicate the likelihood of additional
task submission in the future. The execution::outstanding_work property indicates to an executor that
additional task submission is likely. Likewise, the execution::not_outstanding_work property indicates
that no outstanding work remains.

Bulk forward progress guarantees. There are three mutually-exclusive properties which de-
scribe the forward progress guarantees of execution agents created in bulk. These describe the
forward progress of an agent with respect to the other agents created in the same submission.
These are execution::bulk_sequenced_execution, execution::bulk_parallel_execution, and
execution::bulk_unsequenced_execution, and they correspond to the three standard execution policies.

Thread execution mapping guarantees. There are two mutually-exclusive properties for describing
the way in which execution agents are mapped onto threads. thread_execution_mapping guarantees that
execution agents are mapped onto threads of execution, while new_thread_execution_mapping extends that
guarantee by guaranteeing that each execution agent will be individually executed on a newly-created thread
of execution. These guarantees may be used by the client to reason about the availability and sharing of
thread-local storage over an execution agent’s lifetime.

Allocators. A final property, allocator, associates an allocator with an executor. A client may use this
property to suggest the use of a preferred allocator when allocating storage necessary to create execution. Of
the properties we have described, allocator(alloc) is the only one which takes an additional parameter;
namely, the desired allocator to use.

The properties of execution created by fundamental executor interactions vary along three dimensions we
have identified as critical to an interaction’s correctness and efficiency. The combination of these properties
determines the customization point’s semantics and name, which is assembled by concatenating a prefix, infix,
and suffix.

4.1.1.2 User-Defined Properties

In addition to the standard properties enumerated by the previous section, our design also allows user-defined
properties. A programmer may introduce a user-defined executor property by defining a property type and
specializing either the require or prefer customization points. When execution::require (respectively,
execution::prefer) is used with an executor and the user’s property, the user’s specialization of require
(prefer) may introduce the property to the executor.

As an example, consider the task of adding logging to an executor. We wish to note every time the executor
creates work through .execute by printing a message. First, we create a user-defined property and a “fancy”
executor adaptor which wraps another executor, printing a message each time the wrapped executor creates
work:

// a user-defined property for logging
struct logging { bool on; };

// an adaptor executor which introduces logging
template<class Ex>
struct logging_executor
{

bool on;
Ex wrapped;

auto context() const noexcept { return wrapped.context(); }
bool operator==(const logging_executor& other) const noexcept { return wrapped == other.wrapped; }
bool operator!=(const logging_executor& other) const noexcept { return wrapped != other.wrapped; }

11

Executors Design Document P0761R1

template<class Function>
void execute(Function f) const
{

if(on) std::cout << ".execute() called" << std::endl;
wrapped.execute(f);

}

// intercept require & prefer requests for logging
logging_executor require(logging l) const { return { l.on, wrapped }; }
logging_executor prefer(logging l) const { return { l.on, wrapped }; }

// forward other kinds of properties to the wrapped executor
template<class Property>
auto require(const Property& p) const

-> logging_executor<execution::require_member_result_t<Ex, Property>>
{

return { on, wrapped.require(p) };
}

template<class Property>
auto prefer(const Property& p) const

-> logging_executor<execution::prefer_member_result_t<Ex, Property>>
{

return { on, wrapped.prefer(p) };
}

};

In addition to the typical executor member functions, our logging_executor also provides imple-
mentations of .require and .prefer. The first of these are overloads which intercept our special
logging property, and their implementations return a copy of the logging_executor with logging
enabled or disabled, as indicated by the state of the logging parameter. The last two members
of logging_executor intercept “foreign” executor properties and forward them to the wrapped ex-
ecutor. Their result is a new logging_executor which wraps the type of executor returned by
wrapped.require(p), or wrapped.prefer(p), respectively. This type is given by the type traits
execution::require_member_result_t and execution::prefer_member_result_t.

The final task is to provide a free function overload of require to introduce a logging_executor when the
provided executor does not have the logging property:

template<class Ex>
std::enable_if_t<!execution::has_require_member_v<Ex, logging>, logging_executor<Ex>>
require(Ex ex, logging l)
{

return { l.on, std::move(ex) };
}

This overload of require is only enabled when the given executor type cannot natively introduce logging
through a call to .require(logging). Note that because our logging_executor does provide such a member
function, this overload of require is disabled for logging_executors. This policy prevents redundantly
nested instantiations of the form logging_executor<logging_executor<...>>.

12

Executors Design Document P0761R1

4.1.2 Execution Functions

Once a user has introduced any requirements or preferences, they use the resulting executor’s execution
functions to actually create execution. There are six of these, resulting from the cross product of the
cardinality and directionality properties:

Name Cardinality Directionality
execute single oneway
twoway_execute single twoway
then_execute single then
bulk_execute bulk oneway
bulk_twoway_execute bulk twoway
bulk_then_execute bulk then

In a concrete context, the type of the executor, and therefore its suite of member functions, is known a priori.
In such cases, execution functions may be called safely without the use of execution::require:

void concrete_context(const my_oneway_single_executor& ex)
{

auto task = ...;
ex.execute(task);

}

In a generic context, the programmer should use execution::require to ensure that the necessary execution
function is available.

template<class Executor>
void generic_context(const Executor& ex)
{

auto task = ...;

// ensure .execute() is available with execution::require()
execution::require(ex, execution::single, execution::oneway).execute(task);

}

In any case, each execution function has a unique semantic meaning corresponding to a particular use case.

4.1.2.1 Single-Cardinality Execution Functions

First we describe the general semantics of single-cardinality execution functions. For example,
.twoway_execute:

template<class Function>
executor_future_t<Executor, std::invoke_result_t<std::decay_t<Function>>
twoway_execute(Function&& f) const;

In the descriptions that follow, let Executor be the type of *this; that is, the type of the executor. The
only parameter of .twoway_execute is a callable object encapsulating the task of the created execution. The
member function is const because executors act as shallow-const “views” of execution contexts. Creating
execution does not mutate the view. Single-agent execution functions receive the callable as a forwarding
reference. Single-agent, two-way customization points return the result of the callable object through a future
as shown above. One-way customization points return void.

For .then_execute, the second parameter is a future which is the predecessor dependency for the execution:

template<class Function, class Future>

13

Executors Design Document P0761R1

executor_future_t<Executor,std::invoke_result_t<std::decay_t<Function>,U&>>
then_execute(Function&& f, Future& predecessor_future) const;

Let U be the type of Future’s result object. The callable object f is invoked with a reference to the result
object of the predecessor future (or without a parameter if a void future). By design, this is inconsis-
tent with the interface of the Concurrency TS’s std::experimental::v1::future::then which invokes
its continuation with a copy of the predecessor future. Our design avoids the composability issues of
std::experimental::v1::future::then [9] and is consistent with .bulk_then_execute, discussed be-
low. Note that the type of Future is allowed to differ from executor_future_t<Executor,U>, enabling
interoperability between executors and foreign or new future types.

Note that execution functions do not receive a parameter pack of arguments for f. This is a deliberate design
intended to embue all customization point parameters with a semantic meaning which may be exploited by the
executor. Generic parameters for f would have no special meaning to the execution function. We expect most
clients to manipulate executors through higher-level control structures which are better positioned to provide
conveniences like variadic parameter packing. Otherwise, a client may use std::bind if an appropriate
control structure is unavailable.

4.1.2.2 Bulk-Cardinality Execution Functions

Bulk-cardinality execution functions create a group of execution agents as a unit, and each of these execution
agents calls an individual invocation of the given callable function object. The forward progress ordering guaran-
tees of these invocations are given by std::execution::executor_bulk_forward_progress_guarantee_t.
Because they create multiple agents, bulk execution functions introduce ownership and lifetime issues avoided
by single-cardinality customization points and they include additional parameters to address these issues.
For example, consider .bulk_twoway_execute:

template<class Function, class Factory1, class Factory2>
executor_future_t<Executor,std::invoke_result_t<Factory1>>
bulk_twoway_execute(Function f, executor_shape_t<Executor> shape,

Factory1 result_factory, Factory2 shared_parameter_factory) const;

Bulk results. The first difference is that .bulk_twoway_execute returns the result of a factory rather
than the result of f. Because bulk customization points create a group of execution agents which invoke
multiple invocations of f, the result of execution is ambiguous. For example, all results of f could be collected
into a container and returned, or a single individual result could be selected and returned. Our design requires
the client to explicitly disambiguate the result via a factory. The result_factory is simply a callable object
that is invoked before the group of execution agents begins invoking f, and the result of this factory is passed
as a parameter to the invocations of f, which may arbitrarily mutate the result as a side effect. Any result of
f itself is discarded.

Pass-by-value. Next, note that f is passed by value, rather than via forwarding reference. In general, it is
impossible to elect a single agent to own f during execution because the group of agents may not be executing
concurrently with each other or with the client. Instead, each agent owns a copy of f. One consequence of
this policy is that move-only callables must be passed by a proxy such as std::reference_wrapper.

Shape. The first new parameter is shape, which describes the index space of the group of created execution
agents. Each agent in the group is assigned a unique point in this index space and the agent receives it as a
parameter to f. The type of this index is executor_index_t<Executor>. Currently, our proposal requires
executor_shape_t (and hence executor_index_t) to be an integral type, but we envision generalizing this
to support higher-dimensional index spaces.

Factories. The next two parameters are factories. The first is the result_factory, which we have already
discussed. The second factory creates a shared parameter for f. Like the result, the shared parameter is
constructed before the group of agents begins execution and it is passed as a parameter to f. Unlike the
result, the shared parameter is discarded. Its purpose is to act as a temporary data structure shared by all

14

Executors Design Document P0761R1

execution agents during the computation. Examples are std::barrier or std::atomic objects. If the client
desires to retain the shared parameter, it may be incorporated into the result during the execution of f.

The result and shared parameter are passed indirectly via factories instead of directly as objects because we
believe this is the most general-purpose and efficient scheme to pass parameters to newly-created groups
of execution agents [8]. First, factories allow non-movable types to be parameters, including concurrency
primitives like std::barrier and std::atomic. Next, some important types are not efficient to copy,
especially containers used as scratchpads. Finally, the location of results and shared parameters will be
important to a parallel algorithm’s efficiency. We envision associating allocators with individual factories to
provide control3.

The user function receives the shared state objects via bare references rather than an alternative channel
such as std::shared_ptr because the lifetime of these shared objects is bound to the entire group of agents
which share them. Because the sharing relationship is structured and identified beforehand, this enables
optimizations that would be impossible for shared_ptr. For example, the way shared_ptr allows sharers to
join and leave its group of sharers in an unstructured fashion necessitates dynamic storage and reference
counting. By contrast, the structure enforced by bulk customization permits more efficient storage and
sharing schemes.

Bulk continuations. Like .then_execute, .bulk_then_execute introduces a predecessor future upon
which the bulk continuation depends:

template<class Function, class Future, class Factory1, class Factory2>
executor_future_t<Executor,std::invoke_result_t<Factory1>>
bulk_then_execute(Function f, executor_shape_t<Executor> shape,

Future& predecessor_future,
Factory1 result_factory, Factory2 shared_factory) const;

If the predecessor future’s result object is not void, a reference to the predecessor object is passed to f’s
invocation. Like the result and shared parameter, we pass the predecessor object by reference because no
single agent in the group is its owner. The predecessor is collectively owned by the entire group of agents. As
a consequence, f must carefully synchronize access to the predecessor object to avoid creating data races.

Parameter order. In any case, f is invoked with parameters provided in the same order as the corresponding
parameters of the customization point. The agent index is always the first parameter, followed by the
parameters emanating from predecessor_future, result_factory, and shared_factory.

4.2 Customization Points Adapt An Executor’s Native Functionality

Our std::async implementation example did not interact with the incoming executor directly through a
member function. Our design allows the user to interpose the execution::require and execution::prefer
customization points between control structures and executors to create a uniform interface to target. Recall
that we have identified a set of six execution functions and we expect that this set may grow in the future.
Since it would be too burdensome for every type of executor to natively support this entire growing set of
possible interactions, our design allows executors to select a subset for native support.

At the same time, for any given executor, control structures need access to the largest possible set of
fundamental interactions. Control structures gain access to the entire set4 of execution functions via adapta-
tion. When an executor natively supports the execution function requested through execution::require,
execution::require acts like the identity function and returns the executor unchanged. When the requested
execution function is unavailable, the executor’s native execution functions are adapted to fulfill the requested
requirement.

3This envisioned allocator support is why we refer to these callable objects as “factories” rather than simply “functions” or
“callable objects”.

4In certain cases, some interactions are impossible because their requirements are inherently incompatible with a particular
executor’s provided functionality. For example, a requirement for never-blocking execution from an executor which always
executes “inline”.

15

Executors Design Document P0761R1

As a simple example, consider a possible adaptation performed by execution::require(ex,
execution::always_blocking) when ex does not natively guarantee always-blocking execution:

template<class Executor>
struct always_blocking_adaptor
{

Executor wrapped;

template<class Function>
executor_future_t<Executor, std::invoke_result_t<std::decay_t<Function>>
twoway_execute(Function&& f) const
{

// create twoway execution through the wrapped executor
auto future = wrapped.twoway_execute(std::forward<Function>(f));

// make the resulting future ready
// note that this always blocks the caller
future.wait();

// return the future
return future;

}

...
};

In this case, execution::require(ex, execution::always_blocking) can return a copy of ex wrapped
inside always_blocking_adaptor if ex does not natively provide always-blocking execution. Even if ex does
not natively provide always-blocking execution, its client may use ex as if it does.

Property preservation. There are limits to the kinds of adaptations that execution::require and
execution::prefer may apply, and these limits preserve executor properties. The rationale is that a
customization point should not introduce surprising behavior when adapting an executor’s native functionality.
During adaptation, the basic rule we apply is that only the properties requested through a call to either
execution::require or execution::prefer may be changed. The resulting executor must retain all the
other properties of the original executor which were not named by the call.

4.3 Customization Points Query An Executor’s Properties

The current value of an executor’s property can be queried through the execution::query customization
point. This can be useful for querying whether a call to the execution::prefer was successful and the
requested property is honoured by the returned executor but also as a general interface for querying information
about an executor’s capabilities.

Whether a property can be queried can be known at compile-time using the execution::can_query_v type
trait.

The property value type which is returned can be known at compile-time using the execution::property_value
type trait. This type will often be bool as querying a property will often return whether that property
is enabled. However properties which require a value such as the allocator property are expected to
return a container which can optionally store a value such as std::optional . If the implementation
wishes to also have the option to return an error then it may choose to return std::expected (see
P0323r2) or std::status_value (see P0262r1) in order to also provide an error or status in the case
where the property could not be queried. The execution::property_value type is required to always be
DefaultConstructible (C++Std [defaultconstructible]).

16

Executors Design Document P0761R1

Example using std::optional:

// get an executor through some means
my_executor_type my_executor = ...

std::optional<std::allocator<void>> opt = my_executor.query(allocator);

if (opt.has_value()) {
do_something_with(opt.value());

}

Example using std::expected:

// get an executor through some means
my_executor_type my_executor = ...

std::expected<std::allocator<void>, property_error> exp = my_executor.query(allocator);

if (exp.has_value()) {
do_something_with(exp.value());

} else {
handle_error(exp.error());

}

Example using std::status_value:

// get an executor through some means
my_executor_type my_executor = ...

std::status_value<property_query, std::allocator<void>> sv = my_executor.query(allocator);

if (sv.status() == property_query::success) {
do_something_with(sv.value());

} else {
handle_error(sv);

}

The execution::query customization point can be used to retrieve the current value of standard properties,
however it can also be used to retrieve the value of properties which represent executor capabilities or
information. Some examples of these are the optimal shape for execution, memory affinity, execution
priority, logging and tracing or task grouping. It’s expected that an implementation will provide additional
implementation specific properties.

5 Implementing Executors

A programmer implements an executor by defining a type which satisfies the requirements of the executor
interface. The simplest possible example is an executor which always creates execution “inline”:

struct inline_executor {
bool operator==(const inline_executor&) const noexcept {

return true;
}

bool operator!=(const inline_executor&) const noexcept {
return false;

}

17

Executors Design Document P0761R1

const inline_executor& context() const noexcept {
return *this;

}

inline_executor require(execution::always_blocking) const noexcept
{

return *this;
}

template<class Function>
void execute(Function&& f) const noexcept {

std::forward<Function>(f)();
}

};

First, all executor types must be CopyConstructible, which our inline_executor implicitly satisfies. Other
requirements are satisfied by explicitly defining various member types and functions for introspection, property
requests, and execution agent creation.

5.1 Introspection

Clients introspect executors at runtime through functions and at compile time through executor-specific type
traits.

5.1.1 Functions

Executor identity. All executors are required to be EqualityComparable in order for clients to reason
about their identity. If two executors are equivalent, then they may be used interchangably to produce the
same side effects. For example, because inline_executor::execute simply invokes its function inline, all
instances of inline_executor produce the same side effects and are therefore equivalent.

As another example, consider an executor type which creates execution agents by submitting to a thread
pool. Suppose two executors of this type submit to the same underlying thread pool. These executors are
equivalent because they both produce the same side effect of submitting to a common thread pool. However,
if one of these executors were to change its underlying thread pool, they would become nonequivalent.

As a final example, consider a prioritizing executor type which submits work with an associated priority to
a queue. The queue executes work in order of priority, and when two tasks have equivalent priority they
are executed in non-deterministic order. Suppose two executors of this type submit to the same underlying
queue, but with different priorities. These two executors are nonequivalent, because even though they both
submit to a common underlying queue, they do so with different priority. Therefore, these executors produce
different side effects and cannot be used interchangeably.

Execution context access. Next, all executors are required to provide access to their associated execution
context via a member function named .context. The single type requirement for execution context types is
EqualityComparable. However, we envision that these requirements will be refined in specializations as future
proposals introduce additional requirements for their specific use cases. The NetworkingExecutionContext
concept to be specified by the Networking TS already provides one example of refinement.

In non-generic programming contexts where the concrete types of executors and their associated contexts are
known in advance, clients may use execution context identity to reason about underlying execution resources
in order to make choices about where to create execution agents. In generic programming contexts such as
templates the concrete type of execution context will not be known. However, the programmer may still
manipulate execution contexts semi-generically through specializations which apply to concrete contexts.

18

Executors Design Document P0761R1

Recall inline_executor. Because it is such a simple executor, it serves as its own execution context. Its
.context() function simply returns a reference to itself. In general, more sophisticated executors will return
some other object. Consider a thread_pool_executor:

class thread_pool_executor {
private:

mutable thread_pool& pool_;

public:
thread_pool_executor(thread_pool& pool) : pool_(pool) {}

bool operator==(const thread_pool& other) const noexcept {
return pool_ == other.pool_;

}

bool operator!=(const thread_pool& other) const noexcept {
return pool_ != other.pool_;

}

const thread_pool& context() const noexcept {
return pool_;

}

...

template<class Function>
void execute(Function&& f) const {

pool_.submit(std::forward<Function>(f));
}

};

In this example, an executor which creates execution agents by submitting to a thread pool returns a reference
to that thread pool from .context.

Our design allows programmers to reason about the identities of executors and execution contexts sep-
arately because the side effects they create may be distinct. For example, perfoming comparisons on
thread_pool_executor objects yields no additional information than could be gained by comparing their
execution contexts directly. The same is true for inline_executor. However, consider our prioritizing
executor example whose execution context is a queue. When two prioritizing executors have different priorities,
they are nonequivalent even if they both have equivalent execution contexts.

5.1.2 Type Traits

Executor-specific type traits advertise semantics of cross-cutting guarantees and also identify associated types.
Executor type traits are provided in the execution namespace and are prefixed with executor_. Unless
otherwise indicated, when an executor type does not proactively define a member type with the corresponding
name (sans prefix), the value of these traits have a default. This default conveys semantics that make the
fewest assumptions about the executor’s behavior.

Execution context type. executor_context simply names the type of an executor’s execution context
by decaying the result of its member function .context. This default cannot be overriden by a member type
because .context’s result is authoritative.

Associated Future type. executor_future names the type of an executor’s associated future type, which
is the type of object returned by asynchronous, two-way customization points. The type is determined

19

Executors Design Document P0761R1

by the result of execution::async_execute, which must satisfy the requirements of the Future concept5.
Otherwise, the type is std::future. All of an executor’s two-way asynchronous customization points must
return the same type of future.

Executor shape type. When an executor creates a group of execution agents in bulk, the index space of
those agents is described by a shape. Our current proposal is limited to one-dimensional shapes representable
by an integral type, but we envision generalization to multiple dimensions. The type of an executor’s shape
is given by executor_shape, and its default value is std::size_t.

Executor index type. Execution agents within a group are uniquely identified within their group’s index
space by an index. In addition to sharing the dimensionality of the shape, these indices have a lexicographic
ordering. Like executor_shape, the type of an executor’s index is given by executor_index, and its default
value is std::size_t.

5.2 Property Requests via .require and .prefer

Executors may optionally implement the member functions .require or .prefer to receive property requests
from clients. In the case of our inline_executor example, .require can receive requests for always-blocking
execution, which all inline_executors natively provide. The result of this function is simply a copy of the
executor.

5.3 Execution Agent Creation via Execution Functions

Executors expose their native support for execution agent creation through execution functions which are
executor member functions. In this section, we describe the suite of execution functions we have identified as
key to the needs of the Standard Library and TSes we have chosen to target. In the discussion that follows,
let Executor be the type of the executor whose execution function is being described.

5.3.1 Two-Way Bulk-Agent Functions

We begin by discussing the execution functions which create groups of execution agents in bulk, because the
corresponding single-agent functions are each a functionally special case.

5.3.1.1 bulk_then_execute

template<class Future, class Function, class ResultFactory, class SharedFactory>
executor_future_t<Executor, std::invoke_result_t<std::decay_t<Function>,

decltype(std::declval<Future>().get())&>>
bulk_then_execute(Function&& func, Future& pred,

executor_shape_t<Executor> shape,
ResultFactory result_factory,
SharedFactory shared_factory) const;

bulk_then_execute creates a group of execution agents of shape shape and these agents begin execution
after pred becomes ready. bulk_then_execute returns a future that can be used to wait for execution
to complete, and this future contains the result of result_factory. Each created execution agent calls
std::forward<Function>(func)(i, r, s), where i is of type executor_index_t<Executor>, r is a func-
tion object returned from return_factory and s is a shared object returned from shared_factory.

bulk_then_execute is the most general execution function we have identified because it may be used to
implement any other execution function without having to go out-of-band through channels not made explicit

5For now, the only type which satisfies Future is std::experimental::future, specified by the Concurrency TS. We expect
the requirements of Future to be elaborated by a separate proposal.

20

Executors Design Document P0761R1

through the execution function’s interface. Explicitly elaborating this information through the interface is
critical because it enables the executor author to participate in optimizations which would not be possible
had that information been discarded through backchannels.

For example, suppose the only available execution function was bulk_twoway_execute. It would be possible
to implement .bulk_then_execute’s functionality by making a call to bulk_twoway_execute inside a
continuation created by predecessor_future.then:

predecessor_future.then([=] {
return exec.bulk_twoway_execute(exec, f, shape, result_factory, shared_factory).get();

});

Note that this implementation creates 1 + shape execution agents: one agent created by then along with
shape agents created by bulk_twoway_execute. Depending on the relative cost of agents created by then
and bulk_twoway_execute, the overhead of introducing that extra agent may be significant. Moreover,
because the then operation occurs separately from bulk_twoway_execute, the continuation is invisible to
exec and this precludes exec’s participation in scheduling. Because we wish to allow executors to abstract
sophisticated task-scheduling runtimes, this shortcoming is unacceptable.

5.3.1.2 bulk_twoway_execute

template<lass Function, class ResultFactory,
class SharedFactory>

executor_future_t<std::invoke_result_t<std::decay_t<ResultFactory>>>
bulk_twoway_execute(Function&& func,

executor_shape_t<Executor> shape,
ResultFactory result_factory,
SharedFactory shared_factory) const;

bulk_twoway_execute creates a group of execution agents of shape shape and returns a future that can be used
to wait for execution to complete. This future contains the result of result_factory. Each created execution
agent calls std::forward<Function>(func)(i, r, s), where i is of type executor_index_t<Executor>,
r is a function object returned from return_factory and s is a shared object returned from shared_factory.

Like bulk_then_execute, bulk_twoway_execute returns a future corresponding to the result of the asyn-
chronous group of execution agents it creates. Due to these similarities, bulk_twoway_execute is functionally
equivalent to calling bulk_then_execute with a ready void future:

future<void> no_predecessor = make_ready_future();
exec.bulk_then_execute(func, shape, no_predecessor, result_factory,

shared_factory);

We include bulk_twoway_execute because the equivalent path through bulk_then_execute via a ready
future may incur overhead. The cost of the future itself may be significant, especially if any sort of dynamically-
allocated asynchronous state is associated with that future. Alternatively, the act of scheduling itself may be
a source of overhead, especially if it requires any sort of graph analysis performed by a dynamic runtime.
Providing executors the opportunity to specialize for cases where it is known at compile time that no
dependency exists avoids both hazards.

Moreover, common types of executor may not naturally create execution in terms of continuations on futures
as expected by bulk_then_execute. bulk_async_execute is a better match for these cases because it does
not require accommodating a predecessor dependency.

5.3.2 Two-Way Single-Agent Functions

Conceptually, single-agent execution functions are special cases of their bulk counterparts. However, we
expect single-agent creation to be an important special case; in fact, many existing applications employ

21

Executors Design Document P0761R1

executors solely for single-agent execution. Explicit support for single-agent submission allows executor
implementations to optimize for this important use case at compile time.

In particular, an important use for single-agent execution functions is the ability to submit move-only function
objects. Move-only function objects allow us to submit tasks that contain relatively heavyweight, move-only
resources, such as files, sockets or std::promise objects. It is true that bulk execution functions can support
move-only function objects, but only if additional care is taken to ensure the function object remains valid
until all execution agents complete. This would probably be achieved by placing the function object in
reference counted storage, and represents a significant overhead that is not required in the single-agent case.

Alternatively, a bulk execution function could optimise for the single agent case by performing a runtime
test for a shape of 1: when this condition is detected, a non-reference-counted implementation would be
selected. However, for the many applications that desire efficient single-agent execution, a bulk-only interface
results in additional complexity and code (bloat). Furthermore, if custom executors are developed for these
applications, a bulk-only approach means that development effort must be expended on the multi-agent case
even if that runtime branch is never used. And, finally, we lose the ability to perform a compile time test to
determine whether an executor “natively” supports single-agent execution (e.g. the has_executor_member
trait included in this proposal).

5.3.2.1 then_execute

template<class Function, class Future>
executor_future_t<Executor, std::invoke_result_t<std::decay_t<Function>,

decltype(std::declval<Future>().get())&>>
then_execute(Function&& func, Future& pred) const;

then_execute creates a single execution agent and this agent begins execution after pred becomes ready.
then_execute returns a future that can be used to wait for execution to complete, and this future contains
the result of func. The created execution agent calls std::forward<Function>(func)().

then_execute may be implemented by using bulk_then_execute to create a group with a single agent:

using result_t = std::invoke_result_t<Function>;
using predecessor_t = decltype(predecessor_future.get());

// create a factory to return an object of the appropriate type
// XXX instead of default construction, this really needs to return some sort
// of storage for an unintialized result and then the lambda below would
// placement new it
auto result_factory = []{ return result_t(); };

// pass func as a shared parameter to account for move-only functions
auto shared_factory = [func = std::forward<Function>(func)]{ return func; };

// create a lambda for the "group" of agents to invoke
auto g = [](executor_index_t<Executor> ignored_index,

predecessor_t& predecessor,
result_t& result,
Function& func) {

// invoke func with the predecessor as an argument and assign the result
result = func(predecessor);

};

return exec.bulk_then_execute(g,
executor_shape_t<Executor>{1}, // create a single agent group
pred,

22

Executors Design Document P0761R1

result_factory,
shared_factory

);

The sample implementation passes both the function to invoke and its result indirectly via factories. The
result of these factories are shared across the group of agents created by bulk_then_execute. However,
this group has only one agent and no sharing actually occurs. The cost of this unnecessary sharing may be
significant and can be avoided if an executor natively provides then_execute.

5.3.2.2 twoway_execute

template<class Function>
executor_future_t<Executor, std::invoke_result_t<std::decay_t<Function>>>
twoway_execute(Function&& func) const;

twoway_execute creates a single execution agent and returns a future that can be used to wait for
execution to complete. This future contains the result of func. The created execution agent calls
std::forward<Function>(func)().

twoway_execute may be implemented by using then_execute with a ready void future:

std::experimental::future<void> ready_future = std::experimental::make_ready_future();
return exec.then_execute(std::forward<Function>(f), ready_future);

Alternatively, bulk_twoway_execute could be used, analogously to the use of bulk_then_execute in the
example implementation of then_execute.

The cost of a superfluous immediately-ready future object could be significant compared to the cost of
agent creation. For example, the future object’s implementation could contain data structures required for
inter-thread synchronization. In this case, these data structures are wasteful and never need to be used
because the future is ready-made.

On the other hand, once a suitable Future concept allows for user-definable futures, the initial future need
not be std::experimental::future. Instead, a hypothetical always_ready_future could be an efficient
substitute as it would not require addressing the problem of synchronization:

always_ready_future<void> ready_future;
return exec.then_execute(std::forward<Function>(f), ready_future);

However, to fully exploit such efficiency, then_execute may need to recognize this case and take special
action for always_ready_future.

Because of the opportunity for efficient specialization of a common use case, and to avoid requiring executors
to explicitly support continuations with then_execute, including twoway_execute as an execution function
is worthwhile.

5.3.3 One-Way Bulk-Agent Functions

5.3.3.1 bulk_execute

template<class Function, class SharedFactory>
void bulk_execute(const Executor& exec, Function&& func,

executor_shape_t<Executor> shape,
SharedFactory shared_factory) const;

bulk_execute creates a group of execution agents of shape shape and does not return a result.
Each created execution agent calls std::forward<Function>(func)(i, s), where i is of type
executor_index_t<Executor> and s is a shared object returned from shared_factory.

23

Executors Design Document P0761R1

bulk_execute is equivalent to execute except that it creates a single execution agent rather than a group of
execution agents. Consider an example implementation:

// create shared object
auto shared = shared_factory;

// Iterate over the shape
for (int i = 0; i < shape; i++) {

// construct index
executor_shape_t<Executor> index{i};

// create a lambda for the function for `execute`
auto g = [=, &shared](Function& func) {

func(index, shared);
};

exec.execute(g);
}

We include bulk_execute because the equivalent path through execute via a for loop at the point of
submission would incur overhead and would not be able to guarantee correct forward progress guarantees
between each execution agent created by execute.

5.3.4 One-Way Single-Agent Functions

5.3.4.1 execute

template<class Function>
void execute(Function&& func) const;

execute asynchronously creates a single execution agent and does not return a result. The created execution
agent calls std::forward<Function>(func)().

execute is equivalent to bulk_execute except that it creates a group of execution agents rather than a single
execution agent. This means that an executor that provides bulk_execute could be adapted to provide the
semantic guarantees of execute if it were absent, by creating a group with a single execution agent. Consider
an example implementation:

// pass func as a shared parameter to account for move-only functions
auto shared_factory = [func = std::forward<Function>(f)]{ return func; };

// create a lambda for the "group" of agents to invoke
auto g = [](executor_index_t<Executor> ignored_index, Function& func) {

result = func();
};

exec.bulk_then_execute(g,
executor_shape_t<Executor>{1}, // create a single agent group
shared_factory

);

As with our example implementation of then_execute described earlier, this group has only one agent and
no sharing actually occurs. The cost of this unnecessary sharing may be significant and can be avoided by an
executor providing execute.

24

Executors Design Document P0761R1

6 Future Work

We conclude with a survey of future work. Some of this work is in scope for P0443 and should be done before
the design is considered complete. Other work is explicitly out of scope, and should be pursued independently
using our design as a foundation.

6.1 Naming of require and prefer

Some concern has been expressed over the name require and the potential for confusion with the requires
keyword from the Concepts TS. In particular:

• Similar to requires, the function require is used to assert requirements on an executor.
• Unlike requires, the function require performs a transformation on the executor to obtain a new

object that satisfies the requirements.

With this in mind, we suggest the following names as alternatives for the names require and prefer:

require prefer
transform maybe_transform or try_transform
transform_executor maybe_transform_executor or try_transform_executor
rebind maybe_rebind or try_rebind
expect maybe_expect or try_expect
modify maybe_modify or try_modify
apply maybe_apply or try_apply
adapt maybe_adapt or try_adapt

The first two, based on the word transform, are our (weak) preferences from these alternatives (although
there is a potential conflict with the std::transform algorithm in the first case). However, it is worth noting
that when potential library users were presented with these alternatives, they expressed a preference for the
existing names (require and prefer).

6.2 Open Design Issues

Much of our design for executors is well-established. However, some aspects of the design remain the subject
of ongoing discussion.

Relationship with Thread Local Storage. By design, our executors model provides no explicit support
for creating thread-local storage. Instead, our design provides programmers with tools to reason about
the relationship of programmer-defined thread_local variables and execution agents created by executors.
For example, the executor properties thread_execution_mapping and new_thread_execution_mapping
describe how execution agents are mapped onto threads, and consequently how the lifetimes of those agents
relate to the lifetimes of thread_local variables. It is unclear whether these tools are sufficient or if more
fine-grained control over thread local storage is warranted.

6.3 Envisioned Extensions

we conclude with a brief survey of future work extending our proposal. Some of this work has already begun
and there are others which we believe ought to be investigated.

Future Concept. Our proposal depends upon the ability of executors to create future objects whose types
differ from std::future. Such user-defined std::future-like objects will allow interoperation with resources

25

Executors Design Document P0761R1

whose asynchronous execution is undesirable or impossible to track through standard means. For example,
scheduling runtimes maintain internal data structures to track the dependency relationships between different
tasks. The reification of these data structures can be achieved much more efficiently than by pairing a
std::promise with a std::future. As another example, some “inline” executors will create execution
immediately in their calling thread. Because no interthread communication is necessary, inline executors’
asynchronous results do not require expensive dynamic allocation or synchronization primitives of full-fledged
std::future objects. We envision that a separate effort will propose a Future concept which would introduce
requirements for these user-defined std::future-like types.

Thread Pool Variations. Our proposal specifies a single thread pool type, static_thread_pool, which
represents a simple thread pool which assumes that the creator knows the correct thread count for the use
case. As a result, it assumes a pre-determined sizing and does not automatically resize itself and has no
default size.

There exist heuristics for right-sizing a thread pool (both statically determined like 2*std::thread::hardware
-_concurrency(), as well as dynamically adjusted), but these are considered to be out of scope of this
proposal as a reasonable size pool is specific to the application and hardware.

We recognize that alternative approaches serving other use cases exist and anticipate additional thread pool
proposals. In particular, we are aware of a separate effort which will propose an additional thread pool type,
dynamic_thread_pool, and we expect this type of thread pool to be both dynamically and automatically
resizable.

Execution Resources. Our executors model describes execution agents as bound to execution resources,
which we imagine as the physical hardware and software facilities upon which execution happens. However, our
design does not incorporate a programming model for execution resources. We expect that future proposals
will extend our work by describing a programming model for programming tasks such as enumerating the
resources of a system and querying the underlying resources of a particular execution context.

Heterogeneity. Contemporary execution resources are heterogeneous. CPU cores, lightweight CPU cores,
SIMD units, GPU cores, operating system runtimes, embedded runtimes, and database runtimes are examples.
Heterogeneity of resources often manifests in non-standard C++ programming models as programmer-visible
versioned functions and disjoint memory spaces. Therefore, the ability for standard executors to target
heterogeneous execution resources depends on a standard treatment of heterogeneity in general.

The issues raised by heterogeneity impact the entire scope of a heterogeneous C++ program, not just the
space spanned by executors. Therefore, a comprehensive solution to these issues requires a holistic approach.
Moreover, the relationship between heterogeneous execution and executors may require technology that is out
of scope of a library-only solution such as our executors model. This technology might include heterogeneous
compilation and linking, just-in-time compilation, reflection, serialization, and others. A separate effort
should characterize the programming problems posed by heterogeneity and suggest solutions.

Bulk Execution Extensions. Our current proposal’s model of bulk execution is flat and one-dimensional.
Each bulk execution function creates a single group of execution agents, and the indices of those agents are
integers. We envision extending this simple model to allow executors to organize agents into hierarchical
groups and assign them multidimensional indices. Because multidimensional indices are relevant to many
high-performance computing domains, some types of execution resources natively generate them. Moreover,
hierarchical organizations of agents naturally model the kinds of execution created by multicore CPUs, GPUs,
and collections of these.

The organization of such a hierarchy would induce groups of groups (of groups. . . , etc.) of execution agents
and would introduce a different piece of shared state for each non-terminal node of this hierarchy. The
interface to such an execution function would look like:

template<class Function, class ResultFactory, class... SharedFactories>
execution::executor_future_t<Executor, std::invoke_result_t<ResultFactory()>>
bulk_twoway_execute(Function f, executor_shape_t<Executor> shape,

ResultFactory result_factory, SharedFactories... shared_factories);

26

Executors Design Document P0761R1

In this interface, the shape parameter simultaneously describes the hierarchy of groups created by this
execution function as well as the multidimensional shape of each of these groups. Instead of receiving a single
factory to create the shared state for a single group, the interface receives a different factory for each level of
the hierarchy. Each group’s shared parameter originates from the corresponding factory in this variadic list.

Transactional Memory. SG5 Transactional Memory is studying how proposed TM constructs in the Trans-
actional Memory TS can be integrated with executors. As TM constructs are compound statements of the form
atomic_noexcept | atomic_commit | atomic_cancel {<compound-statement> } and synchronized
{<compound-statement> }, it seems they can also apply with executors.

7 Acknowledgements

We appreciate the feedback on this document provided by Billy O’Neal and Torvald Riegel.

References

[1] Austern, M., Lawrence, C., Carruth, C., Gustafsson, N., Mysen, C. and Yasskin, J. 2013. Executors and
schedulers, revision 1. (Mar. 2013).

[2] Austern, M., Lawrence, C., Carruth, C., Mysen, C. and Yasskin, J. 2012. A preliminary proposal for work
executors. (Feb. 2012).

[3] Hoberock, J., Garland, M. and Giroux, O. 2015. An Interface for Abstracting Execution. (Sep. 2015).

[4] Hoberock, J., Garland, M. and Giroux, O. 2015. Parallel Algorithms Need Executors. (Apr. 2015).

[5] Hoberock, J., Garland, M., Giroux, O. and Kaiser, H. 2016. An Interface for Abstracting Execution. (Feb.
2016).

[6] Hoberock, J., Garland, M., Kohlhoff, C., Mysen, C. and Edwards, C. 2016. A Unified Executors Proposal
for C++. (Oct. 2016).

[7] Hoberock, J., Garland, M., Kohlhoff, C., Mysen, C., Edwards, C. and Brown, G. 2017. A Unified Executors
Proposal for C++. (Jan. 2017).

[8] Kaiser, H. and Hoberock, J. 2016. Execution interfaces should be variadic.

[9] Kaiser, H. and Hoberock, J. 2016. then_execute differs from Concurrency TS V1 semantics.

[10] Kohlhoff, C. 2014. Executors and Asynchronous Operations. (May 2014).

[11] Mysen, C. 2015. C++ Executors. (Sep. 2015).

[12] Mysen, C. 2015. Executors and schedulers, revision 5. (Apr. 2015).

[13] Mysen, C. and Gustafsson, N. 2013. Executors and schedulers, revision 2. (Aug. 2013).

[14] Mysen, C., Gustafsson, N., Austern, M. and Yasskin, J. 2013. Executors and schedulers, revision 3. (Oct.
2013).

27

	Introduction
	Terminology
	Using Executors
	Using Executors with the Standard Library
	Using Executors with the Networking TS
	Using Executors with Application-Level Libraries
	Executors Associated with Execution Policies
	Executors for Coarse-Grained Tasks

	Obtaining Executors

	Building Control Structures
	Fundamental Interactions with Executors via Execution Functions
	Executor Properties
	Execution Functions

	Customization Points Adapt An Executor's Native Functionality
	Customization Points Query An Executor's Properties

	Implementing Executors
	Introspection
	Functions
	Type Traits

	Property Requests via .require and .prefer
	Execution Agent Creation via Execution Functions
	Two-Way Bulk-Agent Functions
	Two-Way Single-Agent Functions
	One-Way Bulk-Agent Functions
	One-Way Single-Agent Functions

	Future Work
	Naming of require and prefer
	Open Design Issues
	Envisioned Extensions

	Acknowledgements
	References

