BJTCIE

Document Type:

Document Title:

Document Source:
Reference:

Document Status:

Action ID:
Due Date:

No. of Pages:

ISO/IEC JTC 1/SC 22 N 4319 2008-03-19
ISO/IEC JTC 1/SC 22
Programming Languages
Text for CD Ballot

ISO/IEC 1539-1, Information technology — Programming languages —
Fortran — Part 1: Base language

WG 5 Convener (J. Reid)

This document is circulated to SC 22 members ballot. Please submit your
vote by the due date indicated. Please note that the due date for this ballot
has been chosen by WG 5, and is longer then the normal three month CD
ballot period.

VOTE

2008-08-31

618

Secretariat, ISO/IEC JTC 1, American National Standards Institute, 25 West 43rd Street, New York, NY 10036; Telephone: 1 212 642 4932;
Facsimile: 1212 840 2298; Email: Irajchel@ansi.org

CD 1539-1

ISO/IEC
JTC1/SC22/WG5/N1723

J3/08-007r2

11th March 2008 18:36

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

Contents
1 Overview o L e 1
1.1 Scope . . o o o 1
1.2 Inclusions e e e 1
1.3 Exclusions L e e e 1
1.4 Conformance L e 2
1.5 Compatibility o 3
1.5.1 New intrinsic procedures L L e 3
1.5.2 Fortran 2003 compatibility o 3
1.5.3 Fortran 95 compatibility o 3
1.54 Fortran 90 compatibility L 3
1.5.5 FORTRAN 77 compatibility 3
1.6 Notation used in this part of ISO/IEC 1539 4
1.6.1 Applicability of requirements Lo 4
1.6.2 Informative notes 4
1.6.3 Syntax rules oL 4
1.6.4 Constraints L 5
1.6.5 Assumed syntax rules 6
1.6.6 Syntax conventions and characteristics o0 o oo 6
1.6.7 Text conventions L 6
1.7 Deleted and obsolescent features 6
1.7.1 General L L e e 6
1.7.2 Nature of deleted features 6
1.7.3 Nature of obsolescent features L L 7
1.8 Normative references L 7
2 Fortran terms and concepts L. oL L 9
2.1 Terms and definitions 9
2.2 High level syntax e e 25
2.3 Program unit concepts Lo 28
2.3.1 Program units and scoping unitso oL 28
2.3.2 Program 28
2.3.3 Procedure 29
2.34 Module e 29
2.3.5 Submodule e e e 29
2.4 Execution conceptso e e 29
2.4.1 Statement classification oL 29
2.4.2 Program execution L 30
2.4.3 Statement order L 30
2.4.4 The END statement e 31
2.4.5 Execution sequence e 31
2.5 Dataconcepts e 32
2.5.1 Type . o o 32
2.5.2 Datavalue oL 33
2.5.3 Dataentity 33
2.5.4 Definition of objects and pointers 34
2.5.5 Reference e 35
2.5.6 Array . .. e 35
2.5.7 COArTay . . . o v e 35
2.5.8 Pointer L e 36

Contents i

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

3

2.5.9 Allocatable variables 36
2.5.10 SEOTAGE e e 36
2.6 Fundamental concepts 36
2.6.1 Names and designators L L 36
2.6.2 Statement keyword L. 36
2.6.3 Other keywords 36
2.6.4 Association L e e 37
2.6.5 Intrinsic L e e 37
2.6.6 Operator 37
2.6.7 Companion ProCessOrS v v v v et e e e e e e 37
Lexical tokens and source form e e 39
3.1 Processor character set L 39
3.1.1 Characters 39
3.1.2 Letters o o e 39
3.1.3 Digits . . . o o 39
3.1.4 Underscore o e e e e 39
3.1.5 Special characters 40
3.1.6 Other characters 40
3.2 Low-level syntax L 40
3.2.1 Tokens e e 40
3.2.2 Names o o e e e 40
3.2.3 Constants L 41
3.2.4 Operators 41
3.2.5 Statement labels 42
3.2.6 Delimiters oL 43
3.3 Source form L e e e 43
3.3.1 Program units, statements, and lines Lo oL 43
3.3.2 Free source form L 43
3.3.3 Fixed source form L 45
3.4 Including source text L L e 46
Types . . o o e e 47
4.1 The concept of type 47
4.1.1 General 47
4.1.2 Set of values e e e 47
4.1.3 Constants e e e e e e e 47
4.1.4 Operations 47
4.2 Type parameters oL e e e e e e e 47
4.3 Relationship of types and values to objects L L 49
4.3.1 Type specifiers and type compatibility 49
4.4 Intrinsic types L 50
4.4.1 Classification and specification Lo Lo 50
4.4.2 Integer type oL 51
4.4.3 Real type o o e 52
4.4.4 Complex type o o e e 53
4.4.5 Character type o e e 54
4.4.6 Logical type o 58
4.5 Derived types e 58
4.5.1 Derived type concepts oL L 58
4.5.2 Derived-type definition oL 59
4.5.3 Derived-type parameters Lo 62
4.5.4 Components e 64
4.5.5 Type-bound procedures 70
4.5.6 Final subroutines L 73
4.5.7 Type extension L e 74

Contents

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

4.5.8 Derived-type values e 77

4.5.9 Derived-type specifier 77
4.5.10 Construction of derived-type values L oL 7
4.5.11 Derived-type operations and assignment Lo 80

4.6 Enumerations and enumerators L Lo e e e e e e 80
4.7 Binary, octal, and hexadecimal literal constants 81
4.8 Construction of array values L 82
5 Attribute declarations and specifications oL Lo 85
5.1 Generalo e e 85
5.2 Type declaration statements L L 85
5.2.1 Syntax . . .o 85

5.2.2 Automatic data objects L 86

5.2.3 Initialization L e e e 87

5.2.4 Examples of type declaration statements L oL oL 87

5.3 Attributes L 87
5.3.1 Constraints L e 87

5.3.2 Accessibility attribute 87

5.3.3 ALLOCATABLE attribute e 88

5.3.4 ASYNCHRONOUS attribute e 88

5.3.5 BIND attribute for data entities 88

5.3.6 CODIMENSION attribute e 89

5.3.7 CONTIGUOUS attribute e e e e e e 91

5.3.8 DIMENSION attribute e 92

5.3.9 EXTERNAL attribute e 94
5.3.10 INTENT attribute e 95
5.3.11 INTRINSIC attribute e 96
5.3.12 OPTIONAL attribute e 97
5.3.13 PARAMETER attribute 97
5.3.14 POINTER attribute 97
5.3.15 PROTECTED attribute e 98
5.3.16 SAVE attribute 98
5.3.17 TARGET attribute e 99
5.3.18 VALUE attribute e 99
5.3.19 VOLATILE attribute e 100

5.4 Attribute specification statements oL L 100
5.4.1 Accessibility statement L 100

5.4.2 ALLOCATABLE statement e 101

5.4.3 ASYNCHRONOUS statement it et 101

5.4.4 BIND statement 101

5.4.5 CODIMENSION statement e et e e e e 101

5.4.6 CONTIGUOUS statement o v v e e e e e e 102

5.4.7 DATA statement 102

5.4.8 DIMENSION statement 104

5.4.9 INTENT statement e e e 104
5.4.10 OPTIONAL statement o i i e e e e e e e 105
5.4.11 PARAMETER statement 105
5.4.12 POINTER statement e 105
5.4.13 PROTECTED statement i 105
5.4.14 SAVE statement 106
5.4.15 TARGET statement e 106
5.4.16 VALUE statement e 106
5.4.17 VOLATILE statement i e e 106

5.5 IMPLICIT statement 106
5.6 NAMELIST statement e 108
5.7 Storage association of data objects L oL L 109

Contents iii

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

6

8

5.7.1 EQUIVALENCE statement i 109
5.7.2 COMMON statement e 112
5.7.3 Restrictions on common and equivalence oL, 114
Use of data objects e 115
6.1 Designator e 115
6.2 Variable 115
6.3 Constants e e e 116
6.4 Scalars e 116
6.4.1 Substrings e e 116
6.4.2 Structure components L. e 116
6.4.3 Complex parts 118
6.4.4 Type parameter inquiry Lo e e 118
6.5 ATTAYS 119
6.5.1 Order of reference L 119
6.5.2 Whole arrays oL 119
6.5.3 Array elements and array sections L. L 119
6.5.4 Simply contiguous array designators Lo 122
6.5.5 Image selectors L 123
6.6 Dynamic association Lo L e 123
6.6.1 ALLOCATE statement e 123
6.6.2 NULLIFY statement o e 127
6.6.3 DEALLOCATE statement ittt 127
6.6.4 STAT=specifier e 129
6.6.5 ERRMSG= specifier e 130
Expressions and assignment Lo L 131
7.1 EXPressions i e e e e e e e 131
7.1.1 General 131
7.1.2 Form of an expression 131
7.1.3 Precedence of operators 135
7.1.4 Evaluation of operations 137
7.1.5 Intrinsic operations L Lo 137
7.1.6 Defined operations 144
7.1.7 Evaluation of operands 145
7.1.8 Integrity of parentheses L 146
7.1.9 Type, type parameters, and shape of an expression 146
7.1.10 Conformability rules for elemental operations 148
7.1.11 Specification expression Lo 148
7.1.12 Initialization expression L L Lo 149
7.2 Assignment e 151
7.2.1 Assignment statemento Lo 151
7.2.2 Pointer assignment L 155
7.2.3 Masked array assignment - WHERE o oL, 159
7.2.4 FORALL e 161
Execution control L L 169
8.1 Executable constructs containing blocks L oo oo 169
8.1.1 General 169
8.1.2 Rules governing blocks Lo 169
8.1.3 ASSOCIATE construct 170
8.1.4 BLOCK construct o e e 171
8.1.5 CASE construct o 172
8.1.6 CRITICAL construct o o e e s e e e s e 174
8.1.7 DO constructo 175
8.1.8 IF construct and statement Lo Lo 181

Contents

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

8.1.9 SELECT TYPE construct e et e i e 183
8.1.10 EXIT statement 185

8.2 Branching 186
8.2.1 Branch concepts 186

8.2.2 GO TO statement e 186

8.2.3 Computed GO TO statement 186

8.2.4 Arithmetic IF statement o 186

8.3 CONTINUE statement e e e 186
8.4 STOP and ALL STOP statements ittt 187
8.5 Image execution control.o 187
8.5.1 Image control statements Lo 187

8.5.2 SYNC ALL statement e e 188

8.5.3 SYNC IMAGES statement e 189

8.5.4 SYNC MEMORY statement it 190

8.5.5 STAT= and ERRMSG= specifiers in image execution control statements 192

9 Input/output statements 193
9.1 Input/output concepts 193
9.2 Records. L e 193
9.2.1 General e 193

9.2.2 Formatted record e 193

9.2.3 Unformatted record Lo 194

9.24 Endfile record 194

9.3 External files. e 194
9.3.1 Basic concepts 194

9.3.2 File existence e e 195

9.3.3 File access e e e e e e e e e e 195

9.3.4 File position 197

9.3.5 File storage units L 198

9.4 Imternal files 199
9.5 File connection L e e 200
9.5.1 Referring toafile o oL 200

9.5.2 Connection modes e 200

9.5.3 Unit existence e e e 201

9.5.4 Connection of a filetoaunit 201

9.5.5 Preconnection 202

9.5.6 OPEN statement e e e 202

9.5.7 CLOSE statement e 206

9.6 Data transfer statements L e e 207
9.6.1 General e 207

9.6.2 Control information list e 208

9.6.3 Data transfer input/output list oo 213

9.6.4 Execution of a data transfer input/output statement 215

9.6.5 Termination of data transfer statements 225

9.7 Waiting on pending data transfer L oL L 226
9.7.1 Wait operation e 226

9.7.2 WAIT statement e 226

9.8 File positioning statementso Lo 227
9.8.1 Syntax . . .o e 227

9.8.2 BACKSPACE statement e e 228

9.8.3 ENDFILE statement e 228

9.8.4 REWIND statement e e e 228

9.9 FLUSH statement e e e e 229
9.10 File inquiry statement Lo 230
9.10.1 Forms of the INQUIRE statement 230
9.10.2 Inquiry specifiers L 230

Contents v

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

10

11

vi

9.10.3 Inquire by output list L 236
9.11 Error, end-of-record, and end-of-file conditions 236
9.11.1 General L e 236
9.11.2 Error conditions and the ERR= specifier 236
9.11.3 End-of-file condition and the END= specifier. 237
9.11.4 End-of-record condition and the EOR=specifier 237
9.11.5 IOSTAT= specifier e 238
9.11.6 IOMSG=specifier e 238
9.12 Restrictions on input/output statements Lo 238
Input/output editing 241
10.1 Format specifications L 241
10.2 Explicit format specification methods L oo 241
10.2.1 FORMAT statement 241
10.2.2 Character format specification oL oL L 241
10.3 Form of a format item list 242
10.3.1 Syntaxo e 242
10.3.2 Edit descriptors 242
10.3.3 Fields o o 244
10.4 Interaction between input/output list and formato 0oL 244
10.5 Positioning by format control Lo 245
10.6 Decimal symbolo 246
10.7 Data edit descriptors L e 246
10.7.1 General oL 246
10.7.2 Numeric editing oL e 246
10.7.3 Logical editing e 252
10.7.4 Character editing L 253
10.7.5 Generalized editing L 253
10.7.6 User-defined derived-type editing L o o 255
10.8 Control edit descriptors 255
10.8.1 Position editing oL L 255
10.8.2 Slash editingo 256
10.8.3 Colon editing L 256
10.8.4 SS,SP,and Sediting 256
10.8.5 Peediting L 257
10.8.6 BN and BZ editing 257
10.8.7 RU, RD, RZ, RN, RC, and RP editing 257
10.8.8 DC and DP editing o 258
10.9 Character string edit descriptors L L 258
10.10 List-directed formatting L 258
10.10.1 General L e e 258
10.10.2 Values and value separators Lo e e 258
10.10.3 List-directed input oL 259
10.10.4 List-directed output 261
10.11 Namelist formatting L 262
10.11.1 General Lo e 262
10.11.2 Name-value subsequences L L e 262
10.11.3 Namelist input oL oL 262
10.11.4 Namelist output e 266
Program units L e 267
11.1 Main Program v v v v v e e e e e e e e e e e e e e e e 267
11.2 Modules e 267
11.2.1 General o Lo 267
11.2.2 The USE statement and use association 268
11.2.3 Submodules 271

Contents

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

12

13

14

11.3 Block data program units. L e e e e e e e 271
Procedureso 273
12,1 Concepts . . . o v oo e 273
12.2 Procedure classifications e 273
12.2.1 Procedure classification by reference oL oL oo 273
12.2.2 Procedure classification by means of definition o000 273
12.3 Characteristics L e e 274
12.3.1 Characteristics of procedures L 274
12.3.2 Characteristics of dummy arguments 274
12.3.3 Characteristics of function results L 274
12.4 Procedure interface L 275
12.4.1 General oL 275
12.4.2 TImplicit and explicit interfaces L L 275
12.4.3 Specification of the procedure interface 0oL 276
12.5 Procedure reference e 285
1251 Syntax oL e e 285
12.5.2 Actual arguments, dummy arguments, and argument association 287
12.5.3 Function referenceo 298
12.5.4 Subroutine reference 298
12.5.5 Resolving named procedure references. L oL oL 298
12.5.6 Resolving type-bound procedure references Lo 301
12.6 Procedure definition L 301
12.6.1 Intrinsic procedure definition oL Lo oL 301
12.6.2 Procedures defined by subprograms L 0L o 301
12.6.3 Definition and invocation of procedures by means other than Fortran 307
12.6.4 Statement function 307
12.7 Pure procedures 308
12.8 Elemental procedures e 310
12.8.1 Elemental procedure declaration and interface 310
12.8.2 Elemental function actual arguments and results 310
12.8.3 Elemental subroutine actual arguments 0oL 311
Intrinsic procedures and modules oL 313
13.1 Classes of intrinsic procedures L e 313
13.2 Arguments to intrinsic procedures L e 313
13.2.1 General rules. L e e e e e e 313
13.2.2 The shape of array argumentso 314
13.2.3 Mask argumentso Lo L Lo 314
13.3 Bit model e 314
13.3.1 General e e e e 314
13.3.2 Bit sequence comparisons oLl e e e e e e e e 314
13.3.3 Bit sequences as arguments to INT and REAL 315
13.4 Numeric models oL 315
13.5 Standard generic intrinsic procedures Lo 316
13.6 Specific names for standard intrinsic functions L Lo 322
13.7 Specifications of the standard intrinsic procedures L. 324
13.7.1 General oL 324
13.8 Standard modules L. 395
13.8.1 General e 395
13.8.2 The ISO_FORTRAN_ENV intrinsic module 395
Exceptions and IEEE arithmetic 399
14.1 General oL 399
14.2 Derived types and constants defined in the modules 400
14.3 The exceptions o o e e e e 401

Contents vii

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

15

16

viii

14.4 The rounding modes L e e e e e e 402
14.5 Underflow mode L e e e e e 402
14.6 Halting 403
14.7 The floating-point status L 403
14.8 Exceptional values. oL L 403
14.9 IEEE arithmetic o e 404
14.10 Summary of the procedures L 405
14.10.1 General L e e e e 405
14.10.2 Inquiry functions L 405
14.10.3 Elemental functionso L 405
14.10.4 Kind functiono 406
14.10.5 Elemental subroutines L L e 406
14.10.6 Nonelemental subroutines 406
14.11 Specifications of the procedures 406
14.11.1 General L L e e e 406
14.12 Examples o Lo e e 420
Interoperability with C o 425
15.1 General L 425
15.2 The ISO_C_BINDING intrinsic module 425
15.2.1 Summary of contents 425
15.2.2 Named constants and derived types in the module 425
15.2.3 Procedures in the moduleo 426
15.3 Interoperability between Fortran and C entities Lo L. 429
15.3.1 General e 429
15.3.2 Interoperability of intrinsic types 429
15.3.3 Interoperability with C pointer types 431
15.3.4 Interoperability of derived types and C struct types 431
15.3.5 Interoperability of scalar variables oo 432
15.3.6 Interoperability of array variables oL L L o 432
15.3.7 Interoperability of procedures and procedure interfaces 433
15.4 Interoperation with C global variables. o 435
15.4.1 General e e e e e 435
15.4.2 Binding labels for common blocks and variables 436
15.5 Interoperation with C functions L 436
15.5.1 Definition and reference of interoperable procedures 436
15.5.2 Binding labels for procedures 437
15.5.3 Exceptions and IEEE arithmetic procedures 437
Scope, association, and definition Lo 439
16.1 Identifiers and entities L e e e e e 439
16.2 Scope of global identifiers L 439
16.3 Scope of local identifiers Lo 440
16.3.1 Classes of local identifiers L 440
16.3.2 Local identifiers that are the same as common block names 441
16.3.3 Function results 441
16.3.4 Components, type parameters, and bindings L. 441
16.3.5 Argument keywords 442
16.4 Statement and construct entities Lo 442
16.5 Association 443
16.5.1 Name association L L L e 443
16.5.2 Pointer association e e e 446
16.5.3 Storage association 449
16.5.4 Inheritance association L Lo 451
16.5.5 Establishing associations L L L 451
16.6 Definition and undefinition of variables oL oL oL 452
Contents

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

Annex A

Al
A2

Annex B
B.1
B.2

Annex C
C.1

C.2

C.3

C4

C.5

C.6

16.6.1 Definition of objects and subobjects 452
16.6.2 Variables that are always defined L. 452
16.6.3 Variables that are initially defined o o oo 453
16.6.4 Variables that are initially undefined Lo oL 453
16.6.5 Events that cause variables to become defined 453
16.6.6 Events that cause variables to become undefined 454
16.6.7 Variable definition context 456
16.6.8 Pointer association context L Lo 457

(informative) Processor Dependencies oL 459
Unspecified Items L 459
Processor Dependencies 459

(informative) Decremental features L 463
Deleted features L 463
Obsolescent features L L 464
B.2.1 General 464
B.2.2 Alternate return L 464
B.2.3 Computed GO TO statement 464
B.2.4 Statement functions 464
B.2.5 DATA statements among executables 465
B.2.6 Assumed character length functions oo 465
B.2.7 Fixed form sourceo e 465
B.2.8 CHARACTER* form of CHARACTER declaration 465
B.2.9 ENTRY statements e 465

(informative) Extended motes Lo 467
Clause 4 notes e 467
C.1.1 Selection of the approximation methods (4.4.3) 467
C.1.2 Type extension and component accessibility (4.5.2.2,4.5.4) 467
C.1.3 Generic type-bound procedures (4.5.5)o 468
C.1.4 Abstract types (4.5.7.1) L 469
C.1.5 Pointers (4.5.2) 470
C.1.6 Structure constructors and generic names (4.5.10) L 471
C.1.7 Final subroutines (4.5.6, 4.5.6.2, 4.5.6.3,4.5.6.4) 473
Clause 5 n0Otes o o e e 474
C.2.1 The POINTER attribute (5.3.14) e 474
C.2.2 The TARGET attribute (5.3.17) e e 475
C.2.3 The VOLATILE attribute (5.3.19) i 476
Clause 6 NOtES o e 476
C.3.1 Structure components (6.4.2) 476
C.3.2 Allocation with dynamic type (6.6.1) 478
C.3.3 Pointer allocation and association (6.6.1, 16.5.2) 478
Clause 7100tES o o o 479
C.4.1 Character assignment (7.2.1.3) L 479
C.4.2 Evaluation of function references (7.1.7) L o 480
C.4.3 Pointers in expressions (7.1.9.2) Lo L 480
C.4.4 Pointers in variable-definition contexts (7.2.1.3, 16.6.7) 480
C.4.5 Example of a FORALL construct containing a WHERE construct (7.2.4) 480
C.4.6 Examples of FORALL statements (7.2.4.3) 481
Clause 8 mOteS e 482
C.5.1 The CASE construct (8.1.5) 482
C.5.2 Loopcontrol (8.1.7) 482
C.5.3 Examples of DO constructs (8.1.7) 482
C.5.4 Examples of invalid DO constructs (8.1.7) 484
Clause 9 notes 485

Contents ix

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

C.7

C.8

C.9

C.10

C.11

C.13

Annex D
D.1
D.2

Annex E

C.6.1 External files (9.3) 485
C.6.2 Nonadvancing input/output (9.3.4.2) L 486
C.6.3 OPEN statement (9.5.6) 487
C.6.4 Connection properties (9.5.4) 488
C.6.5 CLOSE statement (9.5.7) 489
C.6.6 Asynchronous input/output (9.6.2.5) 489
Clause 10 notes e 490
C.7.1 Number of records (10.4, 10.5, 10.8.2) 490
C.7.2 List-directed input (10.10.3) o oo oo oo 491
Clause 11 notes 0 it e 491
C.8.1 Main program and block data program unit (11.1, 11.3) 491
C.8.2 Dependent compilation (11.2) 492
C.8.3 Examples of the use of modules (11.2.1) 493
C.8.4 Modules with submodules (11.2.3) L 499
Clause 12 notes o i e e 504
C.9.1 Portability problems with external procedures (12.4.3.5) 504
C.9.2 Procedures defined by means other than Fortran (12.6.3) 504
C.9.3 Abstract interfaces (12.4) and procedure pointer components (4.5) 504
C.9.4 Pointers and targets as arguments (12.5.2.4, 12.5.2.6, 12.5.2.7) 506
C.9.5 Polymorphic Argument Association (12.5.2.9) 507
C.9.6 Rules ensuring unambiguous generics (12.4.3.4.5) oL 509
Clause 13 notes o o o e e 513
C.10.1 Module for THISIMAGE and IMAGE_INDEX 513
Clause 15 notes o e 514
C.11.1 Runtime environments (15.1) Lo 514
C.11.2 Example of Fortran calling C (15.3) 514
C.11.3 Example of C calling Fortran (15.3) o 515
C.11.4 Example of calling C functions with noninteroperable data (15.5) 516
C.11.5 Example of opaque communication between C and Fortran (15.3) 517
Clause 16 notes o 518
C.12.1 Examples of host association (16.5.1.4) L Lo 518
Array feature notes L 520
C.13.1 Summary of features (2.5.6) 520
C.13.2 Examples (6.5) o 521
C.13.3 FORmula TRANslation and array processing (6.5) 525
C.13.4 Logical queries (13.7.10, 13.7.13, 13.7.41, 13.7.108, 13.7.114 13.7.160) 526
C.13.5 Parallel computations (7.1.2) Lo 527
C.13.6 Example of element-by-element computation (6.5.3) 527

(informative) Syntax rules L 529
Extract of all syntax rules 529
Syntax rule cross-reference e 570

(informative) Index 583

Contents

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

List of Tables

2.1

2.2

3.1

6.1

7.2
7.3
7.4
7.6
7.7
7.8
7.9
7.10

7.11

10.1
10.2

10.3

13.1

13.2

15.1

15.2

Requirements on statement orderingo 30
Statements allowed in scoping units Lo oo 31
Special characters 40
Subscript order valueo 120
Categories of operations and relative precedence 135
Type of operands and results for intrinsic operators 138
Interpretation of the numeric intrinsic operators 139
Interpretation of the character intrinsic operator // 141
Interpretation of the logical intrinsic operators 142
The values of operations involving logical intrinsic operators. 142
Interpretation of the relational intrinsic operators 143
Type conformance for the intrinsic assignment statement 152
Numeric conversion and the assignment statement 153
E and D exponent forms 249
EN exponent forms e 250
ES exponent formso 251
Standard generic intrinsic procedure summary 0L 316
Characteristics of the result of NULL () 374
Names of C characters with special semantics 426
Interoperability between Fortran and C types 430

List of Tables Xi

10

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commis-
sion) form the specialized system for worldwide standardization. National bodies that are members of ISO or
IEC participate in the development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. ISO and IEC technical committees
collaborate in fields of mutual interest. Other international organizations, governmental and nongovernmental,
in liaison with ISO and TEC, also take part in the work. In the field of information technology, ISO and IEC have
established a joint technical committee, ISO/TEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International Stan-
dards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 1539-1 was prepared by Joint Technical Committee ISO/IEC/JTC1, Information technology, Subcom-
mittee SC22, Programming languages, their environments and system software interfaces.

This fifth edition cancels and replaces the fourth edition (ISO/IEC 1539-1:2004), which has been technically
revised. It also incorporates the Technical Corrigenda ISO/IEC 1539-1:2004/Cor. 1:2005 and ISO/IEC 1539-
1:2004/Cor. 2:2006, and Technical Report ISO/IEC TR 19767:2004.

ISO/IEC 1539 consists of the following parts, under the general title Information technology — Programming
languages — Fortran:

— Part 1: Base language
— Part 2: Varying length character strings

— Part 3: Conditional Compilation

xii Foreword

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

Introduction

International Standard programming language Fortran

1 This part of ISO/IEC 1539 comprises the specification of the base Fortran language, informally known as Fortran

2008.

With the limitations noted in 1.5.2, the syntax and semantics of Fortran 2003 are contained entirely within

Fortran 2008. Therefore, any standard-conforming Fortran 2003 program not affected by such limitations is a
standard-conforming Fortran 2008 program. New features of Fortran 2008 can be compatibly incorporated into
such Fortran 2003 programs, with any exceptions indicated in the text of this part of ISO/IEC 1539.

2 Fortran 2008 contains several extensions to Fortran 2003; some of these are listed below.

Module enhancements:
Submodules provide additional structuring facilities for modules.

Parallel execution:

Coarrays and synchronization constructs support parallel programming using a single program multiple
data (SPMD) model.

Performance enhancements:

The DO CONCURRENT construct permits a processor greater freedom to schedule loop iterations than
other DO constructs. The CONTIGUOUS attribute permits greater optimization of pointers and dummy
arguments.

Data declaration:

The maximum rank has been increased to 15. A processor is required to support at least one kind of integer
with a range of at least 18 decimal digits. Allocatable components can be of recursive type. A named
constant array’s shape can be inferred from its value. A pointer can be initially associated with a target.
FORALL index variables can have their type and kind explicitly declared.

Data usage and computation:

MOLD= in an ALLOCATE statement can give a polymorphic variable the shape and type of another
variable without copying the value. The real and imaginary parts of a complex entity can be accessed
independently with a component-like syntax. Intrinsic assignment to an allocatable polymorphic variable
is allowed. Pointer functions can denote a variable in any variable definition context.

Input/output:

NEWUNIT= in an OPEN statement automatically selects a unit number that does not interfere with other
unit numbers selected by the program. The GO edit descriptor and unlimited format control ease writing
records in comma-separated-value (CSV) format. Recursive transfers are allowed on distinct units.

Execution control:

The BLOCK construct contains declarations of objects with construct scope. The EXIT statement can
transfer control from within more named executable constructs. The STOP statement has been changed to
encourage the processor to provide the integer stop code (if it appears) as a termination status (where that
makes sense).

Intrinsic procedures:

The hyperbolic trigonometric intrinsic functions can have arguments of type complex. There are many
more intrinsic functions. The intrinsic function ATAN2 can be referenced by the name ATAN. The intrin-
sic subroutine EXECUTE_COMMAND_LINE allows a program to start another program. The intrinsic
function FINDLOC searches an array for a value. A BACK= argument has been added to the intrinsic
functions MINLOC and MAXLOC. A RADIX= argument has been added to the intrinsic function SE-
LECTED_REAL_KIND. The intrinsic function STORAGE_SIZE returns the size of an array element in
bits.

Intrinsic modules:

The functions COMPILER_VERSION and COMPILER_OPTIONS in the intrinsic module ISO_FOR-
TRAN_ENV return information about the program translation phase. Named constants for selecting kind
values have been added to the intrinsic module ISO_FORTRAN_ENV. The function C_SIZEOF in the in-
trinsic module ISO_C_BINDING returns the size of an array element in bytes. A RADIX= argument has
been added to the function IEEE_SELECTED_REAL_KIND in the IEEE_ARITHMETIC module.

Introduction xiii

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

e Programs and procedures:
An empty CONTAINS section is allowed. Internal procedures can be used as actual arguments. ALLO-
CATABLE and POINTER attributes are used in generic resolution. A null pointer can be used to denote a
missing non-pointer optional argument. Impure elemental procedures process arrays in array element order.

3 This part of ISO/IEC 1539 is organized in 16 clauses, dealing with 8 conceptual areas. These 8 areas, and the
clauses in which they are treated, are:

High/low level concepts Clauses 1, 2, 3
Data concepts Clauses 4, 5, 6
Computations Clauses 7, 13, 14
Execution control Clause 8
Input/output Clauses 9, 10
Program units Clauses 11, 12
Interoperability with C Clause 15
Scoping and association rules Clause 16

4 It also contains the following nonnormative material:

Processor dependencies
Decremental features
Extended notes

Syntax rules

Index

HOoQwe

xiv Introduction

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

Information technology — Programming languages —
Fortran —

Part 1:

Base Language

1 Overview

1.1 Scope

1 ISO/IEC 1539 is a multipart International Standard; the parts are published separately. This publication,
ISO/IEC 1539-1, which is the first part, specifies the form and establishes the interpretation of programs expressed
in the base Fortran language. The purpose of this part of ISO/IEC 1539 is to promote portability, reliability,
maintainability, and efficient execution of Fortran programs for use on a variety of computing systems. The
second part, ISO/IEC 1539-2, defines additional facilities for the manipulation of character strings of variable
length; this has been largely subsumed by allocatable characters with deferred length parameters. The third part,
ISO/IEC 1539-3, defines a standard conditional compilation facility for Fortran. A processor conforming to part
1 need not conform to ISO/IEC 1539-2 or ISO/IEC 1539-3; however, conformance to either assumes conformance
to this part.

1.2 Inclusions

1 This part of ISO/IEC 1539 specifies

e the forms that a program written in the Fortran language may take,
the rules for interpreting the meaning of a program and its data,

the form of the input data to be processed by such a program, and

e the form of the output data resulting from the use of such a program.

1.3 Exclusions

1 This part of ISO/TEC 1539 does not specify

e the mechanism by which programs are transformed for use on computing systems,

e the operations required for setup and control of the use of programs on computing systems,

e the method of transcription of programs or their input or output data to or from a storage medium,

e the program and processor behavior when this part of ISO/IEC 1539 fails to establish an interpretation
except for the processor detection and reporting requirements in items (2) to (8) of 1.4,

e the maximum number of images, or the size or complexity of a program and its data that will exceed the
capacity of any particular computing system or the capability of a particular processor,

e the mechanism for determining the number of images of a program,

e the physical properties of an image or the relationship between images and the computational elements of
a computing system,

e the physical properties of the representation of quantities and the method of rounding, approximating, or
computing numeric values on a particular processor,

e the physical properties of input/output records, files, and units, or

1 Overview 1

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

e the physical properties and implementation of storage.

1.4 Conformance

1 A program (2.3.2) is a standard-conforming program if it uses only those forms and relationships described
herein and if the program has an interpretation according to this part of ISO/IEC 1539. A program unit (2.3.1)
conforms to this part of ISO/IEC 1539 if it can be included in a program in a manner that allows the program
to be standard conforming.

2 A processor conforms to this part of ISO/TEC 1539 if:

(1) it executes any standard-conforming program in a manner that fulfills the interpretations herein,
subject to any limits that the processor may impose on the size and complexity of the program;

(2) it contains the capability to detect and report the use within a submitted program unit of a form
designated herein as obsolescent, insofar as such use can be detected by reference to the numbered
syntax rules and constraints;

(3) it contains the capability to detect and report the use within a submitted program unit of an ad-
ditional form or relationship that is not permitted by the numbered syntax rules or constraints,
including the deleted features described in Annex B

(4) it contains the capability to detect and report the use within a submitted program unit of an intrinsic
type with a kind type parameter value not supported by the processor (4.4);

(5) it contains the capability to detect and report the use within a submitted program unit of source
form or characters not permitted by Clause 3;

(6) it contains the capability to detect and report the use within a submitted program of name usage
not consistent with the scope rules for names, labels, operators, and assignment symbols in Clause
16;

(7) it contains the capability to detect and report the use within a submitted program unit of intrinsic
procedures whose names are not defined in Clause 13; and

(8) it contains the capability to detect and report the reason for rejecting a submitted program.

3 However, in a format specification that is not part of a FORMAT statement (10.2.1), a processor need not detect
or report the use of deleted or obsolescent features, or the use of additional forms or relationships.

4 A standard-conforming processor may allow additional forms and relationships provided that such additions
do not conflict with the standard forms and relationships. However, a standard-conforming processor may allow
additional intrinsic procedures even though this could cause a conflict with the name of a procedure in a standard-
conforming program. If such a conflict occurs and involves the name of an external procedure, the processor is
permitted to use the intrinsic procedure unless the name is given the EXTERNAL attribute (5.3.9) in the scoping
unit (2.3.1). A standard-conforming program shall not use nonstandard intrinsic procedures or modules that have
been added by the processor.

5 Because a standard-conforming program may place demands on a processor that are not within the scope of this
part of ISO/IEC 1539 or may include standard items that are not portable, such as external procedures defined
by means other than Fortran, conformance to this part of ISO/IEC 1539 does not ensure that a program will
execute consistently on all or any standard-conforming processors.

6 The semantics of facilities that are identified as processor dependent are not completely specified in this part of
ISO/IEC 1539. They shall be provided, with methods or semantics determined by the processor.

NOTE 1.1

The processor should be accompanied by documentation that specifies the limits it imposes on the size
and complexity of a program and the means of reporting when these limits are exceeded, that defines the
additional forms and relationships it allows, and that defines the means of reporting the use of additional
forms and relationships and the use of deleted or obsolescent forms. In this context, the use of a deleted
form is the use of an additional form.

2 Overview 1.4

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 1.1 (cont.)

The processor should be accompanied by documentation that specifies the methods or semantics of
processor-dependent facilities.

1.5 Compatibility

1.5.1 New intrinsic procedures

Each Fortran International Standard since ISO 1539:1980 (informally referred to as FORTRAN 77), defines more
intrinsic procedures than the previous one. Therefore, a Fortran program conforming to an older standard may
have a different interpretation under a newer standard if it invokes an external procedure having the same name
as one of the new standard intrinsic procedures, unless that procedure is specified to have the EXTERNAL
attribute.

1.5.2 Fortran 2003 compatibility

This part of ISO/IEC 1539 is an upward compatible extension to the preceding Fortran International Stan-
dard, ISO/IEC 1539-1:2004 (Fortran 2003). Any standard-conforming Fortran 2003 program remains standard-
conforming under this part of ISO/IEC 1539.

1.5.3 Fortran 95 compatibility

Except as identified in this subclause, this part of ISO/IEC 1539 is an upward compatible extension to ISO/IEC
1539-1:1997 (Fortran 95). Any standard-conforming Fortran 95 program remains standard-conforming under
this part of ISO/IEC 1539. The following Fortran 95 features may have different interpretations in this part of
ISO/IEC 1539.

e Earlier Fortran standards had the concept of printing, meaning that column one of formatted output had
special meaning for a processor-dependent (possibly empty) set of external files. This could be neither
detected nor specified by a standard-specified means. The interpretation of the first column is not specified
by this part of ISO/IEC 1539.

e This part of ISO/IEC 1539 specifies a different output format for real zero values in list-directed and
namelist output.

e If the processor can distinguish between positive and negative real zero, this part of ISO/IEC 1539 requires
different returned values for ATAN2(Y,X) when X < 0 and Y is negative real zero and for LOG(X) and
SQRT(X) when X is complex with REAL(X) < 0 and negative zero imaginary part.

1.5.4 Fortran 90 compatibility

Except for the deleted features noted in Annex B.1, and except as identified in this subclause, this part of
ISO/IEC 1539 is an upward compatible extension to ISO/IEC 1539:1991 (Fortran 90). Any standard-conforming
Fortran 90 program that does not use one of the deleted features remains standard-conforming under this part
of ISO/IEC 1539.

The PAD= specifier in the INQUIRE statement in this part of ISO/IEC 1539 returns the value UNDEFINED if
there is no connection or the connection is for unformatted input/output. Fortran 90 specified YES.

Fortran 90 specified that if the second argument to MOD or MODULO was zero, the result was processor
dependent. this part of ISO/IEC 1539 specifies that the second argument shall not be zero.

1.5.5 FORTRAN 77 compatibility

Except for the deleted features noted in Annex B.1, and except as identified in this subclause, this part of
ISO/IEC 1539 is an upward compatible extension to ISO 1539:1980 (FORTRAN 77). Any standard-conforming

1.5 Overview 3

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

FORTRAN 77 program that does not use one of the deleted features noted in Annex B.1 and that does not
depend on the differences specified here remains standard-conforming under this part of ISO/IEC 1539. This
part of ISO/TEC 1539 restricts the behavior for some features that were processor dependent in FORTRAN 77.
Therefore, a standard-conforming FORTRAN 77 program that uses one of these processor-dependent features may
have a different interpretation under this part of ISO/IEC 1539, yet remain a standard-conforming program. The
following FORTRAN 77 features may have different interpretations in this part of ISO/IEC 1539.

e FORTRAN 77 permitted a processor to supply more precision derived from a default real constant than can
be represented in a default real datum when the constant is used to initialize a double precision real data
object in a DATA statement. This part of ISO/IEC 1539 does not permit a processor this option.

e If a named variable that was not in a common block was initialized in a DATA statement and did not
have the SAVE attribute specified, FORTRAN 77 left its SAVE attribute processor dependent. This part of
ISO/IEC 1539 specifies (5.4.7) that this named variable has the SAVE attribute.

e FORTRAN 77 specified that the number of characters required by the input list was to be less than or equal
to the number of characters in the record during formatted input. This part of ISO/IEC 1539 specifies
(9.6.4.4.3) that the input record is logically padded with blanks if there are not enough characters in the
record, unless the PAD= specifier with the value 'NO’ is specified in an appropriate OPEN or READ
statement.

e A value of 0 for a list item in a formatted output statement will be formatted in a different form for some
G edit descriptors. In addition, this part of ISO/IEC 1539 specifies how rounding of values will affect the
output field form, but FORTRAN 77 did not address this issue. Therefore, some FORTRAN 77 processors may
produce an output form different from the output form produced by Fortran 2003 processors for certain
combinations of values and G edit descriptors.

e If the processor can distinguish between positive and negative real zero, the behavior of the intrinsic function
SIGN when the second argument is negative real zero is changed by this part of ISO/IEC 1539.

1.6 Notation used in this part of ISO/IEC 1539

1.6.1 Applicability of requirements

In this part of ISO/IEC 1539, “shall” is to be interpreted as a requirement; conversely, “shall not” is to be
interpreted as a prohibition. Except where stated otherwise, such requirements and prohibitions apply to programs
rather than processors.

1.6.2 Informative notes

Informative notes of explanation, rationale, examples, and other material are interspersed with the normative
body of this part of ISO/IEC 1539. The informative material is nonnormative; it is identified by being in shaded,
framed boxes that have numbered headings beginning with “NOTE.”

1.6.3 Syntax rules

Syntax rules describe the forms that Fortran lexical tokens, statements, and constructs may take. These syntax
rules are expressed in a variation of Backus-Naur form (BNF) with the following conventions.

e Characters from the Fortran character set (3.1) are interpreted literally as shown, except where otherwise
noted.

e Lower-case italicized letters and words (often hyphenated and abbreviated) represent general syntactic
classes for which particular syntactic entities shall be substituted in actual statements.

Common abbreviations used in syntactic terms are:

arg for argument attr for attribute
decl for declaration def for definition
desc for descriptor erpr for expression
it for integer op for operator
spec for specifier stmt for statement

4 Overview 1.6.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

e The syntactic metasymbols used are:

is introduces a syntactic class definition

or introduces a syntactic class alternative

[] encloses an optional item

[]... encloses an optionally repeated item
that may occur zero or more times

| continues a syntax rule

e Each syntax rule is given a unique identifying number of the form Rsnn, where s is a one- or two-digit
clause number and nn is a two-digit sequence number within that clause. The syntax rules are distributed
as appropriate throughout the text, and are referenced by number as needed. Some rules in Clauses 2 and
3 are more fully described in later clauses; in such cases, the clause number s is the number of the later
clause where the rule is repeated.

e The syntax rules are not a complete and accurate syntax description of Fortran, and cannot be used to
generate a Fortran parser automatically; where a syntax rule is incomplete, it is restricted by corresponding
constraints and text.

NOTE 1.2
An example of the use of the syntax rules is:

digit-string is digit | digit | ...

The following are examples of forms for a digit string allowed by the above rule:

digit

digit digit

digit digit digit digit

digit digit digit digit digit digit digit digit

If particular entities are substituted for digit, actual digit strings might be:

4

67

1999
10243852

1.6.4 Constraints

Each constraint is given a unique identifying number of the form Csnn, where s is a one or two digit clause number
and nn is a two or three digit sequence number within that clause.

Often a constraint is associated with a particular syntax rule. Where that is the case, the constraint is annotated
with the syntax rule number in parentheses. A constraint that is associated with a syntax rule constitutes part of
the definition of the syntax term defined by the rule. It thus applies in all places where the syntax term appears.

Some constraints are not associated with particular syntax rules. The effect of such a constraint is similar to
that of a restriction stated in the text, except that a processor is required to have the capability to detect and
report violations of constraints (1.4). In some cases, a broad requirement is stated in text and a subset of the
same requirement is also stated as a constraint. This indicates that a standard-conforming program is required to
adhere to the broad requirement, but that a standard-conforming processor is required only to have the capability
of diagnosing violations of the constraint.

1.6.4 Overview 5

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

1.6.5 Assumed syntax rules

In order to minimize the number of additional syntax rules and convey appropriate constraint information, the
following rules are assumed.

R101 zyz-list is zyz [, zyz] ...
R102 zyz-name is name
R103 scalar-zyz is zyz

C101 (R103) scalar-zyz shall be scalar.

The letters “zyz” stand for any syntactic class phrase. An explicit syntax rule for a term overrides an assumed
rule.

1.6.6 Syntax conventions and characteristics

4

Any syntactic class name ending in “-stmt” follows the source form statement rules: it shall be delimited by
end-of-line or semicolon, and may be labeled unless it forms part of another statement (such as an IF or WHERE
statement). Conversely, everything considered to be a source form statement is given a “-stmt” ending in the
syntax rules.

The rules on statement ordering are described rigorously in the definition of program-unit (R202). Expression
hierarchy is described rigorously in the definition of expr (R722).

The suffix “-spec” is used consistently for specifiers, such as input/output statement specifiers. It also is used for
type declaration attribute specifications (for example, “array-spec” in R515), and in a few other cases.

Where reference is made to a type parameter, including the surrounding parentheses, the suffix “-selector” is
used. See, for example, “kind-selector” (R405) and “length-selector” (R421).

1.6.7 Text conventions

In descriptive text, an equivalent English word is frequently used in place of a syntactic term. Particular state-
ments and attributes are identified in the text by an upper-case keyword, e.g., “END statement”. Boldface words
are used in the text where they are first defined with a specialized meaning. The descriptions of obsolescent
features appear in a smaller type size.

NOTE 1.3

‘ This sentence is an example of the type size used for obsolescent features.

1.7 Deleted and obsolescent features

1.7.1 General

This part of ISO/TEC 1539 protects the users’ investment in existing software by including all but five of the
language elements of Fortran 90 that are not processor dependent. This part of ISO/IEC 1539 identifies two
categories of outmoded features. The first category, deleted features, consists of features considered to have been
redundant in FORTRAN 77 and largely unused in Fortran 90. Those in the second category, obsolescent features,
are considered to have been redundant in Fortran 90 and Fortran 95, but are still frequently used.

1.7.2 Nature of deleted features

Better methods existed in FORTRAN 77 for each deleted feature. These features were not included in Fortran 95
or Fortran 2003, and are not included in this revision of Fortran.

6 Overview 1.6.6

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

1.7.3 Nature of obsolescent features

Better methods existed in Fortran 90 and Fortran 95 for each obsolescent feature. It is recommended that
programmers use these better methods in new programs and convert existing code to these methods.

The obsolescent features are identified in the text of this part of ISO/IEC 1539 by a distinguishing type font
(1.6.7).

A future revision of this part of ISO/IEC 1539 might delete an obsolescent feature if its use has become insignif-
icant.

1.8 Normative references

The following referenced standards are indispensable for the application of this part of ISO/TEC 1539. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced standard
(including any amendments) applies.

ISO/IEC 646:1991, Information technology—ISO 7-bit coded character set for information interchange.

ISO 8601:1988, Data elements and interchange formats—Information interchange—
Representation of dates and times.

ISO/IEC 9899:1999, Information technology—Programming languages—C.

ISO/IEC 10646-1:2000, Information technology— Universal multiple-octet coded character set (UCS)—Part 1:
Architecture and basic multilingual plane.

IEC 60559 (1989-01), Binary floating-point arithmetic for microprocessor systems.

ISO/IEC 646:1991 (International Reference Version) is the international equivalent of ANST X3.4-1986, commonly
known as ASCII.

This part of ISO/IEC 1539 refers to ISO/IEC 9899:1999 as the C International Standard.

Because IEC 60559 (1989-01) was originally IEEE 754-1985, Standard for binary floating-point arithmetic, and is
widely known by this name, this part of ISO/TEC 1539 refers to it as the IEEE International Standard.

1.7.3 Overview 7

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

8 Overview 1.8. NORMATIVE REFERENCES

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

2 Fortran terms and concepts

2.1 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

2.1.1
actual argument
entity (R1223) that appears in a procedure reference

2.1.2
allocatable
having the ALLOCATABLE attribute (5.3.3)

2.1.3

array

set of scalar data, all of the same type and type parameters, whose individual elements are arranged in a
rectangular pattern

2.1.3.1
array element
scalar individual element of an array

2.1.3.2
array pointer
array with the POINTER attribute (5.3.14)

2.1.3.3
array section
array subobject designated by array-section, and which is itself an array (6.5.3.3)

2.1.3.4
assumed-shape array
nonallocatable nonpointer dummy argument array that takes its shape from its effective argument (5.3.8.3)

2.1.3.5
assumed-size array
dummy argument array whose size is assumed from that of its effective argument (5.3.8.5)

2.1.3.6
deferred-shape array
allocatable array or array pointer, declared with a deferred-shape-spec-list (5.3.8.4)

2.1.3.7

explicit-shape array

array declared with an explicit-shape-spec-list, which specifies explicit values for the bounds in each dimension of
the array (5.3.8.2)

2.1.4
associate name
name of construct entity associated with a selector of an ASSOCIATE or SELECT TYPE construct (8.1.3)

2.1.5
association

2 Fortran terms and concepts 9

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

inheritance association (16.5.4), name association (16.5.1), pointer association (16.5.2), or storage association
(16.5.3).

NOTE 2.1

Name association is further subcategorized as argument association, construct association (16.5.1.6), host
association (16.5.1.4), linkage association, or use association.

2.1.5.1
argument association
association between an effective argument and a dummy argument (12.5.2)

2.1.5.2

host association

name association, other than argument association, between entities in a submodule or contained scoping unit
and entities in its host (16.5.1.4)

2.1.5.3
inheritance association
association between the inherited components of an extended type and the components of its parent component

2.1.5.4
pointer association
association between a pointer and an entity with the TARGET attribute (16.5.2)

2.1.5.5
storage association
association between storage sequences (16.5.3)

2.1.5.6

use association

association between entities in a module and entities in a scoping unit that references that module, as specified
by a USE statement (11.2.2)

2.1.6
attribute
property of an entity that determines its uses (5.1)

2.1.7

automatic data object

automatic object

nondummy data object with a type parameter or array bound that depends on the value of a specification-expr
that is not an initialization expression

2.1.8

binding label

default character value specifying the name by which a global entity with the BIND attribute is known to the
companion processor (15.5.2, 15.4.2)

2.1.9

block

sequence of executable constructs formed by the syntactic class block and which is treated as a unit by the
executable constructs described in 8.1

2.1.10
block data program unit
program unit whose initial statement is a BLOCK DATA statement, used for providing initial values for data

10 Fortran terms and concepts 2.1

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

objects in named common blocks (11.3)

2.1.11

bound

array bound

limit of a dimension of an array

2.1.12

C address

value identifying the location of a data object or procedure either defined by the companion processor or which
might be accessible to the companion processor; this is the same concept which the C International Standard
calls the address

2.1.13
character context
within a character literal constant (4.4.5) or within a character string edit descriptor (10.3.2)

2.1.14
characteristics
either

e of a procedure, the properties listed in 12.3.1,

e of a dummy argument, being a dummy data object, dummy procedure, or an asterisk (alternate return indicator),
e of a dummy data object, the properties listed in 12.3.2.2,

e of a dummy procedure or dummy procedure pointer, the properties listed in 12.3.2.3, or

e of a function result, the properties listed in 12.3.3.

2.1.15
coarray
data entity that has nonzero corank (2.5.7)

2.1.16
cobound
bound (limit) of a codimension

2.1.17
codimension
dimension of the pattern formed by corresponding coarrays (R623, 6.5.5)

2.1.18
coindexed object
data object whose designator includes an image-selector

2.1.19
corank
number of codimensions of a coarray (zero for objects that are not coarrays)

2.1.20
cosubscript
(R624) scalar integer expression in an image-selector (R623)

2.1.21
collating sequence
one-to-one mapping from a character set into the nonnegative integers (4.4.5.4)

2.1.22
common block

2.1 Fortran terms and concepts 11

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

block of physical storage specified by a COMMON statement (5.7.2)

2.1.22.1
blank common
unnamed common block

2.1.23
companion processor
processor-dependent mechanism by which global data and procedures may be referenced or defined (2.6.7)

2.1.24
component
part of a derived type, or of an object of derived type, defined by a component-def-stmt (4.5.4)

2.1.24.1
direct component
one of the components, or one of the direct components of a nonpointer nonallocatable component (4.5.1)

2.1.24.2

parent component

component of an extended type whose type is that of the parent type and whose components are inheritance
associated with the inherited components of the parent type (4.5.7.2)

2.1.24.3
subcomponent
of a structure, direct component that is a subobject of that structure (6.4.2)

2.1.24.4

ultimate component

a component that is of intrinsic type, a pointer, or allocatable; or an ultimate component of a nonpointer
nonallocatable component of derived type

2.1.25

component order

ordering of the nonparent components of a derived type that is used for intrinsic formatted input/output and
structure constructors (where component keywords are not used) (4.5.4.7)

2.1.26
conformable
of two data entities, having the same shape, or one being an array and the other being scalar

2.1.27
connected
relationship between a unit and a file: each is connected if and only if the unit refers to the file (9.5.4)

2.1.28

constant

data object that has a value and which cannot be defined, redefined, or become undefined during execution of a
program (3.2.3, 6.3)

2.1.28.1
literal constant
constant that does not have a name (R306, 4.4)

2.1.28.2
named constant

12 Fortran terms and concepts 2.1

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

named data object with the PARAMETER attribute (5.3.13)

2.1.29
construct entity
entity whose identifier has the scope of a construct (16.1, 16.4)

index variable of a FORALL construct (7.2.4) or DO CONCURRENT construct (8.1.7), associate name of an
ASSOCIATE construct (8.1.3) or SELECT TYPE construct (8.1.9), or entity declared in the specification part
of a BLOCK construct other than only in ASYNCHRONOUS and VOLATILE statements (8.1.4)

2.1.30
data entity
data object, result of the evaluation of an expression, or the result of the execution of a function reference

2.1.31

data object

object

constant (4.1.3), variable (6), or subobject of a constant (2.5.3.1.3)

2.1.32
decimal symbol

character that separates the whole and fractional parts in the decimal representation of a real number in a file
(10.6)

2.1.33
declaration
specification of attributes for various program entities

NOTE 2.2

Often this involves specifying the type of a named data object or specifying the shape of a named array
object.

2.1.34

default initialization

mechanism for automatically initializing pointer components to have a defined pointer association status, and
nonpointer components to have a particular value (4.5.4.6)

2.1.35
default-initialized

of a subcomponent, being subject to a default initialization specified in the type definition for that component
(4.5.4.6)

2.1.36
definable
being capable of definition and permitted to become defined

2.1.37
defined
either
e of a data object, the property of having a valid value, or

e of a pointer, the property of having a pointer association status of associated or disassociated

2.1.38
defined assignment
assignment defined by a procedure (7.2.1.4, 12.4.3.4.3)

2.1.39
defined input/output

2.1 Fortran terms and concepts 13

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

input/output defined by a procedure (9.6.4.7)

2.1.40
defined operation
operation defined by a procedure (7.1.6.1, 12.4.3.4.2)

2.1.41
definition
either
o the specification of derived types (4.5.2), enumerations (4.6), and procedures (12.6), or

e the process by which a data object becomes defined (16.6.5)

2.1.42

designator

name followed by zero or more component selectors, complex part selectors, array section selectors, array element
selectors, image selectors, and substring selectors (6.1)

2.1.42.1
complex part designator

designator that designates the real or imaginary part of a complex data object, independently of the other part
(6.4.3)

2.1.42.2

object designator

data object designator
designator for a data object

NOTE 2.3

An object name is a special case of an object designator.

2.1.42.3
procedure designator
designator for a procedure

2.1.43
disassociated
either
e the pointer association status of not being associated with any target and not being undefined (16.5.2.2),
or

e of a pointer, having that pointer association status

2.1.44

dummy argument

entity whose identifier appears in a dummy argument list (R1235) in a FUNCTION, SUBROUTINE, ENTRY, or
statement function statement, or whose name can be used as an argument keyword in a reference to an intrinsic
procedure or a procedure in an intrinsic module

21441
dummy data object
dummy argument that is a data object

2.1.44.2
dummy function
dummy procedure that is a function

2.1.45
effective argument

14 Fortran terms and concepts 2.1

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

entity that is argument-associated with a dummy argument (12.5.2.3)

2.1.46
effective item
scalar object resulting from the application of the rules in 9.6.3 to an input/output list

2.1.47

elemental

independent scalar application of an action or operation to elements of an array or corresponding elements of a
set of conformable arrays and scalars, or possessing the capability of elemental operation

NOTE 2.4

Combination of scalar and array operands or arguments combine the scalar operand(s) with each element
of the array operand(s).

2.1.47.1
elemental assignment
assignment that operates elementally

2.1.47.2
elemental operation
operation that operates elementally

2.1.47.3
elemental operator
operator in an elemental operation

2.1.47.4
elemental procedure
elemental intrinsic procedure or procedure defined by an elemental subprogram

2.1.47.5
elemental reference
reference to an elemental procedure with at least one array actual argument

2.1.47.6
elemental subprogram
subprogram with the ELEMENTAL prefix

2.1.48

END statement

end-block-data-stmt, end-function-stmt, end-module-stmt, end-mp-subprogram-stmt, end-program-stmt,
end-submodule-stmt, or end-subroutine-stmt

2.1.49

explicit initialization

initialization of a data object by a specification statement (5.2.3, 5.4.7)
2.1.50

explicit interface

interface of a procedure that includes all the characteristics of the procedure and names for its dummy arguments
except for asterisk dummy arguments (12.4.2)

2.1.51
extent

2.1 Fortran terms and concepts 15

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

number of elements in a single dimension of an array

2.1.52
external file
file that exists in a medium external to the program (9.3)

2.1.53

external unit

external input/output unit

entity that can be connected to an external file

2.1.54
file storage unit
unit of storage in a stream file or an unformatted record file (9.3.5)

2.1.55

final subroutine

subroutine whose name appears in a FINAL statement (4.5.6) in a type definition, and which can be automatically
invoked by the processor when an object of that type is finalized (4.5.6.2)

2.1.56
finalizable
either

e of a type, having a final subroutine or a nonpointer nonallocatable component of finalizable type, or
e of a nonpointer data entity, being of finalizable type

2.1.57
finalization
the process of calling final subroutines when one of the events listed in 4.5.6.3 occurs

2.1.58
function
procedure that is invoked by an expression

2.1.59
generic identifier
lexical token that identifies a generic set of procedures, intrinsic operations, and/or intrinsic assignments

2.1.60
generic interface
set of procedure interfaces identified by a generic identifier

2.1.61

host scoping unit

host

the scoping unit immediately surrounding another scoping unit, or the scoping unit of the parent of a submodule

2.1.62
image
instance of a Fortran program (2.4.2)

2.1.63
image index
integer value identifying an image

2.1.64
implicit interface

16 Fortran terms and concepts 2.1

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

interface of a procedure that includes only the type and type parameters of a function result (12.4.2, 12.4.3.8)

2.1.65

inherit

of an extended type, to acquire entities (components, type-bound procedures, and type parameters) through type
extension from the parent type

2.1.66
initialization expression
expression that satisfies the rules in 7.1.12

2.1.67

inquiry function

intrinsic function, or function in an intrinsic module, whose result depends on the properties of one or more of
its arguments instead of their values

2.1.68
interface block
abstract interface block, generic interface block, or specific interface block (12.4.3.2)

2.1.68.1
abstract interface block
interface block with the ABSTRACT keyword; collection of interface bodies that specify abstract interfaces

2.1.68.2

generic interface block

interface block with a generic-spec; collection of interface bodies and procedure statements that are to be given
that generic identifier

2.1.68.3

specific interface block

interface block with no generic-spec or ABSTRACT keyword; collection of interface bodies that specify the
interfaces of procedures

2.1.69

interface body

scoping unit that specifies an abstract interface or the interface of a dummy procedure, external procedure,
procedure pointer, or separate module procedure (12.4.3.2)

2.1.70
interoperable
interoperable with a C entity

2.1.71

intrinsic

type, procedure, module, assignment, operator, or input/output operation defined in this part of ISO/IEC 1539
and accessible without further definition or specification, or a procedure or module provided by a processor but
not defined in this part of ISO/IEC 1539

2.1.71.1
standard intrinsic
of a procedure or module, defined in this part of ISO/IEC 1539 (13)

2.1.71.2
nonstandard intrinsic
of a procedure or module, provided by a processor but not defined in this part of ISO/IEC 1539

2.1.72
internal file

2.1 Fortran terms and concepts 17

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

character variable that is connected to an internal unit (9.4)

2.1.73
internal unit
input/output unit that is connected to an internal file (9.5.4)

2.1.74
keyword
statement keyword, argument keyword, type parameter keyword, or component keyword

2.1.74.1
argument keyword
word that identifies the corresponding dummy argument in an actual argument list

2.1.74.2
component keyword
word that identifies a component in a structure constructor

2.1.74.3
statement keyword
word that is part of the syntax of a statement (2.6.2)

2.1.74.4
type parameter keyword
word that identifies a type parameter in a type parameter list

2.1.75
line
sequence of zero or more characters

2.1.76
main program
program unit that is not a subprogram, module, submodule, or block data program unit (11.1)

2.1.77

module

program unit containing (or accessing from other modules) definitions that are to be made accessible to other
program units (11.2)

2.1.78
name
identifier of a program consituent, formed according to the rules given in 3.2.2

2.1.79
NaN
Not a Number, a symbolic floating-point datum (IEEE International Standard)

2.1.80
operand
data value that is the subject of an operator

2.1.81

operator

either a prefix syntax specifying a computation involving one (unary operator) data value, or an infix syntax
specifying a computation involving two (binary operator) data values

2.1.82
passed-object dummy argument
dummy argument of a type-bound procedure or procedure pointer component that becomes associated with the

18 Fortran terms and concepts 2.1

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

object through which the procedure is invoked (4.5.4.5)

2.1.83
pointer
data pointer (2.1) or procedure pointer (2.1)

2.1.83.1
data pointer
data entity with the POINTER attribute (5.3.14)

2.1.83.2
procedure pointer
procedure with the EXTERNAL and POINTER attributes (5.3.9, 5.3.14)

2.1.84

pointer assignment

association of a pointer with a target, by execution of a pointer assignment statement (7.2.2) or an intrinsic
assignment statement (7.2.1.2) for a derived-type object that has the pointer as a subobject

2.1.85
polymorphic
data entity declared with the CLASS keyword, able to be of differing dynamic types during program execution

2.1.86
preconnected
of a file or unit, connected at the beginning of execution of the program (9.5.5)

2.1.87
procedure
entity encapsulating an arbitrary sequence of actions that can be invoked directly during program execution

2.1.87.1
dummy procedure
procedure that is a dummy argument (12.2.2.3)

2.1.87.2
external procedure
procedure defined by an external subprogram (R203) or by means other than Fortran (12.6.3)

2.1.87.3
internal procedure
procedure defined by an internal subprogram (R211)

2.1.87.4
module procedure
procedure that is defined by a module subprogram (R1108)

2.1.87.5
pure procedure
procedure declared or defined to be pure according to the rules in 12.7

2.1.88

processor

combination of a computing system and mechanism by which programs are transformed for use on that computing
system

2.1.89
processor dependent

2.1 Fortran terms and concepts 19

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

not completely specified in this part of ISO/TEC 1539, having methods and semantics determined by the processor

2.1.90

program

set of Fortran program units and global entities defined by means other than Fortran that includes exactly one
main program

2.1.91
program unit
main program, external subprogram, module, submodule, or block data program unit (2.3.1)

2.1.92
record
sequence of values or characters in a file (9.2)

2.1.93
reference
data object reference, procedure reference, or module reference

2.1.93.1
data object reference
appearance of a data object designator (6.1) in a context requiring its value at that point during execution

2.1.93.2

function reference

appearance of the procedure designator for a function, or operator symbol in a context requiring execution of the
function during expression evaluation (12.5.3)

2.1.93.3
module reference
appearance of a module name in a USE statement (11.2.2)

2.1.93.4

procedure reference

appearance of a procedure designator, operator symbol, or assignment symbol in a context requiring execution
of the procedure at that point during execution; or occurrence of defined input/output (10.7.6) or derived-type
finalization (4.5.6.2)

2.1.94
rank
number of array dimensions of a data entity (zero for a scalar entity)

2.1.95
result variable
variable that returns the value of a function

2.1.96
saved
having the SAVE attribute (5.3.16)

2.1.97
scalar
data entity that can be represented by a single value of the type and that is not an array (6.5)

2.1.98

scoping unit

either
e a program unit or subprogram, excluding any scoping units in it,
e a derived-type definition (4.5.2), or

20 Fortran terms and concepts 2.1

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

e an interface body, excluding any scoping units in it

2.1.99
sequence
set of elements ordered by a one-to-one correspondence with the numbers 1, 2, to n

2.1.99.1
empty sequence
sequence containing no elements

2.1.100

shape

array dimensionality of a data entity, represented as a rank-one array whose size is the rank of the data entity
and whose elements are the extents of the data entity

NOTE 2.5
Thus the shape of a scalar data entity is an array with rank one and size zero.

2.1.101
size
of an array, the total number of elements in the array

2.1.102
specification expression
expression that satisfies the rules in 7.1.11

2.1.103

standard-conforming program

program that uses only those forms and relationships described in, and which has an interpretation according to,
this part of ISO/IEC 1539

2.1.104
statement
sequence of one or more complete or partial lines satisfying a syntax rule that ends in -stmt (3.3)

2.1.104.1

executable statement

statement that is a member of the syntactic class executable-construct, excluding those in the specification-part
of a BLOCK construct

2.1.104.2
nonexecutable statement
statement that is not an executable statement

2.1.105
statement entity
entity whose identifier has the scope of a statement or part of a statement (16.1, 16.4)

2.1.106

statement label

label

unsigned positive number of up to five digits that refers to an individual statement (3.2.5)

2.1.107
storage sequence

2.1 Fortran terms and concepts 21

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

contiguous sequence of storage units (16.5.3.2)

2.1.108

storage unit

unit of storage; a character storage unit, numeric storage unit, file storage unit, or unspecified storage unit
(16.5.3.2)

2.1.108.1
character storage unit
storage unit for holding a default character value (16.5.3.2)

2.1.108.2
numeric storage unit
storage unit for holding a default real, default integer, or default logical value (16.5.3.2)

2.1.108.3

unspecified storage unit

storage unit for holding a value that is not default character, default real, double precision real, default logical,
or default complex (16.5.3.2)

2.1.109
structure
scalar data object of derived type (4.5)

2.1.109.1
structure component
component of a structure

2.1.109.2
structure constructor
syntax (structure-constructor, 4.5.10) that specifies a structure value or which creates such a value

2.1.110
submodule
program unit that extends a module or another submodule (11.2.3)

2.1.111
subobject
portion of data object that can be referenced, and if it is a variable defined, independently of any other portion

2.1.112
subprogram
function-subprogram (R1227) or subroutine-subprogram (R1233)

2.1.112.1
external subprogram
subprogram that is not contained in a main program, module, submodule, or another subprogram

2.1.112.2
internal subprogram
subprogram that is contained in a main program or another subprogram

2.1.112.3
module subprogram
subprogram that is contained in a module or submodule but which is not an internal subprogram

2.1.113
subroutine

22 Fortran terms and concepts 2.1

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

procedure invoked by a CALL statement, by defined assignment, or by some operations on derived-type entities

2.1.114

target

entity that is pointer-associated with a pointer (16.5.2.2), entity on the right-hand-side of a pointer assignment
statement (R735), or entity with the TARGET attribute (5.3.17)

2.1.115
transformational function
intrinsic function, or function in an intrinsic module, which is neither elemental nor an inquiry function

2.1.116

type

data type

named category of data characterized by a set of values, a syntax for denoting these values, and a set of operations
that interpret and manipulate the values (4.1)

2.1.116.1
abstract type
type with the ABSTRACT attribute (4.5.7.1)

2.1.116.2
declared type
type that a data entity is declared to have, either explicitly or implicitly (4.3.1, 7.1.9)

2.1.116.3
derived type
type defined by a type definition (4.5) or by an intrinsic module

2.1.116.4
dynamic type
type of a data entity at a particular point during execution of a program (4.3.1.3, 7.1.9)

2.1.116.5
extended type
type with the EXTENDS attribute (4.5.7.1)

2.1.116.6

extensible type

type that has neither the BIND attribute nor the SEQUENCE attribute and which therefore may be extended
using the EXTENDS clause (4.5.7.1)

2.1.116.7

extension type

relationship between two types: a type is an extension type of another if the other is the same type, the parent
type, or an extension of the parent type (4.5.7.1)

2.1.116.8
intrinsic type
type defined by this part of ISO/IEC 1539 that is always accessible (4.4)

2.1.116.9
numeric type
one of the types integer, real, and complex

2.1.116.10
parent type

2.1 Fortran terms and concepts 23

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

of an extended type, the type named in its EXTENDS clause

2.1.116.11

type compatible

of one entity with respect to another, compatibility of the types of the entities for purposes such as argument
association, pointer association, and allocation (4.3.1)

2.1.116.12

type parameter

value used to parameterize a type, further specifying the set of data values, syntax for denoting those, and the
set of operations available (4.2)

2.1.116.12.1

assumed type parameter

length type parameter that assumes the type parameter value from another entity, which is
e the selector for an associate name,
e the initialization-expr for a named constant of type character, and

e the effective argument for a dummy argument

2.1.116.12.2

deferred type parameter

length type parameter whose value can change during execution of a program and whose type-param-value is a
colon

2.1.116.12.3
kind type parameter
type parameter whose value is required to be defaulted or given by an initialization expression

2.1.116.12.4
length type parameter
type parameter whose value is permitted to be assumed, deferred, or given by a specification expression

2.1.116.12.5
type parameter inquiry
syntax (type-param-inquiry) that is used to inquire the value of a type parameter of a data object (6.4.4)

2.1.116.12.6
type parameter order
ordering of the type parameters of a type (4.5.3.2) used for derived-type specifiers (derived-type-spec, 4.5.9)

2.1.117
type-bound procedure
procedure bound to a type (4.5.5)

2.1.118
ultimate argument
nondummy entity with which a dummy argument is associated via a chain of argument associations (12.5.2.3)

2.1.119
undefined
either
e of a data object, the property of not having a valid value, or

e of a pointer, the property of having not having a pointer association status of associated or disassociated
(16.5.2.2)

2.1.120

unit

24 Fortran terms and concepts 2.1

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

input/output unit
means, specified by an io-unit, for referring to a file (9.5.1)

2.1.121
unsaved
not having the SAVE attribute (5.3.16)

2.1.122
variable
data entity that can be defined and redefined during execution of a program

2.1.122.1

local variable

variable in a scoping unit or BLOCK construct that is not a dummy argument or part thereof, is not a global
entity or part thereof, and is not accessible outside that scoping unit or construct

2.1.123
vector subscript
section-subscript that is an array

2.1.124
whole array
array designated by a name (6.5.2)

2.2 High level syntax

This subclause introduces the terms associated with program units and other Fortran concepts above the con-
struct, statement, and expression levels and illustrates their relationships.

NOTE 2.6
Constraints and other information related to the rules that do not begin with R2 appear in the appropriate
clause.
R201 program is program-unit
[program-unit | ...
R202 program-unit is main-program
or external-subprogram
or module
or submodule
or block-data
R1101 main-program is [program-stmt]
[specification-part]
[execution-part |
[internal-subprogram-part |
end-program-stmt
R203 external-subprogram is function-subprogram
or subroutine-subprogram
R1227 function-subprogram is function-stmt

[specification-part |

[execution-part]

[internal-subprogram-part |
end-function-stmt

2.2 Fortran terms and concepts 25

ISO/IEC SC22/WG5/N1723

R1233

R1104

R1116

R1120

R204

R205

R206

R207

R208

R209

R210

R211

26

subroutine-subprogram

module

submodule

block-data

specification-part

implicit-part

implicit-part-stmt

declaration-construct

execution-part

execution-part-construct

internal-subprogram-part

internal-subprogram

is

is

is

is

is

is

is

or
or
or

is

or
or
or
or
or
or
or
or
or

is
is
or

or
or

is

is
or

CD 1539-1

subroutine-stmt
[specification-part |
[execution-part]
[internal-subprogram-part |
end-subroutine-stmt

module-stmt
[specification-part |
[module-subprogram-part |
end-module-stmt

submodule-stmt
[specification-part |
[module-subprogram-part |
end-submodule-stmt

block-data-stmt
[specification-part]
end-block-data-stmt

[use-stmt | ...
[import-stmt | ...
[implicit-part |
[declaration-construct | ...

[implicit-part-stmt] ...
implicit-stmt

implicit-stmt
parameter-stmt
format-stmt

entry-stmt

derived-type-def

entry-stmt

enum-def

format-stmt
interface-block
parameter-stmt
procedure-declaration-stmt
specification-stmt
type-declaration-stmt

stmit-function-stmt

executable-construct

[execution-part-construct | ...

executable-construct
format-stmt
entry-stmt

data-stmt

contains-stmt
[internal-subprogram | ...

function-subprogram
subroutine-subprogram

Fortran terms and concepts

08-007r2:2008,/03/11

2.2

08-007r2:2008,/03/11

R1107 module-subprogram-part

R1108 module-subprogram

R1237

R212 specification-stmt
R213 executable-construct
R214 action-stmt

2.2

separate-module-subprogram

is

is
or
or

is

is

or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or

or
or
or
or
or
or
or
or
or

is

or
or
or
or
or
or
or
or
or
or
or

CD 1539-1

contains-stmt
[module-subprogram | ...

Sfunction-subprogram
subroutine-subprogram
separate-module-subprogram

mp-subprogram-stmt
[specification-part |
[execution-part]
[internal-subprogram-part |
end-mp-subprogram-stmt

access-stmt
allocatable-stmt
asynchronous-stmt
bind-stmt
codimension-stmt
common-stmt
data-stmt
dimension-stmt
equivalence-stmt
external-stmt
intent-stmt
ntrinsic-stmt
namelist-stmt
optional-stmt
pointer-stmt
protected-stmt
save-stmt
target-stmt
volatile-stmt
value-stmt

action-stmt
associate-construct
block-construct
case-construct
critical-construct
do-construct
forall-construct
if-construct
select-type-construct
where-construct

allocate-stmt
allstop-stmt
assignment-stmt
backspace-stmt
call-stmt
close-stmt
continue-stmi
cycle-stmit
deallocate-stmt
end-function-stmt
end-mp-subprogram-stmt
end-program-stmt

Fortran terms and concepts

ISO/IEC SC22/WG5/N1723

27

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

or end-subroutine-stmt
or endfile-stmt

or exit-stmt

or flush-stmt

or forall-stmt

or goto-stmt

or if-stmit

or inquire-stmt

or nullify-stmt

or open-stmt

or pointer-assignment-stmt
or print-stmt

or read-stmt

or return-stmt

or rewind-stmt

or stop-stmt

or sync-all-stmt

or sync-images-stmt
or sync-memory-stmt
or wait-stmt

or where-stmt

or write-stmt

or arithmetic-if-stmt

or computed-goto-stmt

C201 (R208) An ezecution-part shall not contain an end-function-stmt, end-mp-subprogram-stmt, end-program-
stmt, or end-subroutine-stmt.

2.3 Program unit concepts

2.3.1 Program units and scoping units

Program units are the fundamental components of a Fortran program. A program unit is a main program, an
external subprogram, a module, a submodule, or a block data program unit.

A subprogram is a function subprogram or a subroutine subprogram. A module contains definitions that are to be
made accessible to other program units. A submodule is an extension of a module; it may contain the definitions
of procedures declared in a module or another submodule. A block data program unit is used to specify initial
values for data objects in named common blocks.

Each type of program unit is described in Clause 11 or 12.
A program unit consists of a set of nonoverlapping scoping units.

NOTE 2.7

The module or submodule containing a module subprogram is the host scoping unit of the module subpro-
gram. The containing main program or subprogram is the host scoping unit of an internal subprogram.

An internal procedure is local to its host in the sense that its name is accessible within the host scoping
unit and all its other internal procedures but is not accessible elsewhere.

2.3.2 Program

A program shall consist of exactly one main program, any number (including zero) of other kinds of program units,
any number (including zero) of external procedures, and any number (including zero) of other entities defined by

28 Fortran terms and concepts 2.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

means other than Fortran. The main program shall be defined by a Fortran main-program program-unit or by
means other than Fortran, but not both.

NOTE 2.8

There is a restriction that there shall be no more than one unnamed block data program unit (11.3). ‘

2.3.3 Procedure
2.3.3.1 General

A procedure is either a function or a subroutine. Invocation of a function in an expression causes a value to be
computed which is then used in evaluating the expression.

A procedure that is not pure might change the program state by changing the value of data objects accessible to
it.

Procedures are described further in Clause 12.

2.3.4 Module

A module contains (or accesses from other modules) definitions that are to be made accessible to other program
units. These definitions include data object declarations, type definitions, procedure definitions, and interface
blocks. A scoping unit in another program unit may access the definitions in a module. Modules are further
described in Clause 11.

2.3.5 Submodule

A submodule extends a module or another submodule.

It may provide definitions (12.6) for procedures whose interfaces are declared (12.4.3.2) in an ancestor module
or submodule. It may also contain declarations and definitions of other entities, which are accessible in its
descendants. An entity declared in a submodule is not accessible by use association unless it is a module procedure
whose interface is declared in the ancestor module. Submodules are further described in Clause 11.

NOTE 2.9

The scoping unit of a submodule accesses the scoping unit of its parent module or submodule by host
association.

2.4 Execution concepts

2.4.1 Statement classification
Each Fortran statement is classified as either an executable statement or a nonexecutable statement.

Image execution is a sequence, in time, of actions. An executable statement is an instruction to perform or control
one or more of these actions. Thus, the executable statements of a program unit determine the behavior of the
program unit.

Nonexecutable statements do not specify actions; they are used to configure the program environment in which
actions take place.

There are restrictions on the order in which statements may appear in a program unit, and not all executable
statements may appear in all contexts.

233 Fortran terms and concepts 29

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

2.4.2 Program execution

Execution of a program consists of the asynchronous execution of a fixed number (which may be one) of its images.
Each image has its own execution state, floating-point status (14.7), and set of data objects, input/output units,
and procedure pointers. Whether an external file is available on all images or only on a subset of the images is
processor dependent. The image index that identifies an image is an integer value in the range one to the number
of images.

NOTE 2.10

The programmer controls the progress of execution in each image through explicit use of Fortran control
constructs (8.1, 8.2). Image control statements (8.5.1) affect the relative progress of execution between
images. Coarrays (2.5.7) provide a mechanism for accessing data on one image from another image.

NOTE 2.11

A processor might allow the number of images to be chosen at compile time, link time, or run time. It
might be the same as the number of CPUs but this is not required. Compiling for a single image might
permit the optimizer to eliminate overhead associated with parallel execution. Portable programs should
not make assumptions about the exact number of images. The maximum number of images may be limited
due to architectural constraints.

2.4.3 Statement order

The syntax rules of clause 2.2 specify the statement order within program units and subprograms. These rules
are illustrated in Table 2.1 and Table 2.2. Table 2.1 shows the ordering rules for statements and applies to
all program units, subprograms, and interface bodies. Vertical lines delineate varieties of statements that may
be interspersed and horizontal lines delineate varieties of statements that shall not be interspersed. Internal
or module subprograms shall follow a CONTAINS statement. Between USE and CONTAINS statements in a
subprogram, nonexecutable statements generally precede executable statements, although the ENTRY statement,
FORMAT statement, and DATA statement may appear among the executable statements. Table 2.2 shows which
statements are allowed in a scoping unit.

Table 2.1: Requirements on statement ordering
PROGRAM, FUNCTION, SUBROUTINE,
MODULE, SUBMODULE, or BLOCK DATA statement

USE statements
IMPORT statements
IMPLICIT NONE

PARAMETER IMPLICIT
statements statements
Derived-type definitions,
FORMAT interface blocks,
and PARAMETER | type declaration statements,
ENTRY and DATA enumeration definitions,
statements statements procedure declarations,
specification statements,
and statement function statements
DATA Executable
statements constructs

CONTAINS statement
Internal subprograms
or module subprograms
END statement

30 Fortran terms and concepts 243

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

Table 2.2: Statements allowed in scoping units

Kind of scoping unit
Main Module or | Block | External | Module | Internal | Interface

Statement type | program | submodule | data | subprog | subprog | subprog body
USE Yes Yes Yes Yes Yes Yes Yes
IMPORT No No No No No No Yes
ENTRY No No No Yes Yes No No
FORMAT Yes No No Yes Yes Yes No
Misc. decl.s ! Yes Yes Yes Yes Yes Yes Yes
DATA Yes Yes Yes Yes Yes Yes No
Derived-type Yes Yes Yes Yes Yes Yes Yes
Interface Yes Yes No Yes Yes Yes Yes
Executable Yes No No Yes Yes Yes No
CONTAINS Yes Yes No Yes Yes No No
Statement function Yes No No Yes Yes Yes No
(1) Miscellaneous declarations are PARAMETER statements, IMPLICIT statements, type
declaration statements, enumeration definitions, procedure declaration statements, and spec-
ification statements.

2.4.4 The END statement

Each program unit, module subprogram, and internal subprogram shall have exactly one END statement. The
end-program-stmt, end-function-stmt, end-subroutine-stmt, and end-mp-subprogram-stmt statements are exe-
cutable, and may be branch target statements (8.2). Executing an end-program-stmt initiates normal termination
of the image. Executing an end-function-stmt, end-subroutine-stmt, or end-mp-subprogram-stmt is equivalent to
executing a return-stmt with no scalar-int-expr.

The end-module-stmt, end-submodule-stmt, and end-block-data-stmt statements are nonexecutable.

2.4.5 Execution sequence

Following the creation of a fixed number of instances of the program, execution begins on each image. If the
program contains a Fortran main program, each image begins execution with the first executable construct
of the main program. The execution of a main program or subprogram involves execution of the executable
constructs within its scoping unit. When a Fortran procedure is invoked, the specification expressions within
the specification-part of the invoked procedure, if any, are evaluated in a processor dependent order. Thereafter,
execution proceeds to the first executable construct appearing within the scoping unit of the procedure after
the invoked entry point. With the following exceptions, the effect of execution is as if the executable constructs
are executed in the order in which they appear in the main program or subprogram until a STOP, ALL STOP,
RETURN, or END statement is executed.

e Execution of a branching statement (8.2) changes the execution sequence. These statements explicitly
specify a new starting place for the execution sequence.

e CASE constructs, DO constructs, IF constructs, and SELECT TYPE constructs contain an internal state-
ment structure and execution of these constructs involves implicit internal branching. See Clause 8 for the
detailed semantics of each of these constructs.

e BLOCK constructs may contain specification expressions; see 8.1.4 for detailed semantics of this construct.
e END=, ERR=, and EOR= specifiers may result in a branch.

® Alternate returns may result in a branch.

24.4 Fortran terms and concepts 31

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

Internal subprograms may precede the END statement of a main program or a subprogram. The execution
sequence excludes all such definitions.

The relative ordering of the execution sequences of different images can be affected by image control statements
(8.5.1).

Termination of execution of an image occurs in three steps: initiation, synchronization, and completion. All
images synchronize execution at the second step so that no image starts the completion step until all images
have finished the initiation step. Termination of execution of an image is either normal termination or error
termination. An image that initiates normal termination also completes normal termination. An image that
initiates error termination also completes error termination. The synchronization step is executed by all images.
Termination of execution of the program occurs when all images have terminated execution.

Normal termination of execution of an image is initiated if a STOP statement or end-program-stmt is executed.
Normal termination of execution of an image also may be initiated during execution of a procedure defined by
a companion processor (C International Standard 5.1.2.2.3 and 7.20.4.3). If normal termination of execution
is initiated within a Fortran program unit and the program incorporates procedures defined by a companion
processor, the process of execution termination shall include the effect of executing the C exit() function (C
International Standard 7.20.4.3) during the completion step.

Error termination of execution of an image is initiated if an ALL STOP statement is executed or as specified
elsewhere in this part of ISO/IEC 1539.

NOTE 2.12

As well as in the circumstances specified in this part of ISO/IEC 1539, error termination might be initiated
by means other than Fortran.

If an image initiates error termination, all other images that have not already initiated termination initiate error
termination.

NOTE 2.13

Within the performance limits of the processor’s ability to send signals to other images, the initiation of
error termination on other images should be immediate. Error termination is intended to cause all images
to stop execution as quickly as possible.

NOTE 2.14

If an image has initiated termination, its data remain available for possible reference or definition by other
images that are still executing.

2.5 Data concepts

2.5.1 Type

A type is a named categorization of data that, together with its type parameters, determines the set of values,
syntax for denoting these values, and the set of operations that interpret and manipulate the values. This central
concept is described in 4.1.

A type is either an intrinsic type or a derived type.
2.5.1.1 Intrinsic type

The intrinsic types are integer, real, complex, character, and logical. The properties of intrinsic types are described
in 4.4.

32 Fortran terms and concepts 2.5

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

All intrinsic types have a kind type parameter called KIND, which determines the representation method for the
specified type. The intrinsic type character also has a length type parameter called LEN, which determines the
length of the character string.

2.5.1.2 Derived type

Derived types may be parameterized. A scalar object of derived type is a structure; assignment of structures
is defined intrinsically (7.2.1.3), but there are no intrinsic operations for structures. For each derived type, a
structure constructor is available to create values (4.5.10). In addition, objects of derived type may be used as
procedure arguments and function results, and may appear in input/output lists. If additional operations are
needed for a derived type, they shall be defined by procedures (7.1.6).

Derived types are described further in 4.5.

2.5.2 Data value

Each intrinsic type has associated with it a set of values that a datum of that type may take, depending on the
values of the type parameters. The values for each intrinsic type are described in 4.4. The values that objects of
a derived type may assume are determined by the type definition, type parameter values, and the sets of values
of its components.

2.5.3 Data entity

A data entity has a type and type parameters; it may have a data value (an exception is an undefined variable).
Every data entity has a rank and is thus either a scalar or an array.

A data entity that is the result of the execution of a function reference is called the function result.

2.56.3.1 Data object

A data object is either a constant, variable, or a subobject of a constant. The type and type parameters of a
named data object may be specified explicitly (5.2) or implicitly (5.5).

Subobjects are portions of data objects that may be referenced and defined (variables only) independently of the
other portions.

These include portions of arrays (array elements and array sections), portions of character strings (substrings),
portions of complex objects (real and imaginary parts), and portions of structures (components). Subobjects
are themselves data objects, but subobjects are referenced only by object designators or intrinsic functions. A
subobject of a variable is a variable. Subobjects are described in Clause 6.

The following objects are referenced by a name:
e a named scalar (a scalar object);
e a named array (an array object).

The following subobjects are referenced by an object designator:
e an array element (a scalar subobject);
e an array section an array subobject);
e a complex part designator the real or imaginary part of a complex object);
e a structure component a scalar or an array subobject);
e a substring a scalar subobject).

(
(
(
(

2.5.3.1.1 Variable

A variable can have a value or be undefined; during execution of a program it can be defined and redefined.

2.5.1.2 Fortran terms and concepts 33

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

A local variable of a module, submodule, main program, subprogram, or BLOCK construct is accessible only in
that scoping unit or construct and in any contained scoping units and constructs.

NOTE 2.15
A subobject of a local variable is also a local variable.

A local variable cannot be in COMMON or have the BIND attribute, because common blocks and variables
with the BIND attribute are global entities.

2.5.3.1.2 Constant
A constant is either a named constant or a literal constant.

Named constants are defined using the PARAMETER attribute (5.3.13, 5.4.11). The syntax of literal constants
is described in 4.4.

2.5.3.1.3 Subobject of a constant
A subobject of a constant is a portion of a constant.

In an object designator for a subobject of a constant, the portion referenced may depend on the value of a
variable.

NOTE 2.16

For example, given:

CHARACTER (LEN
CHARACTER (LEN
INTEGER :: I

10), PARAMETER :: DIGITS = ’0123456789°
1) :: DIGIT

DIGIT = DIGITS (I:I)

DIGITS is a named constant and DIGITS (I:I) designates a subobject of the constant DIGITS.

2.5.3.2 Expression

An expression (7.1) produces a data entity when evaluated. An expression represents either a data object reference
or a computation; it is formed from operands, operators, and parentheses. The type, type parameters, value, and
rank of an expression result are determined by the rules in Clause 7.

2.5.3.3 Function reference

A function reference produces a data entity when the function is executed during expression evaluation. The
type, type parameters, and rank of a function result are determined by the interface of the function (12.3.3). The
value of a function result is determined by execution of the function.

2.5.4 Definition of objects and pointers

When an object is given a valid value during program execution, it becomes defined. This is often accomplished
by execution of an assignment or input statement. When a variable does not have a predictable value, it is
undefined.

Similarly, when a pointer is associated with a target or nullified, its pointer association status becomes defined.
When the association status of a pointer is not predictable, its pointer association status is undefined.

Clause 16 describes the ways in which variables become defined and undefined and the association status of
pointers becomes defined and undefined.

34 Fortran terms and concepts 2.5.3.2

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

2.5.5 Reference

A data object is referenced when its value is required during execution. A procedure is referenced when it is
executed.

The appearance of a data object designator or procedure designator as an actual argument does not constitute
a reference to that data object or procedure unless such a reference is necessary to complete the specification of
the actual argument.

2.5.6 Array

An array may have up to fifteen dimensions, and any extent in any dimension. The size of an array is the total
number of elements, which is equal to the product of the extents. An array may have zero size. The shape of an
array is determined by its rank and its extent in each dimension, and is represented as a rank-one array whose
elements are the extents. All named arrays shall be declared, and the rank of a named array is specified in its
declaration. The rank of a named array, once declared, is constant; the extents may be constant or may vary
during execution.

Any intrinsic operation defined for scalar objects may be applied to conformable objects. Such operations are
performed elementally to produce a resultant array conformable with the array operands.

NOTE 2.17

If an elemental operation is intrinsically pure or is implemented by a pure elemental function (12.8), the
element operations may be performed simultaneously or in any order.

A rank-one array may be constructed from scalars and other arrays and may be reshaped into any allowable array
shape (4.8).

Arrays may be of any type and are described further in 6.5.

2.5.7 Coarray

A coarray is a data entity that has nonzero corank; it can be directly referenced or defined by any image. It may
be a scalar or an array.

For each coarray on an image, there is a corresponding coarray with the same type, type parameters, and bounds
on every other image.

The set of corresponding coarrays on all images is arranged in a rectangular pattern. The dimensions of this
pattern are the codimensions; the number of codimensions is the corank. The bounds for each codimension are
the cobounds.

A coarray on another image can be accessed directly by using cosubscripts. On its own image, a coarray can be
accessed without use of cosubscripts.

A subobject of a coarray is a coarray if it does not have any cosubscripts, vector subscripts, noncoarray allocatable
component selection, or pointer selection.

For a coindexed object, its cosubscript list determines the image index in the same way that a subscript list
determines the subscript order value for an array element (6.5.3.2).

Intrinsic procedures are provided for mapping between an image index and a list of cosubscripts.

NOTE 2.18

The mechanism for an image to reference and define a coarray on another image might vary according
to the hardware. On a shared-memory machine, a coarray on an image and the corresponding coarrays
on other images could be implemented as a sequence of arrays with evenly spaced starting addresses. On

2.5.5 Fortran terms and concepts 35

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

NOTE 2.18 (cont.)

a distributed-memory machine with separate physical memory for each image, a processor might store a
coarray at the same virtual address in each physical memory.

2.5.8 Pointer

A pointer has an association status which is either associated, disassociated, or undefined (16.5.2.2).
A pointer that is not associated shall not be referenced or defined.

If a data pointer is an array, the rank is declared, but the bounds are determined when it is associated with a
target.

2.5.9 Allocatable variables

The allocation status of an allocatable variable is either allocated or unallocated. An allocatable variable becomes
allocated as described in 6.6.1.3. It becomes unallocated as described in 6.6.3.2.

An unallocated allocatable variable shall not be referenced or defined.

If an allocatable variable is an array, the rank is declared, but the bounds are determined when it is allocated. If
an allocatable variable is a coarray, the corank is declared, but the cobounds are determined when it is allocated.

2.5.10 Storage

Many of the facilities of this part of ISO/IEC 1539 make no assumptions about the physical storage characteristics
of data objects. However, program units that include storage association dependent features shall observe the
storage restrictions described in 16.5.3.

2.6 Fundamental concepts

2.6.1 Names and designators

A name is used to identify a program constituent, such as a program unit, named variable, named constant,
dummy argument, or derived type.

A designator is used to identify a program constituent or a part thereof.

2.6.2 Statement keyword

A statement keyword is not a reserved word; that is, a name with the same spelling is allowed. In the syntax
rules, such keywords appear literally. In descriptive text, this meaning is denoted by the term “keyword” without
any modifier. Examples of statement keywords are IF, READ, UNIT, KIND, and INTEGER.

2.6.3 Other keywords

Other keywords denote names that identify items in a list. In this case, items are identified by a preceding
keyword= rather than their position within the list.

An argument keyword is the name of a dummy argument in the interface for the procedure being referenced, and
may appear in an actual argument list. A type parameter keyword is the name of a type parameter in the type
being specified, and may appear in a type parameter list. A component keyword is the name of a component in
a structure constructor.

R215 keyword is name

36 Fortran terms and concepts 2.5.8

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 2.19

Use of keywords rather than position to identify items in a list can make such lists more readable and allows
them to be reordered. This facilitates specification of a list in cases where optional items are omitted.

2.6.4 Association

Association permits an entity to be identified by different names in the same scoping unit or by the same name
or different names in different scoping units.

Also, storage association causes different entities to use the same storage.

2.6.5 Intrinsic

All intrinsic types, procedures, assignments, and operators may be used in any scoping unit without further
definition or specification. Intrinsic modules (13.8, 14, 15.2) may be accessed by use association.

2.6.6 Operator

This part of ISO/TEC 1539 specifies a number of intrinsic operators (e.g., the arithmetic operators +, —, *, /,
and ** with numeric operands and the logical operators .AND., .OR., etc. with logical operands). Additional
operators may be defined within a program (4.5.5, 12.4.3.4).

2.6.7 Companion processors

A processor has one or more companion processors. A companion processor may be a mechanism that references
and defines such entities by a means other than Fortran (12.6.3), it may be the Fortran processor itself, or it may
be another Fortran processor. If there is more than one companion processor, the means by which the Fortran
processor selects among them are processor dependent.

If a procedure is defined by means of a companion processor that is not the Fortran processor itself, this part of
ISO/IEC 1539 refers to the C function that defines the procedure, although the procedure need not be defined
by means of the C programming language.

NOTE 2.20

A companion processor might or might not be a mechanism that conforms to the requirements of the C
International Standard.

For example, a processor may allow a procedure defined by some language other than Fortran or C to be
invoked if it can be described by a C prototype as defined in 6.5.5.3 of the C International Standard.

2.6.4 Fortran terms and concepts 37

ISO/IEC SC22/WG5/N1723

38

CD 1539-1

Fortran terms and concepts

08-007r2:2008,/03/11

2.6.7

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

3 Lexical tokens and source form

3.1 Processor character set

3.1.1 Characters

The processor character set is processor dependent. Each character in a processor character set is either a control
character or a graphic character. The set of graphic characters is further divided into letters (3.1.2), digits
(3.1.3), underscore (3.1.4), special characters (3.1.5), and other characters (3.1.6).

The letters, digits, underscore, and special characters make up the Fortran character set.

R301 character is alphanumeric-character
or special-character

R302 alphanumeric-character is letter
or digit

or underscore

Except for the currency symbol, the graphics used for the characters shall be as given in 3.1.2, 3.1.3, 3.1.4, and
3.1.5. However, the style of any graphic is not specified.

3.1.2 Letters
The twenty-six letters are:
ABCDEFGHIJKLMNOPQRSTUVWXY?Z

The set of letters defines the syntactic class letter. The processor character set shall include lower-case and upper-
case letters. A lower-case letter is equivalent to the corresponding upper-case letter in program units except in a
character context (2.1).

NOTE 3.1
The following statements are equivalent:

CALL BIG_COMPLEX_OPERATION (NDATE)
call big_complex_operation (ndate)
Call Big_Complex_Operation (NDate)

3.1.3 Digits
The ten digits are:
0123456789

The ten digits define the syntactic class digit.

3.1.4 Underscore

R303 wunderscore is _

3 Lexical tokens and source form 39

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

3.1.5 Special characters

1 The special characters are shown in Table 3.1.

Table 3.1: Special characters

Character Name of character Character Name of character

Blank ; Semicolon

= Equals ! Exclamation point

+ Plus " Quotation mark or quote
Minus % Percent
Asterisk & Ampersand
Slash - Tilde
Backslash Less than

Left parenthesis Greater than
Right parenthesis Question mark
Left square bracket Apostrophe
Right square bracket : Grave accent

Left curly bracket Circumflex accent

Right curly bracket Vertical line

“ VA

)

. N A~ S T %

|
Comma $ Currency symbol
Decimal point or period # Number sign
Colon @ Commercial at

The special characters define the syntactic class special-character. Some of the special characters are used for
operator symbols, bracketing, and various forms of separating and delimiting other lexical tokens.

3.1.6 Other characters

Additional characters may be representable in the processor, but may appear only in comments (3.3.2.3, 3.3.3.2),
character constants (4.4.5), input/output records (9.2.2), and character string edit descriptors (10.3.2).

3.2 Low-level syntax

3.2.1 Tokens

The low-level syntax describes the fundamental lexical tokens of a program unit. Lexical tokens are sequences
of characters that constitute the building blocks of a program. They are keywords, names, literal constants other
than complex literal constants, operators, labels, delimiters, comma, =, =>, :, ::, ;, and %.

3.2.2 Names

Names are used for various entities such as variables, program units, dummy arguments, named constants, and
derived types.

R304 name is letter [alphanumeric-character | ...
C301 (R304) The maximum length of a name is 63 characters.

NOTE 3.2

’ Examples of names:

40 Lexical tokens and source form 3.1.6

08-007r2:2008/03 /11

NOTE 3.2 (cont.)

CD 1539-1

ISO/IEC SC22/WG5/N1723

Al
NAME_LENGTH

TRAILER_

(single underscore)
(two consecutive underscores)
(trailing underscore)

NOTE 3.3

The word “name” always denotes this particular syntactic form. The word “identifier” is used where entities
may be identified by other syntactic forms or by values; its particular meaning depends on the context in
which it is used.

3.23

R305

R306

R307
R308
C302
R309
C303
3.2.4

R310

R707

R708

R709

R711

R713

3.2.3

Constants

constant

literal-constant

named-constant

int-constant

is literal-constant
or named-constant

is int-literal-constant

or real-literal-constant

or complex-literal-constant
or logical-literal-constant
or char-literal-constant

or boz-literal-constant

is name

is constant

(R308) int-constant shall be of type integer.

char-constant

is constant

(R309) char-constant shall be of type character.

Operators

intrinsic-operator

power-op

mult-op

add-op

concat-op

rel-op

is power-op
or mult-op
or add-op
or concat-op
or rel-op

or not-op

or and-op
or or-op

or equiv-op

is **
is *

or /

is +
or —

is //

is .EQ.
or .NE.

Lexical tokens and source form

41

ISO/IEC SC22/WG5/N1723

R718
R719
R720

R721

R311

R703
R723

R312

3.2.5 Statement labels

1 A statement label provides a means of referring to an individual statement.

R313

C304

not-op
and-op
or-op

equiv-op

defined-operator

defined-unary-op
defined-binary-op

extended-intrinsic-op

label

or
or
or
or
or
or
or
or
or
or
is
is
is
is
or
is
or
or
is
is

is

is

CD 1539-1

EQV.

NEQV.
defined-unary-op
defined-binary-op
extended-intrinsic-op
. letter [letter |
. letter [letter |

mntrinsic-operator

digit | digit [digit | digit | digit |]]]

(R313) At least one digit in a label shall be nonzero.

08-007r2:2008/03 /11

2 If a statement is labeled, the statement shall contain a nonblank character. The same statement label shall not be
given to more than one statement in a scoping unit. Leading zeros are not significant in distinguishing between
statement labels.

NOTE 3.4

For example:
99999

010

are all statement labels. The last two are equivalent.

There are 99999 unique statement labels and a processor shall accept any of them as a statement label.
However, a processor may have a limit on the total number of unique statement labels in one program unit.

3 Any statement may have a statement label, but the labels are used only in the following ways.

e The label on a branch target statement (8.2) is used to identify that statement as the possible destination

42

of a branch.

Lexical tokens and source form

3.2.5

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

e The label on a FORMAT statement (10.2.1) is used to identify that statement as the format specification
for a data transfer statement (9.6).

e In some forms of the DO construct (8.1.7), the range of the DO construct is identified by the label on the
last statement in that range.

3.2.6 Delimiters

Delimiters are used to enclose syntactic lists. The following pairs are delimiters:

C...)
/)
[]
... D

3.3 Source form

3.3.1 Program units, statements, and lines

A Fortran program unit is a sequence of one or more lines, organized as Fortran statements, comments, and
INCLUDE lines. A line is a sequence of zero or more characters. Lines following a program unit END statement
are not part of that program unit. A Fortran statement is a sequence of one or more complete or partial lines.

A comment may contain any character that may occur in any character context.

There are two source forms: free and fixed. Free form and fixed form shall not be mixed in the same program unit. The

means for specifying the source form of a program unit are processor dependent.

3.3.2 Free source form
3.3.2.1 Free form line length

In free source form there are no restrictions on where a statement (or portion of a statement) may appear
within a line. A line may contain zero characters. If a line consists entirely of characters of default kind (4.4.5),
it may contain at most 132 characters. If a line contains any character that is not of default kind, the maximum
number of characters allowed on the line is processor dependent.

3.3.2.2 Blank characters in free form

In free source form blank characters shall not appear within lexical tokens other than in a character context or in
a format specification. Blanks may be inserted freely between tokens to improve readability; for example, blanks
may occur between the tokens that form a complex literal constant. A sequence of blank characters outside of a
character context is equivalent to a single blank character.

A blank shall be used to separate names, constants, or labels from adjacent keywords, names, constants, or labels.

NOTE 3.5
For example, the blanks after REAL, READ, 30, and DO are required in the following;:

REAL X
READ 10
30 DO K=1,3

3.2.6 Lexical tokens and source form 43

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

3 One or more blanks shall be used to separate adjacent keywords except in the following cases, where blanks are
optional:

Adjacent keywords where separating blanks are optional

ALL STOP END IF

BLOCK DATA END MODULE
DOUBLE PRECISION END INTERFACE
ELSE IF END PROCEDURE
ELSE WHERE END PROGRAM
END ASSOCIATE END SELECT
END BLOCK END SUBMODULE
END BLOCK DATA END SUBROUTINE
END CRITICAL END TYPE

END DO END WHERE

END ENUM GO TO

END FILE IN OUT

END FORALL SELECT CASE
END FUNCTION SELECT TYPE

3.3.2.3 Free form commentary

1 The character “!” initiates a comment except where it appears within a character context. The comment
extends to the end of the line. If the first nonblank character on a line is an “!”, the line is a comment line. Lines
containing only blanks or containing no characters are also comment lines. Comments may appear anywhere in
a program unit and may precede the first statement of a program unit or may follow the last statement of a
program unit. Comments have no effect on the interpretation of the program unit.

NOTE 3.6

This part of ISO/IEC 1539 does not restrict the number of consecutive comment lines.

3.3.2.4 Free form statement continuation

1 The character “&” is used to indicate that the current statement is continued on the next line that is not a
comment line. Comment lines cannot be continued; an “&” in a comment has no effect. Comments may occur
within a continued statement. When used for continuation, the “&” is not part of the statement. No line shall
contain a single “&” as the only nonblank character or as the only nonblank character before an “!” that initiates
a comment.

2 If a noncharacter context is to be continued, an “&” shall be the last nonblank character on the line, or the last
nonblank character before an “!”. There shall be a later line that is not a comment; the statement is continued
on the next such line. If the first nonblank character on that line is an “&”, the statement continues at the next
character position following that “&”; otherwise, it continues with the first character position of that line.

3 If a lexical token is split across the end of a line, the first nonblank character on the first following noncomment
line shall be an “&” immediately followed by the successive characters of the split token.

4 If a character context is to be continued, an “&” shall be the last nonblank character on the line and shall not be
followed by commentary. There shall be a later line that is not a comment; an “&” shall be the first nonblank
character on the next such line and the statement continues with the next character following that “&”.

3.3.2.5 Free form statement termination
1 If a statement is not continued, a comment or the end of the line terminates the statement.

@.”

2 A statement may alternatively be terminated by a *;” character that appears other than in a character context

44 Lexical tokens and source form 3.3.2.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

or in a comment. The *” is not part of the statement. After a “;” terminator, another statement may appear
on the same line, or begin on that line and be continued. A sequence consisting only of zero or more blanks and
one or more “;” terminators, in any order, is equivalent to a single “;” terminator.

3.3.2.6 Free form statements

A label may precede any statement not forming part of another statement.

NOTE 3.7

‘ No Fortran statement begins with a digit.

A statement shall not have more than 255 continuation lines.

3.3.3 Fixed source form

3.3.3.1 General

In fixed source form, there are restrictions on where a statement may appear within a line. If a source line contains only default

kind characters, it shall contain exactly 72 characters; otherwise, its maximum number of characters is processor dependent.

Except in a character context, blanks are insignificant and may be used freely throughout the program.

3.3.3.2 Fixed form commentary
The character “!” initiates a comment except where it appears within a character context or in character position 6. The comment
extends to the end of the line. If the first nonblank character on a line is an “!” in any character position other than character
position 6, the line is a comment line. Lines beginning with a “C” or “*” in character position 1 and lines containing only blanks are
also comment lines. Comments may appear anywhere in a program unit and may precede the first statement of the program unit or
may follow the last statement of a program unit. Comments have no effect on the interpretation of the program unit.

NOTE 3.8

This part of ISO/IEC 1539 does not restrict the number of consecutive comment lines.

3.3.3.3 Fixed form statement continuation

Except within commentary, character position 6 is used to indicate continuation. If character position 6 contains a blank or zero, the
line is the initial line of a new statement, which begins in character position 7. If character position 6 contains any character other
than blank or zero, character positions 7-72 of the line constitute a continuation of the preceding noncomment line.

NOTE 3.9

An “I” or “” in character position 6 is interpreted as a continuation indicator unless it appears within commentary indicated
by a “C” or “*” in character position 1 or by an “!” in character positions 1-5.

Comment lines cannot be continued. Comment lines may occur within a continued statement.

3.3.3.4 Fixed form statement termination

If a statement is not continued, a comment or the end of the line terminates the statement.

@

A statement may alternatively be terminated by a character that appears other than in a character context, in a comment, or in

@ K
)

character position 6. The is not part of the statement. After a “;” terminator, another statement may begin on the same line, or
begin on that line and be continued. A “;” shall not appear as the first nonblank character on an initial line. A sequence consisting

only of zero or more blanks and one or more “;” terminators, in any order, is equivalent to a single “;” terminator.

3.3.3.5 Fixed form statements

A label, if it appears, shall occur in character positions 1 through 5 of the first line of a statement; otherwise, positions 1 through

5 shall be blank. Blanks may appear anywhere within a label. A statement following a on the same line shall not be labeled.

@
)

Character positions 1 through 5 of any continuation lines shall be blank. A statement shall not have more than 255 continuation

3.3.2.6 Lexical tokens and source form 45

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

lines. The program unit END statement shall not be continued. A statement whose initial line appears to be a program unit END

statement shall not be continued.

3.4 Including source text

Additional text may be incorporated into the source text of a program unit during processing. This is accomplished
with the INCLUDE line, which has the form

INCLUDE char-literal-constant
The char-literal-constant shall not have a kind type parameter value that is a named-constant.
An INCLUDE line is not a Fortran statement.

An INCLUDE line shall appear on a single source line where a statement may appear; it shall be the only
nonblank text on this line other than an optional trailing comment. Thus, a statement label is not allowed.

The effect of the INCLUDE line is as if the referenced source text physically replaced the INCLUDE line prior
to program processing. Included text may contain any source text, including additional INCLUDE lines; such
nested INCLUDE lines are similarly replaced with the specified source text. The maximum depth of nesting of
any nested INCLUDE lines is processor dependent. Inclusion of the source text referenced by an INCLUDE line
shall not, at any level of nesting, result in inclusion of the same source text.

When an INCLUDE line is resolved, the first included statement line shall not be a continuation line and the last
included statement line shall not be continued.

The interpretation of char-literal-constant is processor dependent. An example of a possible valid interpretation
is that char-literal-constant is the name of a file that contains the source text to be included.

NOTE 3.10

In some circumstances, for example where source code is maintained in an INCLUDE file for use in programs whose source

form might be either fixed or free, observing the following rules allows the code to be used with either source form.

® Confine statement labels to character positions 1 to 5 and statements to character positions 7 to 72.
® Treat blanks as being significant.
® Use only the exclamation mark (!) to indicate a comment, but do not start the comment in character position 6.

® For continued statements, place an ampersand (&) in both character position 73 of a continued line and character

position 6 of a continuation line.

46 Lexical tokens and source form 3.4

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

4 Types

4.1 The concept of type

4.1.1 General

Fortran provides an abstract means whereby data can be categorized without relying on a particular physical
representation. This abstract means is the concept of type.

A type has a name, a set of valid values, a means to denote such values (constants), and a set of operations to
manipulate the values.

A type is either an intrinsic type or a derived type.
This part of ISO/TEC 1539 defines five intrinsic types: integer, real, complex, character, and logical.

A derived type is one that is defined by a derived-type definition (4.5.2) or by an intrinsic module. It shall be
used only where it is accessible (4.5.2.2). An intrinsic type is always accessible.

4.1.2 Set of values

For each type, there is a set of valid values. The set of valid values for logical is completely determined by this
part of ISO/IEC 1539. The sets of valid values for integer, character, and real are processor dependent. The set
of valid values for complex consists of the set of all the combinations of the values of the individual components.
The set of valid values for a derived type is as defined in 4.5.8.

4.1.3 Constants

The syntax for denoting a value indicates the type, type parameters, and the particular value.
The syntax for literal constants of each intrinsic type is specified in 4.4.

A structure constructor (4.5.10) that is an initialization expression (7.1.12) denotes a scalar constant value of
derived type. An array constructor (4.8) that is an initialization expression denotes a constant array value of
intrinsic or derived type.

A constant value can be named (5.3.13, 5.4.11).

4.1.4 Operations

For each of the intrinsic types, a set of operations and corresponding operators is defined intrinsically. These are
described in Clause 7. The intrinsic set can be augmented with operations and operators defined by functions
with the OPERATOR interface (12.4.3.2). Operator definitions are described in Clauses 7 and 12.

For derived types, there are no intrinsic operations. Operations on derived types can be defined by the program
(4.5.11).

4.2 Type parameters

A type might be parameterized. In this case, the set of values, the syntax for denoting the values, and the set of
operations on the values of the type depend on the values of the parameters.

The intrinsic types are all parameterized. Derived types may be defined to be parameterized.

4 Types 47

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

3 A type parameter is either a kind type parameter or a length type parameter. All type parameters are of type
integer.

4 A kind type parameter may be used in initialization and specification expressions within the derived-type definition
(4.5.2) for the type; it participates in generic resolution (12.5.5.2). Each of the intrinsic types has a kind type
parameter named KIND, which is used to distinguish multiple representations of the intrinsic type.

NOTE 4.1

The value of a kind type parameter is always known at compile time. Some parameterizations that involve
multiple representation forms need to be distinguished at compile time for practical implementation and
performance. Examples include the multiple precisions of the intrinsic real type and the possible multiple
character sets of the intrinsic character type.

A type parameter of a derived type may be specified to be a kind type parameter in order to allow generic
resolution based on the parameter; that is to allow a single generic to include two specific procedures that
have interfaces distinguished only by the value of a kind type parameter of a dummy argument. All generic
references are resolvable at compile time.

5 A length type parameter may be used in specification expressions within the derived-type definition for the type,
but it shall not be used in initialization expressions. The intrinsic character type has a length type parameter
named LEN, which is the length of the string.

NOTE 4.2

The adjective “length” is used for type parameters other than kind type parameters because they often
specify a length, as for intrinsic character type. However, they may be used for other purposes. The
important difference from kind type parameters is that their values need not be known at compile time and
might change during execution.

6 A type parameter value may be specified by a type specification (4.4, 4.5.9).

R401 type-param-value is scalar-int-expr
or *
or

C401 (R401) The type-param-value for a kind type parameter shall be an initialization expression.

C402 (R401) A colon shall not be used as a type-param-value except in the declaration of an entity or component
that has the POINTER or ALLOCATABLE attribute.

7 A colon as a type-param-value specifies a deferred type parameter.

8 The values of the deferred type parameters of an object are determined by successful execution of an ALLOCATE
statement (6.6.1), execution of an intrinsic assignment statement (7.2.1.3), execution of a pointer assignment
statement (7.2.2), or by argument association (12.5.2).

NOTE 4.3

Deferred type parameters of functions, including function procedure pointers, have no values. Instead, they
indicate that those type parameters of the function result will be determined by execution of the function,
if it returns an allocated allocatable result or an associated pointer result.

9 An asterisk as a type-param-value specifies that a length type parameter is an assumed type parameter. It is used
for a dummy argument to assume the type parameter value from the effective argument, for an associate name
in a SELECT TYPE construct to assume the type parameter value from the corresponding selector, and for a
named constant of type character to assume the character length from the initialization-expr.

48 Types 4.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

4.3 Relationship of types and values to objects

The name of a type serves as a type specifier and may be used to declare objects of that type. A declaration
specifies the type of a named object. A data object may be declared explicitly or implicitly. A data object has
attributes in addition to its type. Clause 5 describes the way in which a data object is declared and how its type
and other attributes are specified.

Scalar data of any intrinsic or derived type may be shaped in a rectangular pattern to compose an array of the
same type and type parameters. An array object has a type and type parameters just as a scalar object does.

A variable is a data object. The type and type parameters of a variable determine which values that variable
may take. Assignment (7.2) provides one means of defining or redefining the value of a variable of any type.

The type of a variable determines the operations that may be used to manipulate the variable.

4.3.1 Type specifiers and type compatibility
4.3.1.1 Type specifier syntax
A type specifier specifies a type and type parameter values. It is either a type-spec or a declaration-type-spec.

R402 type-spec is intrinsic-type-spec
or deried-type-spec

C403 (R402) The derived-type-spec shall not specify an abstract type (4.5.7).

R403 declaration-type-spec is intrinsic-type-spec
or TYPE (intrinsic-type-spec)
or TYPE (derived-type-spec)
or CLASS (derived-type-spec)
or CLASS (*)

C404 (R403) In a declaration-type-spec, every type-param-value that is not a colon or an asterisk shall be a
specification-expr.

C405 (R403) In a declaration-type-spec that uses the CLASS keyword, derived-type-spec shall specify an exten-
sible type (4.5.7).

C406 (R403) TYPE(derived-type-spec) shall not specify an abstract type (4.5.7).

C407 An entity declared with the CLASS keyword shall be a dummy argument or have the ALLOCATABLE
or POINTER attribute. It shall not have the VALUE attribute.

An intrinsic-type-spec specifies the named intrinsic type and its type parameter values. A derived-type-spec
specifies the named derived type and its type parameter values.

NOTE 4.4

A type-spec is used in an array constructor, a SELECT TYPE construct, or an ALLOCATE statement.
Elsewhere, a declaration-type-spec is used.

43.1.2 TYPE
A TYPE type specifier is used to declare entities of an intrinsic or derived type.

Where a data entity is declared explicitly using the TYPE type specifier to be of derived type, the specified derived
type shall have been defined previously in the scoping unit or be accessible there by use or host association. If
the data entity is a function result, the derived type may be specified in the FUNCTION statement provided the
derived type is defined within the body of the function or is accessible there by use or host association. If the

4.3 Types 49

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

derived type is specified in the FUNCTION statement and is defined within the body of the function, it is as
if the function result variable was declared with that derived type immediately following the derived-type-def of
the specified derived type.

4.3.1.3 CLASS

The CLASS type specifier is used to declare polymorphic entities. A polymorphic entity is a data entity that is
able to be of differing dynamic types during program execution.

The declared type of a polymorphic entity is the specified type if the CLASS type specifier contains a type name.

An entity declared with the CLASS(*) specifier is an unlimited polymorphic entity. An unlimited polymorphic
entity is not declared to have a type. It is not considered to have the same declared type as any other entity,
including another unlimited polymorphic entity.

A nonpolymorphic entity is type compatible only with entities of the same declared type. A polymorphic entity
that is not an unlimited polymorphic entity is type compatible with entities of the same declared type or any of
its extensions. Even though an unlimited polymorphic entity is not considered to have a declared type, it is type
compatible with all entities. An entity is type compatible with a type if it is type compatible with entities of that

type.

NOTE 4.5

Given

TYPE TROOT
TYPE,EXTENDS (TROOT) :: TEXTENDED

CLASS(TROOT) A
CLASS (TEXTENDED) B

A is type compatible with B but B is not type compatible with A.

A polymorphic allocatable object may be allocated to be of any type with which it is type compatible. A
polymorphic pointer or dummy argument may, during program execution, be associated with objects with which
it is type compatible.

The dynamic type of an allocated allocatable polymorphic object is the type with which it was allocated. The
dynamic type of an associated polymorphic pointer is the dynamic type of its target. The dynamic type of a
nonallocatable nonpointer polymorphic dummy argument is the dynamic type of its effective argument. The
dynamic type of an unallocated allocatable object or a disassociated pointer is the same as its declared type. The
dynamic type of an entity identified by an associate name (8.1.3) is the dynamic type of the selector with which
it is associated. The dynamic type of an object that is not polymorphic is its declared type.

4.4 Intrinsic types

4.4.1 Classification and specification

Each intrinsic type is classified as a numeric type or a nonnumeric type. The numeric types are integer, real, and
complex. The nonnumeric intrinsic types are character and logical.

Each intrinsic type has a kind type parameter named KIND; this type parameter is of type integer with default
kind.

The numeric types are provided for numerical computation. The normal operations of arithmetic, addition (+),

50 Types 4.3.1.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

subtraction (-), multiplication (*), division (/), exponentiation (**), identity (unary +), and negation (unary —),
are defined intrinsically for the numeric types.

R404 intrinsic-type-spec is INTEGER | kind-selector |
or REAL [kind-selector |
or DOUBLE PRECISION
or COMPLEX [kind-selector]
or CHARACTER [char-selector |
or LOGICAL [kind-selector]

R405 kind-selector is ([KIND = | scalar-int-initialization-expr)

C408 (R405) The value of scalar-int-initialization-expr shall be nonnegative and shall specify a representation
method that exists on the processor.

4.4.2 Integer type

The set of values for the integer type is a subset of the mathematical integers. The processor shall provide
one or more representation methods that define sets of values for data of type integer. Each such method is
characterized by a value for the kind type parameter KIND. The kind type parameter of a representation method
is returned by the intrinsic function KIND (13.7.89). The decimal exponent range of a representation method is
returned by the intrinsic function RANGE (13.7.136). The intrinsic function SELECTED_INT_KIND (13.7.145)
returns a kind value based on a specified decimal range requirement. The integer type includes a zero value,
which is considered to be neither negative nor positive. The value of a signed integer zero is the same as the
value of an unsigned integer zero.

The processor shall provide at least one representation method with a decimal exponent range greater than or
equal to 18.

The type specifier for the integer type uses the keyword INTEGER.

The keyword INTEGER with no kind-selector specifies type integer with default kind; the kind type parameter
value is equal to KIND (0). The decimal exponent range of default integer shall be at least 5.

Any integer value may be represented as a signed-int-literal-constant.

R406 signed-int-literal-constant is [sign | int-literal-constant

R407 int-literal-constant is digit-string [_ kind-param |
R408 kind-param is digit-string

or scalar-int-constant-name
R409 signed-digit-string is [sign | digit-string
R410 digit-string is digit | digit] ...
R411 sign is +

or —

C409 (R408) A scalar-int-constant-name shall be a named constant of type integer.
C410 (R408) The value of kind-param shall be nonnegative.
C411 (R407) The value of kind-param shall specify a representation method that exists on the processor.

The optional kind type parameter following digit-string specifies the kind type parameter of the integer constant;
if it is does not appear, the constant is default integer.

4.4.2 Types 51

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

7 An integer constant is interpreted as a decimal value.

NOTE 4.6
Examples of signed integer literal constants are:

473

+56

-101

21_2

21_SHORT
1976354279568241_8

where SHORT is a scalar integer named constant.

4.4.3 Real type

1 The real type has values that approximate the mathematical real numbers. The processor shall provide two
or more approximation methods that define sets of values for data of type real. Each such method has a
representation method and is characterized by a value for the kind type parameter KIND. The kind type
parameter of an approximation method is returned by the intrinsic function KIND (13.7.89).

2 The decimal precision, decimal exponent range, and radix of an approximation method are returned by the
intrinsic functions PRECISION(13.7.130), RADIX(13.7.133) and RANGE(13.7.136). The intrinsic function SE-
LECTED_REAL_KIND (13.7.146) returns a kind value based on specified precision, range, and radix require-
ments.

NOTE 4.7
See C.1.1 for remarks concerning selection of approximation methods.

3 The real type includes a zero value. Processors that distinguish between positive and negative zeros shall treat
them as mathematically equivalent

e in all relational operations,

e as actual arguments to intrinsic procedures other than those for which it is explicitly specified that negative
zero is distinguished, and

® as the scalar-numeric-expr in an arithmetic IF.

NOTE 4.8

On a processor that can distinguish between 0.0 and —0.0,

(X > 0.0)

evaluates to true if X = 0.0 or if X = —0.0,

(X<0.0)

evaluates to false for X = —0.0, and

IF (X) 1,2,3
causes a transfer of control to the branch target statement with the statement label “2” for both X = 0.0 and X = —0.0.

In order to distinguish between 0.0 and —0.0, a program should use the SIGN function. SIGN(1.0,X) will
return —1.0 if X < 0.0 or if the processor distinguishes between 0.0 and —0.0 and X has the value —0.0.

52 Types 4.4.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

4 The type specifier for the real type uses the keyword REAL. The keyword DOUBLE PRECISION is an alternative
specifier for one kind of real type.

5 If the type keyword REAL is specified and the kind type parameter is not specified, the kind value is KIND (0.0)
and the type specified is default real. The type specifier DOUBLE PRECISION specifies type real with double
precision kind; the kind value is KIND (0.0D0). The decimal precision of the double precision real approximation
method shall be greater than that of the default real method.

6 The decimal precision of double precision real shall be at least 10, and its decimal exponent range shall be at
least 37. It is recommended that the decimal precision of default real be at least 6, and that its decimal exponent
range be at least 37.

R412 signed-real-literal-constant is [sign | real-literal-constant

R413 real-literal-constant is significand | exponent-letter exponent | [- kind-param |
or digit-string exponent-letter exponent | _ kind-param |

R414 significand is digit-string . | digit-string |
or . digit-string

R415 exponent-letter is E
or D

R416 ezponent is signed-digit-string

C412 (R413) If both kind-param and exponent-letter appear, exponent-letter shall be E.
C413 (R413) The value of kind-param shall specify an approximation method that exists on the processor.

7 A real literal constant without a kind type parameter is a default real constant if it is without an exponent part
or has exponent letter E, and is a double precision real constant if it has exponent letter D. A real literal constant
written with a kind type parameter is a real constant with the specified kind type parameter.

8 The exponent represents the power of ten scaling to be applied to the significand or digit string. The meaning of
these constants is as in decimal scientific notation.

9 The significand may be written with more digits than a processor will use to approximate the value of the constant.

NOTE 4.9
Examples of signed real literal constants are:

-12.78
+1.6E3

2.1

-16.E4_8
0.45D-4
10.93E7_QUAD
.123

3E4

where QUAD is a scalar integer named constant.

4.4.4 Complex type

1 The complex type has values that approximate the mathematical complex numbers. The values of a complex
type are ordered pairs of real values. The first real value is called the real part, and the second real value is
called the imaginary part.

4.4.4 Types 53

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

Each approximation method used to represent data entities of type real shall be available for both the real and
imaginary parts of a data entity of type complex. The (default integer) kind type parameter KIND for a complex
entity specifies for both parts the real approximation method characterized by this kind type parameter value.
The kind type parameter of an approximation method is returned by the intrinsic function KIND (13.7.89).

The type specifier for the complex type uses the keyword COMPLEX. There is no keyword for double precision
complex. If the type keyword COMPLEX is specified and the kind type parameter is not specified, the default
kind value is the same as that for default real, the type of both parts is default real, and the type specified is
default complex.

R417 complex-literal-constant is (real-part , imag-part)

R418 real-part is signed-int-literal-constant
or signed-real-literal-constant
or named-constant

R419 imag-part is signed-int-literal-constant
or signed-real-literal-constant
or named-constant

C414 (R417) Each named constant in a complex literal constant shall be of type integer or real.

If the real part and the imaginary part of a complex literal constant are both real, the kind type parameter value
of the complex literal constant is the kind type parameter value of the part with the greater decimal precision; if
the precisions are the same, it is the kind type parameter value of one of the parts as determined by the processor.
If a part has a kind type parameter value different from that of the complex literal constant, the part is converted
to the approximation method of the complex literal constant.

If both the real and imaginary parts are integer, they are converted to the default real approximation method
and the constant is default complex. If only one of the parts is an integer, it is converted to the approximation
method selected for the part that is real and the kind type parameter value of the complex literal constant is
that of the part that is real.

NOTE 4.10
Examples of complex literal constants are:

(1.0, -1.0)

(3, 3.1E6)

(4.0_4, 3.6E7_8)

(0., PI) ! where PI is a previously declared named real constant.

4.4.5 Character type
4.4.5.1 Character sets

The character type has a set of values composed of character strings. A character string is a sequence of
characters, numbered from left to right 1, 2, 3, ... up to the number of characters in the string. The number of
characters in the string is called the length of the string. The length is a type parameter; its kind is processor-
dependent and its value is greater than or equal to zero.

The processor shall provide one or more representation methods that define sets of values for data of type
character. Each such method is characterized by a value for the (default integer) kind type parameter KIND.
The kind type parameter of a representation method is returned by the intrinsic function KIND (13.7.89). The
intrinsic function SELECTED_CHAR_KIND (13.7.144) returns a kind value based on the name of a character
type. Any character of a particular representation method representable in the processor may occur in a character
string of that representation method.

The character set defined by ISO/IEC 646:1991 (International Reference Version) is referred to as the ASCII

54 Types 4.4.5

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

character set and its corresponding representation method is ASCII character. The character set defined by
ISO/IEC 10646-1:2000 UCS-4 is referred to as the ISO 10646 character set and its corresponding representation
method is ISO 10646 character.

4.4.5.2 Character type specifier
The type specifier for the character type uses the keyword CHARACTER.

If the kind type parameter is not specified, the default kind value is KIND (’A’) and the type specified is default
character.

The default character kind shall support a character set that includes the Fortran character set. By supplying
nondefault character kinds, the processor may support additional character sets. The characters available in
nondefault character kinds are not specified by this part of ISO/TEC 1539, except that one character in each
nondefault character set shall be designated as a blank character to be used as a padding character.

R420 char-selector is length-selector
or (LEN = type-param-value , R
B KIND = scalar-int-initialization-expr)
or (type-param-value ;A
B | KIND = | scalar-int-initialization-expr)
or (KIND = scalar-int-initialization-expr
B [, LEN =type-param-value |)

R421 length-selector is ([LEN =] type-param-value)
or * char-length [,]

R422 char-length is (type-param-value)
or int-literal-constant

C415 (R420) The value of scalar-int-initialization-expr shall be nonnegative and shall specify a representation
method that exists on the processor.

C416 (R422) The int-literal-constant shall not include a kind-param.
C417 (R422) A type-param-value in a char-length shall be a colon, asterisk, or specification-expr.
C418 (R420 R421 R422) A type-param-value of * shall be used only

e to declare a dummy argument,
e to declare a named constant,

e in the type-spec of an ALLOCATE statement wherein each allocate-object is a dummy argument of type
CHARACTER with an assumed character length,

e in the type-spec or derived-type-spec of a type guard statement (8.1.9), or

® in an external function, to declare the character length parameter of the function result.

C419 A function name shall not be declared with an asterisk type-param-value unless it is of type CHARACTER

and is the name of the result of an external function or the name of a dummy function.
C420 A function name declared with an asterisk type-param-value shall not be an array, a pointer, elemental, recursive, or pure.
C421 (R421) The optional comma in a length-selector is permitted only in a declaration-type-spec in a type-declaration-stmt.

C422 (R421) The optional comma in a length-selector is permitted only if no double-colon separator appears in the type-

declaration-stmit.

C423 (R420) The length specified for a character statement function or for a statement function dummy argument of type
character shall be an initialization expression.

4.4.5.2 Types 55

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

The char-selector in a CHARACTER intrinsic-type-spec and the * char-length in an entity-decl or in a component-
decl of a type definition specify character length. The * char-length in an entity-decl or a component-decl specifies
an individual length and overrides the length specified in the char-selector, if any. If a * char-length is not specified
in an entity-decl or a component-decl, the length-selector or type-param-value specified in the char-selector is the
character length. If the length is not specified in a char-selector or a * char-length, the length is 1.

If the character length parameter value evaluates to a negative value, the length of character entities declared
is zero. A character length parameter value of : indicates a deferred type parameter (4.2). A char-length type
parameter value of * has the following meanings.

e If used to declare a dummy argument of a procedure, the dummy argument assumes the length of the
effective argument.

e If used to declare a named constant, the length is that of the constant value.

e If used in the type-spec of an ALLOCATE statement, each allocate-object assumes its length from the
effective argument.

e If used in the type-spec of a type guard statement, the associating entity assumes its length from the selector.

o If used to specify the character length parameter of a function result, any scoping unit invoking the function shall declare the
function name with a character length parameter value other than * or access such a definition by host or use association.

When the function is invoked, the length of the result variable in the function is assumed from the value of this type parameter.

4.4.5.3 Character literal constant

A character literal constant is written as a sequence of characters, delimited by either apostrophes or quotation
marks.

R423 char-literal-constant is [kind-param _]° [rep-char] ... ’
or [kind-param _] " [rep-char] .. "

C424 (R423) The value of kind-param shall specify a representation method that exists on the processor.

The optional kind type parameter preceding the leading delimiter specifies the kind type parameter of the char-
acter constant; if it does not appear, the constant is default character.

For the type character with kind kind-param, if it appears, and for default character otherwise, a representable
character, rep-char, is defined as follows.

e In free source form, it is any graphic character in the processor-dependent character set.

® In fixed source form, it is any character in the processor-dependent character set. A processor may restrict the occurrence of

some or all of the control characters.

NOTE 4.11

FORTRAN 77 allowed any character to occur in a character context. This part of ISO/IEC 1539 allows
a source program to contain characters of more than one kind. Some processors may identify characters
of nondefault kinds by control characters (called “escape” or “shift” characters). It is difficult, if not
impossible, to process, edit, and print files where some occurences of control characters have their intended
meaning and some occurrences might not. Almost all control characters have uses or effects that effectively
preclude their use in character contexts and this is why free source form allows only graphic characters
as representable characters. Nevertheless, for compatibility with FORTRAN 77, control characters remain permitted in

principle in fixed source form.

The delimiting apostrophes or quotation marks are not part of the value of the character literal constant.

An apostrophe character within a character constant delimited by apostrophes is represented by two consecutive
apostrophes (without intervening blanks); in this case, the two apostrophes are counted as one character. Sim-
ilarly, a quotation mark character within a character constant delimited by quotation marks is represented by
two consecutive quotation marks (without intervening blanks) and the two quotation marks are counted as one
character.

56 Types 445.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

6 A zero-length character literal constant is represented by two consecutive apostrophes (without intervening blanks)
or two consecutive quotation marks (without intervening blanks) outside of a character context.

NOTE 4.12
Examples of character literal constants are:

IIDONJTH
)DON) 7':[‘7

both of which have the value DON’T and

)

which has the zero-length character string as its value.

NOTE 4.13

An example of a nondefault character literal constant, where the processor supports the corresponding
character set, is:

NIHONGO_ & & L TR T Ay

where NTHONGO is a named constant whose value is the kind type parameter for Nihongo (Japanese)
characters. This means “Without her, nothing is possible”.

4.4.5.4 Collating sequence

1 The processor defines a collating sequence for the character set of each kind of character. The collating sequence
is an isomorphism between the character set and the set of integers {0 < I < N}, where N is the number of
characters in the set. The intrinsic functions CHAR(13.7.33) and ICHAR(13.7.77) provide conversions between
the characters and the integers according to this mapping.

NOTE 4.14

For example:

ICHAR (°X’)

returns the integer value of the character X’ according to the collating sequence of the processor.

2 The collating sequence of the default character kind shall satisfy the following constraints.

e ICHAR (’A’) < ICHAR ('B’) < ... < ICHAR (’Z’) for the twenty-six upper-case letters.

e ICHAR (’0’) < ICHAR (’1’) < ... < ICHAR (’9’) for the ten digits.

o ICHAR () < ICHAR (0") < ICHAR ('9') < ICHAR ('A") or

ICHAR (") < ICHAR ('A’) < ICHAR ('Z") < ICHAR (0.

e ICHAR (’a’) < ICHAR (’b’) < ... < ICHAR (’z’) for the twenty-six lower-case letters.

e ICHAR (’’) < ICHAR
(

(0) < ICHAR (’9’) < ICHAR (’a’) or
ICHAR (") < ICHAR (’a

)

) < ICHAR (’z’) < ICHAR (0).

3 Except for blank, there are no constraints on the location of the special characters and underscore in the collating
sequence, nor is there any specified collating sequence relationship between the upper-case and lower-case letters.

4 The collating sequence for the ASCII character kind is as defined by ISO/IEC 646:1991 (International Reference
Version); this collating sequence is called the ASCII collating sequence in this part of ISO/TEC 1539. The
collating sequence for ISO 10646 character is as defined by ISO/IEC 10646-1:2000.

4.45.4 Types 57

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

NOTE 4.15

The intrinsic functions ACHAR(13.7.3) and TACHAR(13.7.70) provide conversions between characters and
corresponding integer values according to the ASCII collating sequence.

The intrinsic functions LGT, LGE, LLE, and LLT (13.7.94-13.7.97) provide comparisons between strings based
on the ASCII collating sequence. International portability is guaranteed if the set of characters used is limited
to the letters, digits, underscore, and special characters.

4.4.6 Logical type
The logical type has two values, which represent true and false.

The processor shall provide one or more representation methods for data of type logical. Each such method
is characterized by a value for the (default integer) kind type parameter KIND. The kind type parameter of a
representation method is returned by the intrinsic function KIND (13.7.89).

The type specifier for the logical type uses the keyword LOGICAL.

The keyword LOGICAL with no kind-selector specifies type logical with default kind; the kind type parameter
value is equal to KIND (.FALSE.).

R424 logical-literal-constant is .TRUE. [- kind-param |
or .FALSE. | _ kind-param |

C425 (R424) The value of kind-param shall specify a representation method that exists on the processor.

The optional kind type parameter specifies the kind type parameter of the logical constant; if it does not appear,
the constant has the default logical kind.

The intrinsic operations defined for data entities of logical type are negation (.NOT.), conjunction (.AND.), in-
clusive disjunction (.OR.), logical equivalence (.EQV.), and logical nonequivalence (NEQV., .XOR.) as described
in 7.1.5.4. There is also a set of intrinsically defined relational operators that compare the values of data entities
of other types and yield a default logical value. These operations are described in 7.1.5.5.

4.5 Derived types

4.5.1 Derived type concepts

Additional types may be derived from the intrinsic types and other derived types. A type definition defines the
name of the type and the names and attributes of its components and type-bound procedures.

A derived type may be parameterized by multiple type parameters, each of which is defined to be either a kind
or length type parameter and may have a default value.

The ultimate components of a derived type are the components that are of intrinsic type or have the ALLOCAT-
ABLE or POINTER attribute, plus the ultimate components of the components that are of derived type and
have neither the ALLOCATABLE nor POINTER attribute.

The direct components of a derived type are the components of that type, plus the direct components of the
components that are of derived type and have neither the ALLOCATABLE nor POINTER attribute.

The components, direct components, and ultimate components of an object of derived type are the components,
direct components, and ultimate components of its type, respectively.

By default, no storage sequence is implied by the order of the component definitions. However, a storage order
is implied for a sequence type (4.5.2.3). If the derived type has the BIND attribute, the storage sequence is that
required by the companion processor (2.6.7, 15.3.4).

58 Types 4.4.6

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

7 A scalar entity of derived type is a structure. If a derived type has the SEQUENCE attribute, a scalar entity of
the type is a sequence structure.

NOTE 4.16

The ultimate components of an object of the derived type kids defined below are name, age, and other_-
kids. The direct components of such an object are name, age, other_kids, and oldest_child.

type :: person
character(len=20) :: name
integer :: age

end type person

type :: kids

type(person) :: oldest_child

type(person), allocatable, dimension(:) :: other_kids
end type kids

4.5.2 Derived-type definition
4.5.2.1 Syntax

R425 derived-type-def is derwed-type-stmt
[type-param-def-stmt | ...
[private-or-sequence | ...
[component-part |
[type-bound-procedure-part |
end-type-stmt

R426 derived-type-stmt is TYPE [[, type-attr-spec-list | :: | type-name B
W [(type-param-name-list) |
R427 type-atir-spec is ABSTRACT
or access-spec
or BIND (C)

or EXTENDS (parent-type-name)

C426 (R426) A derived type type-name shall not be DOUBLEPRECISION or the same as the name of any
intrinsic type defined in this part of ISO/IEC 1539.

C427 (R426) The same type-attr-spec shall not appear more than once in a given derived-type-stmt.
C428 (R427) A parent-type-name shall be the name of a previously defined extensible type (4.5.7).

C429 (R425) If the type definition contains or inherits (4.5.7.2) a deferred binding (4.5.5), ABSTRACT shall
appear.

C430 (R425) If ABSTRACT appears, the type shall be extensible.
C431 (R425) If EXTENDS appears, SEQUENCE shall not appear.

C432 (R425) If EXTENDS appears and the type being defined has a coarray ultimate component, its parent
type shall have a coarray ultimate component.

R428 private-or-sequence is private-components-stmt
or sequence-stmt

(433 (R425) The same private-or-sequence shall not appear more than once in a given derived-type-def.

4.5.2 Types 59

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

R429 end-type-stmit is END TYPE | type-name |

C434 (R429) If END TYPE is followed by a type-name, the type-name shall be the same as that in the
corresponding derived-type-stmt.

Derived types with the BIND attribute are subject to additional constraints as specified in 15.3.4.

NOTE 4.17

An example of a derived-type definition is:

TYPE PERSON

INTEGER AGE

CHARACTER (LEN = 50) NAME
END TYPE PERSON

An example of declaring a variable CHAIRMAN of type PERSON is:

TYPE (PERSON) :: CHAIRMAN

4.5.2.2 Accessibility

Types that are defined in a module or accessible in that module by use association have either the PUBLIC or
PRIVATE attribute. Types for which an access-spec is not explicitly specified in that module have the default
accessibility attribute for that module. The default accessibility attribute for a module is PUBLIC unless it has
been changed by a PRIVATE statement (5.4.1). Only types that have the PUBLIC attribute in that module are
available to be accessed from that module by use association.

The accessibility of a type does not affect, and is not affected by, the accessibility of its components and bindings.

If a type definition is private, then the type name, and thus the structure constructor (4.5.10) for the type, are
accessible only within the module containing the definition, and within its descendants.

NOTE 4.18
An example of a type with a private name is:

TYPE, PRIVATE :: AUXILIARY

LOGICAL :: DIAGNOSTIC

CHARACTER (LEN = 20) :: MESSAGE
END TYPE AUXILIARY

Such a type would be accessible only within the module in which it is defined, and within its descendants.

4.5.2.3 Sequence type
R430 sequence-stmt is SEQUENCE

C435 (R425) If SEQUENCE appears, each data component shall be declared to be of an intrinsic type or of a
sequence type, and a type-bound-procedure-part shall not appear.

If the SEQUENCE statement appears, the type has the SEQUENCE attribute and is a sequence type. The
order of the component definitions in a sequence type specifies a storage sequence for objects of that type. The
type is a numeric sequence type if there are no type parameters, no pointer or allocatable components, and
each component is default integer, default real, double precision real, default complex, default logical, or of
numeric sequence type. The type is a character sequence type if there are no type parameters, no pointer or
allocatable components, and each component is default character or of character sequence type.

60 Types 4.5.2.2

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 4.19

An example of a numeric sequence type is:

TYPE NUMERIC_SEQ

SEQUENCE
INTEGER :: INT_VAL
REAL :: REAL_VAL

LOGICAL :: LOG_VAL
END TYPE NUMERIC_SEQ

NOTE 4.20

A structure resolves into a sequence of components. Unless the structure includes a SEQUENCE statement,
the use of this terminology in no way implies that these components are stored in this, or any other, order.
Nor is there any requirement that contiguous storage be used. The sequence merely refers to the fact that
in writing the definitions there will necessarily be an order in which the components appear, and this will
define a sequence of components. This order is of limited significance because a component of an object of
derived type will always be accessed by a component name except in the following contexts: the sequence of
expressions in a derived-type value constructor, intrinsic assignment, the data values in namelist input data,
and the inclusion of the structure in an input/output list of a formatted data transfer, where it is expanded
to this sequence of components. Provided the processor adheres to the defined order in these cases, it is
otherwise free to organize the storage of the components for any nonsequence structure in memory as best
suited to the particular architecture.

4.5.2.4 Determination of derived types

Derived-type definitions with the same type name may appear in different scoping units, in which case they may
be independent and describe different derived types or they may describe the same type.

Two data entities have the same type if they are declared with reference to the same derived-type definition. The
definition may be accessed from a module or from a host scoping unit. Data entities in different scoping units
also have the same type if they are declared with reference to different derived-type definitions that specify the
same type name, all have the SEQUENCE attribute or all have the BIND attribute, have no components with
PRIVATE accessibility, and have type parameters and components that agree in order, name, and attributes.
Otherwise, they are of different derived types. A data entity declared using a type with the SEQUENCE attribute
or with the BIND attribute is not of the same type as an entity of a type declared to be PRIVATE or that has
any components that are PRIVATE.

NOTE 4.21

An example of declaring two entities with reference to the same derived-type definition is:

TYPE POINT
REAL X, Y
END TYPE POINT
TYPE (POINT) :: X1
CALL SUB (X1)
CONTAINS
SUBROUTINE SUB (A)
TYPE (POINT) :: A

END SUBROUTINE SUB

The definition of derived type POINT is known in subroutine SUB by host association. Because the
declarations of X1 and A both reference the same derived-type definition, X1 and A have the same type.
X1 and A also would have the same type if the derived-type definition were in a module and both SUB and

45.2.4 Types 61

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

NOTE 4.21 (cont.)

its containing program unit referenced the module.

NOTE 4.22

PROGRAM PGM

END PROGRAM PGM

END SUBROUTINE SUB

An example of data entities in different scoping units having the same type is:

TYPE EMPLOYEE
SEQUENCE
INTEGER ID_NUMBER
CHARACTER (50) NAME
END TYPE EMPLOYEE
TYPE (EMPLOYEE) PROGRAMMER
CALL SUB (PROGRAMMER)

SUBROUTINE SUB (POSITION)
TYPE EMPLOYEE
SEQUENCE
INTEGER ID_NUMBER
CHARACTER (50) NAME
END TYPE EMPLOYEE
TYPE (EMPLOYEE) POSITION

Thus, the program would not be standard-conforming.

The actual argument PROGRAMMER and the dummy argument POSITION have the same type because
they are declared with reference to a derived-type definition with the same name, the SEQUENCE attribute,
and components that agree in order, name, and attributes.

Suppose the component name ID_NUMBER was ID_.NUM in the subroutine. Because all the component
names are not identical to the component names in derived type EMPLOYEE in the main program, the
actual argument PROGRAMMER would not be of the same type as the dummy argument POSITION.

NOTE 4.23

The requirement that the two types have the same name applies to the type-names of the respective derived-

type-stmts, not to local names introduced via renaming in USE statements.

4.5.3 Derived-type parameters

4.5.3.1 Type parameter definition statement
R431 type-param-def-stmt is INTEGER [kind-selector | , type-param-attr-spec :: B
B type-param-decl-list

R432 type-param-decl is type-param-name [= scalar-int-initialization-expr |

C436 (R431) A type-param-name in a type-param-def-stmt in a derived-type-def shall be one of the type-param-
names in the derived-type-stmt of that derived-type-def.

C437 (R431) Each type-param-name in the derived-type-stmt in a derived-type-def shall appear as a type-param-
name in a type-param-def-stmt in that derived-type-def.

R433 type-param-attr-spec is KIND

62 Types 4.5.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

or LEN
The derived type is parameterized if the derived-type-stmt has any type-param-names.

Each type parameter is itself of type integer. If its kind selector is omitted, the kind type parameter is default
integer.

The type-param-attr-spec explicitly specifies whether a type parameter is a kind parameter or a length parameter.

If a type-param-decl has a scalar-int-initialization-expr, the type parameter has a default value which is specified
by the expression. If necessary, the value is converted according to the rules of intrinsic assignment (7.2.1.3) to
a value of the same kind as the type parameter.

A type parameter may be used as a primary in a specification expression (7.1.11) in the derived-type-def. A kind
type parameter may also be used as a primary in an initialization expression (7.1.12) in the derived-type-def.

NOTE 4.24

The following example uses derived-type parameters.

TYPE humongous_matrix(k, d)
INTEGER, KIND :: k = kind(0.0)
INTEGER (selected_int_kind(12)), LEN :: d
!-— Specify a nondefault kind for 4.
REAL(k) :: element(d,d)
END TYPE

In the following example, dim is declared to be a kind parameter, allowing generic overloading of procedures
distinguished only by dim.

TYPE general_point(dim)
INTEGER, KIND :: dim
REAL :: coordinates(dim)

END TYPE

4.5.3.2 Type parameter order
Type parameter order is an ordering of the type parameters of a derived type; it is used for derived-type specifiers.

The type parameter order of a nonextended type is the order of the type parameter list in the derived-type
definition. The type parameter order of an extended type (4.5.7) consists of the type parameter order of its
parent type followed by any additional type parameters in the order of the type parameter list in the derived-type
definition.

NOTE 4.25
Given

TYPE :: t1(k1,k2)
INTEGER,KIND :: k1,k2
REAL (k1) a(k2)

END TYPE

TYPE,EXTENDS (t1) :: t2(k3)
INTEGER,KIND :: k3
LOGICAL(k3) flag

END TYPE

the type parameter order for type T1 is K1 then K2, and the type parameter order for type T2 is K1 then
K2 then K3.

4.5.3.2 Types 63

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

4.5.4 Components

4.5.4.1 Component definition statement

R434

R435

R436

R437

R438

R439

C438

C439

C440

C441

C442

C443

C444

C445

C446

C447

C448

C449

64

component-part is | component-def-stmt | ...

component-def-stmt is data-component-def-stmt
or proc-component-def-stmt

data-component-def-stmt is declaration-type-spec [| , component-attr-spec-list | :: | B
B component-decl-list

component-atir-spec is access-spec
or ALLOCATABLE
or CODIMENSION [bracket coarray-spec rbracket
or CONTIGUOUS
or DIMENSION (component-array-spec)
or POINTER

component-decl is component-name [(component-array-spec) | R
W [lbracket coarray-spec rbracket | B
B [* char-length | [component-initialization]

component-array-spec is explicit-shape-spec-list
or deferred-shape-spec-list

(R436) No component-attr-spec shall appear more than once in a given component-def-stmt.

(R436) If neither the POINTER nor the ALLOCATABLE attribute is specified, the declaration-type-spec
in the component-def-stmt shall specify an intrinsic type or a previously defined derived type.

(R436) If the POINTER or ALLOCATABLE attribute is specified, each component-array-spec shall be
a deferred-shape-spec-list.

(R436) If a coarray-spec appears, it shall be a deferred-coshape-spec-list and the component shall have
the ALLOCATABLE attribute.

(R436) If a coarray-spec appears, the component shall not be of type C_PTR or C_FUNPTR (15.3.3).

A data component whose type has a coarray ultimate component shall be a nonpointer nonallocatable
scalar and shall not be a coarray.

(R436) If neither the POINTER nor the ALLOCATABLE attribute is specified, each component-array-
spec shall be an explicit-shape-spec-list.

(R439) Each bound in the ezplicit-shape-spec shall be a specification expression in which there are no ref-
erences to specification functions or the intrinsic functions ALLOCATED, ASSOCIATED, EXTENDS -
TYPE_OF, PRESENT, or SAME_TYPE_AS, every specification inquiry reference is an initialization
expression, and the value does not depend on the value of a variable..

(R436) A component shall not have both the ALLOCATABLE and POINTER attributes.

(R436) If the CONTIGUOUS attribute is specified, the component shall be an array with the POINTER
attribute.

(R438) The * char-length option is permitted only if the component is of type character.

(R435) Each type-param-value within a component-def-stmt shall be a colon or a specification expression
in which there are no references to specification functions or the intrinsic functions ALLOCATED, ASSO-

Types 454

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

CIATED, EXTENDS_TYPE_OF, PRESENT, or SAME_TYPE_AS, every specification inquiry reference
is an initialization expression, and the value does not depend on the value of a variable..

NOTE 4.26

Because a type parameter is not an object, a type-param-value or a bound in an explicit-shape-spec may
contain a type-param-name.

R440 proc-component-def-stmt is PROCEDURE ([proc-interface]) , R
W proc-component-attr-spec-list :: proc-decl-list

NOTE 4.27

See 12.4.3.6 for definitions of proc-interface and proc-decl.

R441 proc-component-attr-spec is POINTER
or PASS [(arg-name) |
or NOPASS

or access-spec

C450 (R440) The same proc-component-attr-spec shall not appear more than once in a given proc-component-
def-stmft.

C451 (R440) POINTER shall appear in each proc-component-attr-spec-list.

C452 (R440) If the procedure pointer component has an implicit interface or has no arguments, NOPASS shall
be specified.

C453 (R440) If PASS (arg-name) appears, the interface shall have a dummy argument named arg-name.

C454 (R440) PASS and NOPASS shall not both appear in the same proc-component-attr-spec-list.

4.5.4.2 Array components

A data component is an array if its component-decl contains a component-array-spec or its data-component-def-
stmt contains a DIMENSION clause. If the component-decl contains a component-array-spec, it specifies the
array rank, and if the array is explicit shape (5.3.8.2), the array bounds; otherwise, the component-array-spec in
the DIMENSION clause specifies the array rank, and if the array is explicit shape, the array bounds.

NOTE 4.28
An example of a derived type definition with an array component is:

TYPE LINE

REAL, DIMENSION (2, 2) :: COORD
COORD(:,1) has the value of [X1, Y1]
COORD(:,2) has the value of [X2, Y2]
Line width in centimeters
1 for solid, 2 for dash, 3 for dot

REAL :: WIDTH
INTEGER :: PATTERN
END TYPE LINE

An example of declaring a variable LINE_.SEGMENT to be of the type LINE is:

TYPE (LINE) :: LINE_SEGMENT

The scalar variable LINE_.SEGMENT has a component that is an array. In this case, the array is a subobject
of a scalar. The double colon in the definition for COORD is required; the double colon in the definition
for WIDTH and PATTERN is optional.

4.5.4.2 Types 65

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

NOTE 4.29

An example of a derived type definition with an allocatable component is:

TYPE STACK
INTEGER :: INDEX
INTEGER, ALLOCATABLE :: CONTENTS (:)
END TYPE STACK

For each scalar variable of type STACK, the shape of the component CONTENTS is determined by execu-
tion of an ALLOCATE statement or assignment statement, or by argument association.

NOTE 4.30

Default initialization of an explicit-shape array component may be specified by an initialization expression
consisting of an array constructor (4.8), or of a single scalar that becomes the value of each array element.

4.5.4.3 Coarray components

1 A data component is a coarray if its component-decl contains a coarray-spec or its data-component-def-stmt con-
tains a CODIMENSION clause. If the component-decl contains a coarray-spec it specifies the corank; otherwise,
the coarray-spec in the CODIMENSION clause specifies the corank.

NOTE 4.31

An example of a derived type definition with a coarray component is:

TYPE GRID_TYPE
REAL,ALLOCATABLE,CODIMENSION[:,:,:] :: GRID(:,:,:)
END TYPE GRID_TYPE

An object of type grid_type is required to be a scalar and is not permitted to be a pointer, allocatable, or
a coarray.

4.5.4.4 Pointer components

1 A component is a pointer (2.5.8) if its component-atir-spec-list contains the POINTER, attribute. A pointer
component may be a data pointer or a procedure pointer.

66

NOTE 4.32

An example of a derived type definition with a pointer component is:

TYPE REFERENCE

INTEGER :: VOLUME, YEAR, PAGE
CHARACTER (LEN = 50) :: TITLE

PROCEDURE (printer_interface), POINTER :: PRINT => NULL()
CHARACTER, DIMENSION (:), POINTER :: SYNOPSIS

END TYPE REFERENCE

Any object of type REFERENCE will have the four nonpointer components VOLUME, YEAR, PAGE, and
TITLE, the procedure pointer PRINT, which has an explicit interface the same as printer_interface, plus a
pointer to an array of characters holding SYNOPSIS. The size of this target array will be determined by
the length of the abstract. The space for the target may be allocated (6.6.1) or the pointer component may
be associated with a target by a pointer assignment statement (7.2.2).

Types 4.5.4.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

4.5.4.5 The passed-object dummy argument

A passed-object dummy argument is a distinguished dummy argument of a procedure pointer component or
type-bound procedure. It affects procedure overriding (4.5.7.3) and argument association (12.5.2.2).

If NOPASS is specified, the procedure pointer component or type-bound procedure has no passed-object dummy
argument.

If neither PASS nor NOPASS is specified or PASS is specified without arg-name, the first dummy argument of a
procedure pointer component or type-bound procedure is its passed-object dummy argument.

If PASS (arg-name) is specified, the dummy argument named arg-name is the passed-object dummy argument
of the procedure pointer component or named type-bound procedure.

C455 The passed-object dummy argument shall be a scalar, nonpointer, nonallocatable dummy data object
with the same declared type as the type being defined; all of its length type parameters shall be assumed,;
it shall be polymorphic (4.3.1.3) if and only if the type being defined is extensible (4.5.7). It shall not
have the VALUE attribute.

NOTE 4.33

If a procedure is bound to several types as a type-bound procedure, different dummy arguments might be
the passed-object dummy argument in different contexts.

4.5.4.6 Default initialization for components

Default initialization provides a means of automatically initializing pointer components to be disassociated or
associated with specific targets, and nonpointer nonallocatable components to have a particular value. Allocatable
components are always initialized to unallocated.

A pointer variable or component is data-pointer-initialization compatible with a target if the pointer is type
compatible with the target, they have the same rank, all nondeferred type parameters of the pointer have the
same values as the corresponding type parameters of the target, and the target is contiguous if the pointer has
the CONTIGUOUS attribute.

R442 component-initialization is = initialization-expr
or => null-init
or => initial-data-target

R443 initial-data-target is designator

C456 (R436) If component-initialization appears, a double-colon separator shall appear before the component-
decl-list.

C457 (R436) If component-initialization appears, every type parameter and array bound of the component
shall be a colon or initialization expression.

C458 (R436) If => appears in component-initialization, POINTER shall appear in the component-attr-spec-
list. If = appears in component-initialization, neither POINTER nor ALLOCATABLE shall appear in
the component-attr-spec-list.

C459 (R442) If initial-data-target appears, component-name shall be data-pointer-initialization compatible
with it.

C460 (R443) The designator shall designate a nonallocatable variable that has the TARGET and SAVE at-
tributes and does not have a vector subscript. Every subscript, section subscript, substring starting
point, and substring ending point in designator shall be an initialization expression.

If null-init appears for a pointer component, that component in any object of the type has an initial association
status of disassociated (2.1) or becomes disassociated as specified in 16.5.2.4.

4.5.4.6 Types 67

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

If initial-data-target appears for a data pointer component, that component in any object of the type is initially
associated with the target or becomes associated with the target as specified in 16.5.2.3.

If initial-proc-target (12.4.3.6) appears in proc-decl for a procedure pointer component, that component in any
object of the type is initially associated with the target or becomes associated with the target as specified in
16.5.2.3.

If initialization-expr appears for a nonpointer component, that component in any object of the type is initially
defined (16.6.3) or becomes defined as specified in 16.6.5 with the value determined from initialization-expr. If
necessary, the value is converted according to the rules of intrinsic assignment (7.2.1.3) to a value that agrees
in type, type parameters, and shape with the component. If the component is of a type for which default
initialization is specified for a component, the default initialization specified by initialization-expr overrides the
default initialization specified for that component. When one initialization overrides another it is as if only
the overriding initialization were specified (see Note 4.35). Explicit initialization in a type declaration statement
(5.2) overrides default initialization (see Note 4.34). Unlike explicit initialization, default initialization does not
imply that the object has the SAVE attribute.

A subcomponent (6.4.2) is default-initialized if the type of the object of which it is a component specifies default
initialization for that component, and the subcomponent is not a subobject of an object that is default-initialized
or explicitly initialized.

A type has default initialization if component-initialization is specified for any direct component of the type. An
object has default initialization if it is of a type that has default initialization.

NOTE 4.34

It is not required that initialization be specified for each component of a derived type. For example:

TYPE DATE

INTEGER DAY

CHARACTER (LEN = 5) MONTH

INTEGER :: YEAR = 1994 ! Partial default initialization
END TYPE DATE

In the following example, the default initial value for the YEAR component of TODAY is overridden by
explicit initialization in the type declaration statement:

TYPE (DATE), PARAMETER :: TODAY = DATE (21, "Feb.", 1995)

NOTE 4.35

The default initial value of a component of derived type may be overridden by default initialization specified
in the definition of the type. Continuing the example of Note 4.34:

TYPE SINGLE_SCORE

TYPE(DATE) :: PLAY_DAY = TODAY

INTEGER SCORE

TYPE(SINGLE_SCORE), POINTER :: NEXT => NULL ()
END TYPE SINGLE_SCORE
TYPE (SINGLE_SCORE) SETUP

The PLAY_DAY component of SETUP receives its initial value from TODAY, overriding the initialization
for the YEAR component.

NOTE 4.36

Arrays of structures may be declared with elements that are partially or totally initialized by default.
Continuing the example of Note 4.35 :

68 Types 4.5.4.6

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 4.36 (cont.)

TYPE MEMBER (NAME_LEN)
INTEGER, LEN :: NAME_LEN
CHARACTER (LEN = NAME_LEN) NAME = ’°
INTEGER :: TEAM_NO, HANDICAP = O
TYPE (SINGLE_SCORE), POINTER :: HISTORY => NULL ()
END TYPE MEMBER
TYPE (MEMBER(9)) LEAGUE (36) ! Array of partially initialized elements
TYPE (MEMBER(9)) :: ORGANIZER = MEMBER ("I. Manage",1,5,NULL ())

ORGANIZER is explicitly initialized, overriding the default initialization for an object of type MEMBER.

Allocated objects may also be initialized partially or totally. For example:

ALLOCATE (ORGANIZER % HISTORY) ! A partially initialized object of type
! SINGLE_SCORE is created.

NOTE 4.37

A pointer component of a derived type may have as its target an object of that derived type. The type
definition may specify that in objects declared to be of this type, such a pointer is default initialized to
disassociated. For example:

TYPE NODE

INTEGER :: VALUE = 0

TYPE (NODE), POINTER :: NEXT_NODE => NULL ()
END TYPE

A type such as this may be used to construct linked lists of objects of type NODE. See C.1.5 for an example.
Linked lists can also be constructed using allocatable components.

NOTE 4.38
A pointer component of a derived type may be default initialized to have an initial target.

TYPE NODE

INTEGER :: VALUE = O

TYPE (NODE), POINTER :: NEXT_NODE => SENTINEL
END TYPE

TYPE(NODE) , SAVE, TARGET :: SENTINEL

4.5.4.7 Component order

Component order is an ordering of the nonparent components of a derived type; it is used for intrinsic formatted
input/output and structure constructors (where component keywords are not used). Parent components are
excluded from the component order of an extended type (4.5.7).

The component order of a nonextended type is the order of the declarations of the components in the derived-type
definition. The component order of an extended type consists of the component order of its parent type followed
by any additional components in the order of their declarations in the extended derived-type definition.

NOTE 4.39

Given the same type definitions as in Note 4.25, the component order of type T1 is just A (there is only
one component), and the component order of type T2 is A then FLAG. The parent component (T1) does
not participate in the component order.

4.5.4.7 Types 69

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

4.5.4.8 Component accessibility
R444 private-components-stmt is PRIVATE

C461 (R444) A private-components-stmt is permitted only if the type definition is within the specification part
of a module.

The default accessibility for the components that are declared in a type’s component-part is private if the type
definition contains a private-components-stmt, and public otherwise. The accessibility of a component may be
explicitly declared by an access-spec; otherwise its accessibility is the default for the type definition in which it is
declared.

If a component is private, that component name is accessible only within the module containing the definition,
and within its descendants.

NOTE 4.40

Type parameters are not components. They are effectively always public.

NOTE 4.41

The accessibility of the components of a type is independent of the accessibility of the type name. It is
possible to have all four combinations: a public type name with a public component, a private type name
with a private component, a public type name with a private component, and a private type name with a
public component.

NOTE 4.42

An example of a type with private components is:

TYPE POINT
PRIVATE
REAL :: X, Y

END TYPE POINT

Such a type definition is accessible in any scoping unit accessing the module via a USE statement; however,
the components X and Y are accessible only within the module, and within its descendants.

NOTE 4.43

The following example illustrates the use of an individual component access-spec to override the default
accessibility:

TYPE MIXED
PRIVATE
INTEGER :: I
INTEGER, PUBLIC :: J
END TYPE MIXED

TYPE (MIXED) :: M

The component M%J is accessible in any scoping unit where M is accessible; M%I is accessible only within
the module containing the TYPE MIXED definition, and within its descendants.

4.5.5 Type-bound procedures
R445 type-bound-procedure-part is contains-stmt

[binding-private-stmt |
[type-bound-proc-binding | ...

70 Types 4.5.4.8

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

R446 binding-private-stmt is PRIVATE

C462 (R445) A binding-private-stmt is permitted only if the type definition is within the specification part of
a module.

R447 type-bound-proc-binding is type-bound-procedure-stmt
or type-bound-generic-stmt
or final-procedure-stmt

R448 type-bound-procedure-stmt is PROCEDURE | [, binding-attr-list | :: | B
B binding-name [=> procedure-name |
or PROCEDURE (interface-name) R
B | binding-attr-list :: binding-name

C463 (R448) If => procedure-name appears, the double-colon separator shall appear.

C464 (R448) The procedure-name shall be the name of an accessible module procedure or an external procedure
that has an explicit interface.

If neither => procedure-name nor interface-name appears, it is as though => procedure-name had appeared with
a procedure name the same as the binding name.

R449 type-bound-generic-stmt is GENERIC Hm
B [, access-spec | i1 generic-spec => binding-name-list

C465 (R449) Within the specification-part of a module, each type-bound-generic-stmt shall specify, either im-
plicitly or explicitly, the same accessibility as every other type-bound-generic-stmt with that generic-spec
in the same derived type.

C466 (R449) Each binding-name in binding-name-list shall be the name of a specific binding of the type.

C467 (R449) If generic-spec is not generic-name, each of its specific bindings shall have a passed-object dummy
argument (4.5.4.5).

C468 (R449) If generic-spec is OPERATOR (defined-operator), the interface of each binding shall be as
specified in 12.4.3.4.2.

C469 (R449) If generic-spec is ASSIGNMENT (=), the interface of each binding shall be as specified in
12.4.3.4.3.

C470 (R449) If generic-spec is dtio-generic-spec, the interface of each binding shall be as specified in 9.6.4.7.
The type of the dtv argument shall be type-name.

R450 binding-attr is PASS [(arg-name) |
or NOPASS
or NON_OVERRIDABLE
or DEFERRED
or access-spec

C471 (R450) The same binding-attr shall not appear more than once in a given binding-attr-list.

C472 (R448) If the interface of the binding has no dummy argument of the type being defined, NOPASS shall
appear.

C473 (R448) If PASS (arg-name) appears, the interface of the binding shall have a dummy argument named

4.5.5 Types 71

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

arg-name.
C474 (R450) PASS and NOPASS shall not both appear in the same binding-attr-list.

C475 (R450) NON_OVERRIDABLE and DEFERRED shall not both appear in the same binding-attr-list.
C476 (R450) DEFERRED shall appear if and only if interface-name appears.

C477 (R448) An overriding binding (4.5.7.3) shall have the DEFERRED attribute only if the binding it over-

rides is deferred.

C478 (R448) A binding shall not override an inherited binding (4.5.7.2) that has the NON_OVERRIDABLE
attribute.

2 A type-bound procedure statement declares a specific type-bound procedure. A specific type-bound
procedure may have a passed-object dummy argument (4.5.4.5). A binding that specifies the DEFERRED
attribute is a deferred binding. A deferred binding shall appear only in the definition of an abstract type.

3 A GENERIC statement declares a type-bound generic interface for its specific type-bound procedures.

4 A binding of a type is a specific type-bound procedure, a generic type-bound interface, or a final subroutine.
These are referred to as specific bindings, generic bindings, and final bindings respectively.

5 A type-bound procedure may be identified by a binding name in the scope of the type definition. This name
is the binding-name for a specific binding, and the generic-name for a generic binding whose generic-spec is
generic-name. A final binding, or a generic binding whose generic-spec is not generic-name, has no binding
name.

6 The interface of a specific binding is that of the procedure specified by procedure-name or the interface specified
by interface-name.

NOTE 4.44
An example of a type and a type-bound procedure is:

TYPE POINT

REAL :: X, Y
CONTAINS

PROCEDURE, PASS :: LENGTH => POINT_LENGTH
END TYPE POINT

and in the module-subprogram-part of the same module:

REAL FUNCTION POINT_LENGTH (A, B)

CLASS (POINT), INTENT (IN) :: A, B

POINT_LENGTH = SQRT ((A%X - BAX)**2 + (A%Y - BAY)**2)
END FUNCTION POINT_LENGTH

7 The same generic-spec may be used in several GENERIC statements within a single derived-type definition. Each
additional GENERIC statement with the same generic-spec extends the generic interface.

NOTE 4.45

Unlike the situation with generic procedure names, a generic type-bound procedure name is not permitted
to be the same as a specific type-bound procedure name in the same type (16.3).

8 The default accessibility for the procedure bindings of a type is private if the type definition contains a binding-
private-stmt, and public otherwise. The accessibility of a procedure binding may be explicitly declared by an
access-spec; otherwise its accessibility is the default for the type definition in which it is declared.

72 Types 4.5.5

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

9 A public type-bound procedure is accessible via any accessible object of the type. A private type-bound procedure
is accessible only within the module containing the type definition, and within its descendants.

NOTE 4.46

The accessibility of a type-bound procedure is not affected by a PRIVATE statement in the component-part;
the accessibility of a data component is not affected by a PRIVATE statement in the type-bound-procedure-
part.

4.5.6 Final subroutines
4.5.6.1 Declaration
R451 final-procedure-stmt is FINAL [::] final-subroutine-name-list

C479 (R451) A final-subroutine-name shall be the name of a module procedure with exactly one dummy argu-
ment. That argument shall be nonoptional and shall be a nonpointer, nonallocatable, nonpolymorphic
variable of the derived type being defined. All length type parameters of the dummy argument shall be
assumed. The dummy argument shall not have INTENT (OUT).

C480 (R451) A final-subroutine-name shall not be one previously specified as a final subroutine for that type.

C481 (R451) A final subroutine shall not have a dummy argument with the same kind type parameters and
rank as the dummy argument of another final subroutine of that type.

1 The FINAL statement specifies that each procedure it names is a final subroutine. A final subroutine might
be executed when a data entity of that type is finalized (4.5.6.2).

2 A derived type is finalizable if and only if it has a final subroutine or a nonpointer, nonallocatable component of
finalizable type. A nonpointer data entity is finalizable if and only if it is of finalizable type.
NOTE 4.47

Final subroutines are effectively always “accessible”. They are called for entity finalization regardless of the
accessibility of the type, its other type-bound procedures, or the subroutine name itself.

NOTE 4.48

Final subroutines are not inherited through type extension and cannot be overridden. The final subroutines
of the parent type are called after any additional final subroutines of an extended type are called.

4.5.6.2 The finalization process

1 Only finalizable entities are finalized. When an entity is finalized, the following steps are carried out in sequence.

(1) If the dynamic type of the entity has a final subroutine whose dummy argument has the same kind
type parameters and rank as the entity being finalized, it is called with the entity as an actual
argument. Otherwise, if there is an elemental final subroutine whose dummy argument has the same
kind type parameters as the entity being finalized, it is called with the entity as an actual argument.
Otherwise, no subroutine is called at this point.

(2) Al finalizable components that appear in the type definition are finalized in a processor-dependent
and image-independent order. If the entity being finalized is an array, each finalizable component of
each element of that entity is finalized separately.

(3) If the entity is of extended type and the parent type is finalizable, the parent component is finalized.

2 If several entities are to be finalized as a consequence of an event specified in 4.5.6.3, the order in which they
are finalized is processor-dependent and image-independent. A final subroutine shall not reference or define an
object that has already been finalized.

3 If an object is not finalized, it retains its definition status and does not become undefined.

4.5.6 Types 73

10

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

4.5.6.3 When finalization occurs
When a pointer is deallocated its target is finalized. When an allocatable entity is deallocated, it is finalized.

A nonpointer, nonallocatable object that is not a dummy argument or function result is finalized immediately
before it would become undefined due to execution of a RETURN or END statement (16.6.6, item (3)).

A nonpointer nonallocatable local variable of a BLOCK construct is finalized immediately before it would become
undefined due to termination of the BLOCK construct (16.6.6, item (21)).

If an executable construct references a function, the result is finalized after execution of the innermost executable
construct containing the reference.

If an executable construct references a structure constructor or array constructor, the entity created by the
constructor is finalized after execution of the innermost executable construct containing the reference.

If a specification expression in a scoping unit references a function, the result is finalized before execution of the
executable constructs in the scoping unit.

If a specification expression in a scoping unit references a structure constructor or array constructor, the entity
created by the constructor is finalized before execution of the executable constructs in the scoping unit.

When a procedure is invoked, a nonpointer, nonallocatable object that is an actual argument corresponding to
an INTENT (OUT) dummy argument is finalized.

When an intrinsic assignment statement is executed, the variable is finalized after evaluation of expr and before
the definition of the variable.

NOTE 4.49

If finalization is used for storage management, it often needs to be combined with defined assignment.

If an object is allocated via pointer allocation and later becomes unreachable due to all pointers associated with
that object having their pointer association status changed, it is processor dependent whether it is finalized. If it
is finalized, it is processor dependent as to when the final subroutines are called.

4.5.6.4 Entities that are not finalized

If image execution is terminated, either by an error (e.g. an allocation failure) or by execution of a STOP, ALL
STOP, or END PROGRAM statement, entities existing immediately prior to termination are not finalized.

NOTE 4.50

A nonpointer, nonallocatable object that has the SAVE attribute is never finalized as a direct consequence
of the execution of a RETURN or END statement.

A variable in a module or submodule is not finalized if it retains its definition status and value, even when
there is no active procedure referencing the module or submodule.

4.5.7 Type extension
4.5.7.1 Concepts
A derived type that does not have the BIND attribute or the SEQUENCE attribute is an extensible type.

A type with the EXTENDS attribute is an extended type; its parent type is the type named in the EXTENDS
type-attr-spec.

74 Types 4.5.6.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 4.51
The name of the parent type might be a local name introduced via renaming in a USE statement. ‘

An extensible type that does not have the EXTENDS attribute is an extension type of itself only. An extended
type is an extension of itself and of all types for which its parent type is an extension.

An abstract type is a type that has the ABSTRACT attribute.

NOTE 4.52

A deferred binding (4.5.5) defers the implementation of a type-bound procedure to extensions of the type;
it may appear only in an abstract type. The dynamic type of an object cannot be abstract; therefore, a
deferred binding cannot be invoked. An extension of an abstract type need not be abstract if it has no
deferred bindings. A short example of an abstract type is:

TYPE, ABSTRACT :: FILE_HANDLE
CONTAINS
PROCEDURE (OPEN_FILE) , DEFERRED, PASS(HANDLE) :: OPEN

END TYPE

For a more elaborate example see C.1.4.

4.5.7.2 Inheritance

An extended type includes all of the type parameters, all of the components, and the nonoverridden (4.5.7.3)
nonfinal procedure bindings of its parent type. These are inherited by the extended type from the parent type.
They retain all of the attributes that they had in the parent type. Additional type parameters, components, and
procedure bindings may be declared in the derived-type definition of the extended type.

NOTE 4.53

Inaccessible components and bindings of the parent type are also inherited, but they remain inaccessible in
the extended type. Inaccessible entities occur if the type being extended is accessed via use association and
has a private entity.

NOTE 4.54

A derived type is not required to have any components, bindings, or parameters; an extended type is not
required to have more components, bindings, or parameters than its parent type.

An extended type has a scalar, nonpointer, nonallocatable, parent component with the type and type parameters
of the parent type. The name of this component is the parent type name. It has the accessibility of the parent
type. Components of the parent component are inheritance associated (16.5.4) with the corresponding components
inherited from the parent type. An ancestor component of a type is the parent component of the type or an
ancestor component of the parent component.

NOTE 4.55
A component or type parameter declared in an extended type shall not have the same name as any accessible
component or type parameter of its parent type.

NOTE 4.56

Examples:

TYPE POINT ! A base type
REAL :: X, Y

4.5.7.2 Types 75

ISO

JIEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

NOTE 4.56 (cont.)

END TYPE POINT

TYPE, EXTENDS(POINT) :: COLOR_POINT ! An extension of TYPE(POINT)
! Components X and Y, and component name POINT, inherited from parent
INTEGER :: COLOR

END TYPE COLOR_POINT

4.5.7.3 Type-bound procedure overriding

1 If a nongeneric binding specified in a type definition has the same binding name as a binding from the parent

type

then the binding specified in the type definition overrides the one from the parent type.

2 The overriding binding and the overridden binding shall satisfy the following conditions.

Either both shall have a passed-object dummy argument or neither shall.

If the overridden binding is pure then the overriding binding shall also be pure.
Either both shall be elemental or neither shall.

They shall have the same number of dummy arguments.

Passed-object dummy arguments, if any, shall correspond by name and position.

Dummy arguments that correspond by position shall have the same names and characteristics, except for
the type of the passed-object dummy arguments.

Either both shall be subroutines or both shall be functions having the same result characteristics (12.3.3).
If the overridden binding is PUBLIC then the overriding binding shall not be PRIVATE.

NOTE 4.57

The following is an example of procedure overriding, expanding on the example in Note 4.44.

TYPE, EXTENDS (POINT) :: POINT_3D

REAL :: Z
CONTAINS

PROCEDURE, PASS :: LENGTH => POINT_3D_LENGTH
END TYPE POINT_3D

and in the module-subprogram-part of the same module:

REAL FUNCTION POINT_3D_LENGTH (A, B)
CLASS (POINT_3D), INTENT (IN) :: A
CLASS (POINT), INTENT (IN) :: B
SELECT TYPE(B)
CLASS IS(POINT_3D)
POINT_3D_LENGTH = SQRT((A%X-B%X)**2 + (A%Y-BAY)**2 + (A%Z-BY%Z)**2)
RETURN
END SELECT
PRINT *, ’In POINT_3D_LENGTH, dynamic type of argument is incorrect.’
STOP
END FUNCTION POINT_3D_LENGTH

3 If a generic binding specified in a type definition has the same generic-spec as an inherited binding, it extends
the generic interface and shall satisfy the requirements specified in 12.4.3.4.5.

4 A binding of a type and a binding of an extension of that type correspond if the latter binding is the same binding
as the former, overrides a corresponding binding, or is an inherited corresponding binding.

76

Types 4.5.7.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

4.5.8 Derived-type values

The component value of

e a pointer component is its pointer association,

e an allocatable component is its allocation status and, if it is allocated, its dynamic type and type parameters,
bounds and value, and

e a nonpointer nonallocatable component is its value.

The set of values of a particular derived type consists of all possible sequences of the component values of its
components.

4.5.9 Derived-type specifier

A derived-type specifier is used in several contexts to specify a particular derived type and type parameters.
R452 derived-type-spec is type-name | (type-param-spec-list) |

R453 type-param-spec is [keyword =] type-param-value

C482 (R452) type-name shall be the name of an accessible derived type.

C483 (R452) type-param-spec-list shall appear only if the type is parameterized.

C484 (R452) There shall be at most one type-param-spec corresponding to each parameter of the type. If a
type parameter does not have a default value, there shall be a type-param-spec corresponding to that
type parameter.

C485 (R453) The keyword= may be omitted from a type-param-spec only if the keyword= has been omitted
from each preceding type-param-spec in the type-param-spec-list.

C486 (R453) Each keyword shall be the name of a parameter of the type.

C487 (R453) An asterisk may be used as a type-param-value in a type-param-spec only in the declaration of a
dummy argument or associate name or in the allocation of a dummy argument.

Type parameter values that do not have type parameter keywords specified correspond to type parameters in
type parameter order (4.5.3.2). If a type parameter keyword appears, the value is assigned to the type parameter
named by the keyword. If necessary, the value is converted according to the rules of intrinsic assignment (7.2.1.3)
to a value of the same kind as the type parameter.

The value of a type parameter for which no type-param-value has been specified is its default value.

4.5.10 Construction of derived-type values

A derived-type definition implicitly defines a corresponding structure constructor that allows construction of
scalar values of that derived type. The type and type parameters of a constructed value are specified by a derived
type specifier.

R454 structure-constructor is derived-type-spec (| component-spec-list |)
R455 component-spec is [keyword =] component-data-source
R456 component-data-source is expr

or data-target

4.5.8 Types 77

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

or proc-target
C488 (R454) The derived-type-spec shall not specify an abstract type (4.5.7).
C489 (R454) At most one component-spec shall be provided for a component.

C490 (R454) If a component-spec is provided for an ancestor component, a component-spec shall not be provided
for any component that is inheritance associated with a subcomponent of that ancestor component.

C491 (R454) A component-spec shall be provided for a nonallocatable component unless it has default initializa-
tion or is inheritance associated with a subcomponent of another component for which a component-spec
is provided.

C492 (R455) The keyword= may be omitted from a component-spec only if the keyword= has been omitted
from each preceding component-spec in the constructor.

C493 (R455) Each keyword shall be the name of a component of the type.

C494 (R454) The type name and all components of the type for which a component-spec appears shall be
accessible in the scoping unit containing the structure constructor.

C495 (R454) If derived-type-spec is a type name that is the same as a generic name, the component-spec-list
shall not be a valid actual-arg-spec-list for a function reference that is resolvable as a generic reference
to that name (12.5.5.2).

C496 (R456) A data-target shall correspond to a data pointer component; a proc-target shall correspond to a
procedure pointer component.

C497 (R456) A data-target shall have the same rank as its corresponding component.
NOTE 4.58

The form 'name(...)" is interpreted as a generic function-reference if possible; it is interpreted as a structure-
constructor only if it cannot be interpreted as a generic function-reference.

In the absence of a component keyword, each component-data-source is assigned to the corresponding component
in component order (4.5.4.7). If a component keyword appears, the expr is assigned to the component named
by the keyword. For a nonpointer component, the declared type and type parameters of the component and
expr shall conform in the same way as for a variable and expr in an intrinsic assignment statement (7.2.1.2), as
specified in Table 7.10. If necessary, each value of intrinsic type is converted according to the rules of intrinsic
assignment (7.2.1.3) to a value that agrees in type and type parameters with the corresponding component of
the derived type. For a nonpointer nonallocatable component, the shape of the expression shall conform with the
shape of the component.

If a component with default initialization has no corresponding component-data-source, then the default initial-
ization is applied to that component. If an allocatable component has no corresponding component-data-source,
then that component has an allocation status of unallocated.

NOTE 4.59

Because no parent components appear in the defined component ordering, a value for a parent component
can be specified only with a component keyword. Examples of equivalent values using types defined in Note
4.56:

2.0, color = 3.
Assume components of TYPE(POINT)
are accessible here.

! Create values with components x = 1.0, y
TYPE(POINT) :: PV = POINT(1.0, 2.0)

COLOR_POINT(point=point(1,2), color=3) ! Value for parent component
COLOR_POINT(point=PV, color=3) ! Available even if TYPE(point)

78 Types 4.5.10

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 4.59 (cont.)

! has private components
COLOR_POINT(1, 2, 3) ! A1l components of TYPE(point)
! need to be accessible.

4 A structure constructor shall not appear before the referenced type is defined.

NOTE 4.60
This example illustrates a derived-type constant expression using a derived type defined in Note 4.17:

PERSON (21, ’JOHN SMITH’)

This could also be written as

PERSON (NAME = °>JOHN SMITH’, AGE = 21)

NOTE 4.61
An example constructor using the derived type GENERAL_POINT defined in Note 4.24 is

general_point(dim=3) ([1., 2., 3. 1)

5 For a pointer component, the corresponding component-data-source shall be an allowable data-target or proc-
target for such a pointer in a pointer assignment statement (7.2.2). If the component data source is a pointer,
the association of the component is that of the pointer; otherwise, the component is pointer associated with the
component data source.

NOTE 4.62
For example, if the variable TEXT were declared (5.2) to be

CHARACTER, DIMENSION (1:400), TARGET :: TEXT

and BIBLIO were declared using the derived-type definition REFERENCE in Note 4.32

TYPE (REFERENCE) :: BIBLIO

the statement

BIBLIO = REFERENCE (1, 1987, 1, "This is the title of the referenced &
&paper", SYNOPSIS=TEXT)

is valid and associates the pointer component SYNOPSIS of the object BIBLIO with the target object
TEXT. The keyword SYNOPSIS is required because the fifth component of the type REFERENCE is a
procedure pointer component, not a data pointer component of type character. It is not necessary to specify
a proc-target for the procedure pointer component because it has default initialization.

6 If a component of a derived type is allocatable, the corresponding constructor expression shall either be a reference
to the intrinsic function NULL with no arguments, an allocatable entity of the same rank, or shall evaluate to an
entity of the same rank. If the expression is a reference to the intrinsic function NULL, the corresponding com-
ponent of the constructor has a status of unallocated. If the expression is an allocatable entity, the corresponding
component of the constructor has the same allocation status as that allocatable entity and, if it is allocated, the
same dynamic type, bounds, and value; if a length parameter of the component is deferred, its value is the same
as the corresponding parameter of the expression. Otherwise the corresponding component of the constructor
has an allocation status of allocated and has the same bounds and value as the expression.

4.5.10 Types 79

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

NOTE 4.63

When the constructor is an actual argument, the allocation status of the allocatable component is available
through the associated dummy argument.

4.5.11 Derived-type operations and assignment

Intrinsic assignment of derived-type entities is described in 7.2.1. This part of ISO/IEC 1539 does not specify
any intrinsic operations on derived-type entities. Any operation on derived-type entities or defined assignment
(7.2.1.4) for derived-type entities shall be defined explicitly by a function or a subroutine, and a generic interface
(4.5.2, 12.4.3.2).

4.6 Enumerations and enumerators

An enumeration is a set of enumerators. An enumerator is a named integer constant. An enumeration definition
specifies the enumeration and its set of enumerators of the corresponding integer kind.

R457 enum-def is enum-def-stmt
enumerator-def-stmt
[enumerator-def-stmt | ...
end-enum-stmt

R458 enum-def-stmt is ENUM, BIND(C)

R459 enumerator-def-stmt is ENUMERATOR [:: | enumerator-list

R460 enumerator is named-constant | = scalar-int-initialization-expr |
R461 end-enum-stmt is END ENUM

C498 (R459) If = appears in an enumerator, a double-colon separator shall appear before the enumerator-list.

For an enumeration, the kind is selected such that an integer type with that kind is interoperable (15.3.2) with the
corresponding C enumeration type. The corresponding C enumeration type is the type that would be declared
by a C enumeration specifier (6.7.2.2 of the C International Standard) that specified C enumeration constants
with the same values as those specified by the enum-def, in the same order as specified by the enum-def.

The companion processor (2.6.7) shall be one that uses the same representation for the types declared by all C
enumeration specifiers that specify the same values in the same order.

NOTE 4.64

If a companion processor uses an unsigned type to represent a given enumeration type, the Fortran processor
will use the signed integer type of the same width for the enumeration, even though some of the values of
the enumerators cannot be represented in this signed integer type. The types of any such enumerators will
be interoperable with the type declared in the C enumeration.

NOTE 4.65

The C International Standard guarantees the enumeration constants fit in a C int (6.7.2.2 of the C Interna-
tional Standard). Therefore, the Fortran processor can evaluate all enumerator values using the integer type
with kind parameter C_INT, and then determine the kind parameter of the integer type that is interoperable
with the corresponding C enumerated type.

NOTE 4.66

The C International Standard specifies that two enumeration types are compatible only if they specify
enumeration constants with the same names and same values in the same order. This part of ISO/IEC

80 Types 4.5.11

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 4.66 (cont.)

1539 further requires that a C processor that is to be a companion processor of a Fortran processor use the
same representation for two enumeration types if they both specify enumeration constants with the same
values in the same order, even if the names are different.

4 An enumerator is treated as if it were explicitly declared with the PARAMETER attribute. The enumerator is
defined in accordance with the rules of intrinsic assignment (7.2) with the value determined as follows.

(1) If scalar-int-initialization-expr is specified, the value of the enumerator is the result of scalar-int-
initialization-expr.

(2) If scalar-int-initialization-expr is not specified and the enumerator is the first enumerator in enum-
def, the enumerator has the value 0.

(3) If scalar-int-initialization-expr is not specified and the enumerator is not the first enumerator in
enum-def, its value is the result of adding 1 to the value of the enumerator that immediately precedes
it in the enum-def.

NOTE 4.67

Example of an enumeration definition:

ENUM, BIND(C)
ENUMERATOR :: RED = 4, BLUE = 9
ENUMERATOR YELLOW

END ENUM

The kind type parameter for this enumeration is processor dependent, but the processor is required to select
a kind sufficient to represent the values 4, 9, and 10, which are the values of its enumerators. The following
declaration might be equivalent to the above enumeration definition.

INTEGER (SELECTED_INT_KIND(2)), PARAMETER :: RED = 4, BLUE = 9, YELLOW = 10

An entity of the same kind type parameter value can be declared using the intrinsic function KIND with
one of the enumerators as its argument, for example

INTEGER(KIND(RED)) :: X

NOTE 4.68

There is no difference in the effect of declaring the enumerators in multiple ENUMERATOR statements or
in a single ENUMERATOR statement. The order in which the enumerators in an enumeration definition
are declared is significant, but the number of ENUMERATOR statements is not.

4.7 Binary, octal, and hexadecimal literal constants

1 A binary, octal, or hexadecimal constant (boz-literal-constant) is a sequence of digits that represents an ordered
sequence of bits. Such a constant has no type.

R462 boz-literal-constant is binary-constant

or octal-constant
or hex-constant

R463 binary-constant is B’ digit | digit] ...’

or B digit [digit] ... "

C499 (R463) digit shall have one of the values 0 or 1.

4.7

Types 81

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

R464 octal-constant is O digit [digit] ... ?
or O " digit [digit] ... "

C4100 (R464) digit shall have one of the values 0 through 7.

R465 hex-constant is 7’ hex-digit [hex-digit | ... ’
or Z " hex-digit | hea-digit | ... "

R466 hex-digit is digit
or
or
or
or
or
or

TEHO QW=

The hex-digits A through F represent the numbers ten through fifteen, respectively; they may be represented
by their lower-case equivalents. Each digit of a boz-literal-constant represents a sequence of bits, according to
its numerical interpretation, using the model of 13.3, with z equal to one for binary constants, three for octal
constants or four for hexadecimal constants. A boz-literal-constant represents a sequence of bits that consists of
the concatenation of the sequences of bits represented by its digits, in the order the digits are specified. The
positions of bits in the sequence are numbered from right to left, with the position of the rightmost bit being zero.
The length of a sequence of bits is the number of bits in the sequence. The processor shall allow the position
of the leftmost nonzero bit to be at least z — 1, where z is the maximum value that could result from invoking
the intrinsic function STORAGE_SIZE (13.7.159) with an argument that is a real or integer scalar of any kind
supported by the processor.

C4101 (R462) A boz-literal-constant shall appear only as a data-stmit-constant in a DATA statement, or where
explicitly allowed in subclause 13.7 as an actual argument of an intrinsic procedure.

4.8 Construction of array values

An array constructor is defined as a sequence of scalar values and is interpreted as a rank-one array where the
element values are those specified in the sequence.

R467 array-constructor is (/ ac-spec /)

or [bracket ac-spec rbracket
R468 ac-spec is type-spec :

or [type-spec ::] ac-value-list
R469 lbracket is |
RA470 rbracket is]
R471 ac-value is expr

or ac-implied-do

R472 ac-implied-do is (ac-value-list , ac-implied-do-control)
R473 ac-implied-do-control is ac-do-variable = scalar-int-expr , scalar-int-expr B
B [, scalar-int-expr |

82 Types 4.8

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

R474 ac-do-variable is do-variable

C4102 (R468) If type-spec is omitted, each ac-value expression in the array-constructor shall have the same type
and kind type parameters.

C4103 (R468) If type-spec specifies an intrinsic type, each ac-value expression in the array-constructor shall be
of an intrinsic type that is in type conformance with a variable of type type-spec as specified in Table
7.10.

C4104 (R468) If type-spec specifies a derived type, all ac-value expressions in the array-constructor shall be of
that derived type and shall have the same kind type parameter values as specified by type-spec.

C4105 (R472) The ac-do-variable of an ac-implied-do that is in another ac-implied-do shall not appear as the
ac-do-variable of the containing ac-implied-do.

If type-spec is omitted, each ac-value expression in the array constructor shall have the same length type param-
eters; in this case, the type and type parameters of the array constructor are those of the ac-value expressions.

If type-spec appears, it specifies the type and type parameters of the array constructor. Each ac-value expression in
the array-constructor shall be compatible with intrinsic assignment to a variable of this type and type parameters.
Each value is converted to the type parameters of the array-constructor in accordance with the rules of intrinsic
assignment (7.2.1.3).

The character length of an ac-value in an ac-implied-do whose iteration count is zero shall not depend on the value
of the ac-do-variable and shall not depend on the value of an expression that is not an initialization expression.

If an ac-value is a scalar expression, its value specifies an element of the array constructor. If an ac-value is
an array expression, the values of the elements of the expression, in array element order (6.5.3.2), specify the
corresponding sequence of elements of the array constructor. If an ac-value is an ac-implied-do, it is expanded
to form a sequence of elements under the control of the ac-do-variable, as in the DO construct (8.1.7.6).

For an ac-implied-do, the loop initialization and execution is the same as for a DO construct.
An empty sequence forms a zero-sized array.

NOTE 4.69

A one-dimensional array may be reshaped into any allowable array shape using the intrinsic function
RESHAPE (13.7.139). An example is:

X
Y

(/ 3.2, 4.01, 6.5 /)
RESHAPE (SOURCE = [2.0, [4.5, 4.5]1, X1, SHAPE = [3, 2 1)

This results in Y having the 3 x 2 array of values:

2.0 3.2
4.5 4.01
4.5 6.5
NOTE 4.70

Examples of array constructors containing an implied DO are:
(/ (I, I =1, 1075) /)
and

[3.6, 3.6/ I, I=1,N)]

4.8 Types 83

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

84

NOTE 4.71

Using the type definition for PERSON in Note 4.17, an example of the construction of a derived-type array
value is:

[PERSON (40, ’SMITH’), PERSON (20, ’JONES’)]

NOTE 4.72

Using the type definition for LINE in Note 4.28, an example of the construction of a derived-type scalar
value with a rank-2 array component is:

LINE (RESHAPE ([0.0, 0.0, 1.0, 2.01, [2, 21), 0.1, 1)

The intrinsic function RESHAPE is used to construct a value that represents a solid line from (0, 0) to (1,
2) of width 0.1 centimeters.

NOTE 4.73

Examples of zero-size array constructors are:

[INTEGER :: 1]
[(I, I=1,0)]1]

NOTE 4.74

An example of an array constructor that specifies a length type parameter:

[CHARACTER(LEN=7) :: ’Takata’, ’Tanaka’, ’Hayashi’]

In this constructor, without the type specification, it would have been necessary to specify all of the constants
with the same character length.

Types 4.8

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

5 Attribute declarations and specifications

5.1 General

Every data object has a type and rank and may have type parameters and other properties that determine the
uses of the object. Collectively, these properties are the attributes of the object. The type of a named data
object is either specified explicitly in a type declaration statement or determined implicitly by the first letter of
its name (5.5). All of its attributes may be specified in a type declaration statement or individually in separate
specification statements.

A function has a type and rank and may have type parameters and other attributes that determine the uses of
the function. The type, rank, and type parameters are the same as those of its result variable.

A subroutine does not have a type, rank, or type parameters, but may have other attributes that determine the
uses of the subroutine.

5.2 Type declaration statements

5.2.1 Syntax

R501 type-declaration-stmt is declaration-type-spec [[, attr-spec] ... ::] entity-decl-list

The type declaration statement specifies the type of the entities in the entity declaration list. The type and type
parameters are those specified by declaration-type-spec, except that the character length type parameter may be
overridden for an entity by the appearance of * char-length in its entity-decl.

R502 attr-spec is access-spec
or ALLOCATABLE
or ASYNCHRONOUS
or CODIMENSION lbracket coarray-spec rbracket
or CONTIGUOUS
or DIMENSION (array-spec)
or EXTERNAL
or INTENT (intent-spec)
or INTRINSIC
or language-binding-spec
or OPTIONAL
or PARAMETER
or POINTER
or PROTECTED
or SAVE
or TARGET
or VALUE
or VOLATILE

C501 (R501) The same attr-spec shall not appear more than once in a given type-declaration-stmt.

C502 (R501) If a language-binding-spec with a NAME= specifier appears, the entity-decl-list shall consist of a
single entity-decl.

C503 (R501) If a language-binding-spec is specified, the entity-decl-list shall not contain any procedure names.

5 Attribute declarations and specifications 85

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

The type declaration statement also specifies the attributes whose keywords appear in the attr-spec, except that
the DIMENSION attribute may be specified or overridden for an entity by the appearance of array-spec in its
entity-decl, and the CODIMENSION attribute may be specified or overridden for an entity by the appearance of
coarray-spec in its entity-decl.

R503 entity-decl is object-name [(array-spec)]
W [lbracket coarray-spec rbracket | B
B [* char-length | [initialization |
or function-name [* char-length]

C504 (R503) If the entity is not of type character, * char-length shall not appear.
C505 (R501) If nitialization appears, a double-colon separator shall appear before the entity-decl-list.

C506 (R503) An initialization shall not appear if object-name is a dummy argument, a function result, an
object in a named common block unless the type declaration is in a block data program unit, an object
in blank common, an allocatable variable, an external function, an intrinsic function, or an automatic
object.

C507 (R503) An initialization shall appear if the entity is a named constant (5.3.13).

C508 (R503) The function-name shall be the name of an external function, an intrinsic function, a dummy
function, a procedure pointer, or a statement function.

R504 object-name is name
C509 (R504) The object-name shall be the name of a data object.

R505 nitialization is = initialization-expr
or => null-init
or => initial-data-target

R506 null-init is function-reference

C510 (R503) If => appears in initialization, the entity shall have the POINTER attribute. If = appears in
initialization, the entity shall not have the POINTER attribute.

C511 (R503) If initial-data-target appears, object-name shall be data-pointer-initialization compatible with it
(4.5.4.6).

C512 (R506) The function-reference shall be a reference to the intrinsic function NULL with no arguments.

A name that identifies a specific intrinsic function in a scoping unit has a type as specified in 13.6. An explicit
type declaration statement is not required; however, it is permitted. Specifying a type for a generic intrinsic
function name in a type declaration statement is not sufficient, by itself, to remove the generic properties from
that function.

5.2.2 Automatic data objects

An automatic data object is a nondummy data object with a type parameter or array bound that depends on
the value of a specification-expr that is not an initialization expression.

C513 An automatic object shall not have the SAVE attribute.

If a type parameter in a declaration-type-spec or in a char-length in an entity-decl is defined by an expression that
is not an initialization expression, the type parameter value is established on entry to the procedure or BLOCK
construct and is not affected by any redefinition or undefinition of the variables in the expression during execution
of the procedure or BLOCK construct.

86 Attribute declarations and specifications 5.2.2

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

5.2.3 Initialization

The appearance of initialization in an entity-decl for an entity without the PARAMETER attribute specifies that
the entity is a variable with explicit initialization. Explicit initialization alternatively may be specified in a DATA
statement unless the variable is of a derived type for which default initialization is specified. If initialization is
=initialization-expr, the variable is initially defined with the value specified by the initialization-expr; if necessary,
the value is converted according to the rules of intrinsic assignment (7.2.1.3) to a value that agrees in type, type
parameters, and shape with the variable. A variable, or part of a variable, shall not be explicitly initialized more
than once in a program. If the variable is an array, it shall have its shape specified in either the type declaration
statement or a previous attribute specification statement in the same scoping unit.

If null-init appears, the initial association status of the object is disassociated. If initial-data-target appears, the
object is initially associated with the target.

Explicit initialization of a variable that is not in a common block implies the SAVE attribute, which may be
confirmed by explicit specification.

5.2.4 Examples of type declaration statements

NOTE 5.1

REAL A (10)

LOGICAL, DIMENSION (5, 5) :: MASK1, MASK2

COMPLEX :: CUBE_ROOT = (-0.5, 0.866)

INTEGER, PARAMETER :: SHORT = SELECTED_INT_KIND (4)
INTEGER (SHORT) K ! Range at least -9999 to 9999.
REAL (KIND (0.0DO)) A

REAL (KIND = 2) B

COMPLEX (KIND = KIND (0.0DO)) :: C

CHARACTER (LEN = 10, KIND = 2) A

CHARACTER B, C *20

TYPE (PERSON) :: CHAIRMAN

TYPE(NODE) , POINTER :: HEAD => NULL ()

TYPE (humongous_matrix (k=8, d=1000)) :: mat

(The last line above uses a type definition from Note 4.24.)

5.3 Attributes

5.3.1 Constraints

An attribute may be explicitly specified by an attr-spec in a type declaration statement or by an attribute
specification statement (5.4). The following constraints apply to attributes.

C514 An entity shall not be explicitly given any attribute more than once in a scoping unit.

C515 An array-spec for a function result that does not have the ALLOCATABLE or POINTER attribute shall
be an explicit-shape-spec-list.

C516 The ALLOCATABLE, POINTER, or OPTIONAL attribute shall not be specified for a dummy argument
of a procedure that has a proc-language-binding-spec.

5.3.2 Accessibility attribute

The accessibility attribute specifies the accessibility of an entity via a particular identifier.

5.2.4 Attribute declarations and specifications 87

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

R507 access-spec is PUBLIC
or PRIVATE

C517 (R507) An access-spec shall appear only in the specification-part of a module.

Identifiers that are specified in a module or accessible in that module by use association have either the PUBLIC
attribute or PRIVATE attribute. Identifiers for which an access-spec is not explicitly specified in that module have
the default accessibility attribute for that module. The default accessibility attribute for a module is PUBLIC
attribute unless it has been changed by a PRIVATE statement (5.4.1). Only identifiers that have the PUBLIC
attribute in that module are available to be accessed from that module by use association.

NOTE 5.2

In order for an identifier to be accessed by use association, it must have the PUBLIC attribute in the
module from which it is accessed. It can nonetheless have the PRIVATE attribute in a module in which it
is accessed by use association, and therefore not be available for use association from that module.

NOTE 5.3
An example of an accessibility specification is:

REAL, PRIVATE :: X, Y, Z

5.3.3 ALLOCATABLE attribute

An entity with the ALLOCATABLE attribute is a variable for which space is allocated by an ALLOCATE
statement (6.6.1) or by an intrinsic assignment statement (7.2.1.3).

5.3.4 ASYNCHRONOUS attribute
An entity with the ASYNCHRONOUS attribute is a variable that may be subject to asynchronous input/output.

The base object of a variable shall have the ASYNCHRONOUS attribute in a scoping unit if

e the variable appears in an executable statement or specification expression in that scoping unit and

e any statement of the scoping unit is executed while the variable is a pending I/O storage sequence affector
(9.6.2.5).

Use of a variable in an asynchronous input/output statement can imply the ASYNCHRONOUS attribute; see
subclause 9.6.2.5.

An object may have the ASYNCHRONOUS attribute in a particular scoping unit without necessarily having it in
other scoping units (11.2.2, 16.5.1.4). If an object has the ASYNCHRONOQUS attribute, then all of its subobjects
also have the ASYNCHRONOUS attribute.

NOTE 5.4

The ASYNCHRONOUS attribute specifies the variables that might be associated with a pending in-
put/output storage sequence (the actual memory locations on which asynchronous input/output is being
performed) while the scoping unit is in execution. This information could be used by the compiler to disable
certain code motion optimizations.

5.3.5 BIND attribute for data entities

The BIND attribute for a variable or common block specifies that it is capable of interoperating with a C variable
whose name has external linkage (15.4).

88 Attribute declarations and specifications 5.3.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

R508 language-binding-spec is BIND (C [, NAME = scalar-char-initialization-expr |)
C518 An entity with the BIND attribute shall be a common block, variable, type, or procedure.
C519 A variable with the BIND attribute shall be declared in the specification part of a module.
C520 A variable with the BIND attribute shall be interoperable (15.3).

C521 Each variable of a common block with the BIND attribute shall be interoperable.

C522 (R508) The scalar-char-initialization-expr shall be of default character kind.

If the value of the scalar-char-initialization-expr after discarding leading and trailing blanks has nonzero length,
it shall be valid as an identifier on the companion processor.

NOTE 5.5

The C International Standard provides a facility for creating C identifiers whose characters are not restricted
to the C basic character set. Such a C identifier is referred to as a universal character name (6.4.3 of the C
International Standard). The name of such a C identifier might include characters that are not part of the
representation method used by the processor for default character. If so, the C entity cannot be referenced
from Fortran.

The BIND attribute for a variable or common block implies the SAVE attribute, which may be confirmed by
explicit specification.

5.3.6 CODIMENSION attribute
5.3.6.1 General

The CODIMENSION attribute specifies that an entity is a coarray. The coarray-spec specifies its corank or
corank and cobounds.

R509 coarray-spec is deferred-coshape-spec-list
or explicit-coshape-spec

C523 The sum of the rank and corank of an entity shall not exceed fifteen.
C524 A coarray shall be a component or a variable that is not a function result.
C525 A coarray shall not be of type C_.PTR or C_FUNPTR (15.3.3).

C526 An entity whose type has a coarray ultimate component shall be a nonpointer nonallocatable scalar, shall
not be a coarray, and shall not be a function result.

C527 A coarray or an object with a coarray ultimate component shall be a dummy argument or have the
ALLOCATABLE or SAVE attribute.

NOTE 5.6

A coarray is permitted to be of a derived type with pointer or allocatable components. The target of such
a pointer component is always on the same image.

NOTE 5.7

This requirement for the SAVE attribute has the effect that automatic coarrays are not permitted; for
example, the coarray WORK in the following code fragment is not valid.

SUBROUTINE SOLVE3(N,A,B)
INTEGER :: N

5.3.6 Attribute declarations and specifications 89

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

NOTE 5.7 (cont.)

REAL i AN [*], B(N)
REAL 11 WORK(N) [*] ! Not permitted

If this were permitted, it would require an implicit synchronization on entry to the procedure.

Explicit-shape coarrays that are declared in a subprogram and are not dummy arguments are required to
have the SAVE attribute because otherwise they might be implemented as if they were automatic coarrays.

NOTE 5.8
Examples of CODIMENSION attribute specifications are:

REAL W(100,100) [0:2,%]

REAL, CODIMENSION[*] :: X

REAL, CODIMENSION[3,*] :: Y(:)

REAL, CODIMENSION([:],ALLOCATABLE :: Z(:,:)

Explicit-shape coarray
Scalar coarray
Assumed-shape coarray

!
!
!
! Allocatable coarray

5.3.6.2 Allocatable coarray

A coarray with the ALLOCATABLE attribute has a specified corank, but its cobounds are determined by
allocation or argument association.

R510 deferred-coshape-spec is

C528 A coarray with the ALLOCATABLE attribute shall have a coarray-spec that is a deferred-coshape-spec-
list.

The corank of an allocatable coarray is equal to the number of colons in its deferred-coshape-spec-list.

The cobounds of an unallocated allocatable coarray are undefined. No part of such a coarray shall be referenced
or defined; however, the coarray may appear as an argument to an intrinsic inquiry function as specified in 13.1.

The cobounds of an allocated allocatable coarray are those specified when the coarray is allocated.

The cobounds of an allocatable coarray are unaffected by any subsequent redefinition or undefinition of the
variables on which the cobounds’ expressions depend.

5.3.6.3 Explicit-coshape coarray

An explicit-coshape coarray is a named coarray that has its corank and cobounds declared by an explicit-
coshape-spec.

R511 explicit-coshape-spec is [[lower-cobound : | upper-cobound,]... ®
W [lower-cobound : | *

C529 A coarray that does not have the ALLOCATABLE attribute shall have a coarray-spec that is an explicit-
coshape-spec.

The corank is equal to one plus the number of upper-cobounds.
R512 lower-cobound is specification-expr
R513 upper-cobound is specification-expr

C530 (R511) A lower-cobound or upper-cobound that is not an initialization expression shall appear only in a
subprogram, derived type definition, or interface body.

If an explicit-coshape coarray has cobounds that are not initialization expressions, the cobounds are determined

90 Attribute declarations and specifications 5.3.6.2

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

at entry to the procedure by evaluating the cobounds expressions. The cobounds of such a coarray are unaffected
by the redefinition or undefinition of any variable during execution of the procedure.

4 The values of each lower-cobound and upper-cobound determine the cobounds of the coarray along a particular
codimension. The cosubscript range of the coarray in that codimension is the set of integer values between and
including the lower and upper cobounds. If the lower cobound is omitted, the default value is 1. The upper
cobound shall not be less than the lower cobound.

5.3.7 CONTIGUOUS attribute
Ch31 An entity with the CONTIGUOUS attribute shall be an array pointer or an assumed-shape array.

1 The CONTIGUOUS attribute specifies that an assumed-shape array can only be argument associated with a
contiguous effective argument, or that an array pointer can only be pointer associated with a contiguous target.

2 An object is contiguous if it is

(1) an object with the CONTIGUOUS attribute,

(2) a nonpointer whole array that is not assumed-shape,

(3) an assumed-shape array that is argument associated with an array that is contiguous,
(4) an array allocated by an ALLOCATE statement,

(5) a pointer associated with a contiguous target, or

(6) a nonzero-sized array section (6.5.3) provided that

(a) its base object is contiguous,
(b) it does not have a vector subscript,

(¢) the elements of the section, in array element order, are a subset of the base object elements
that are consecutive in array element order,

(d) if the array is of type character and a substring-range appears, the substring-range specifies all
of the characters of the parent-string (6.4.1),

(e) only its final part-ref has nonzero rank, and
(f) it is not the real or imaginary part (6.4.3) of an array of type complex.

3 An object is not contiguous if it is an array subobject, and

e the object has two or more elements,
e the elements of the object in array element order are not consecutive in the elements of the base object,
e the object is not of type character with length zero, and

e the object is not of a derived type that has no ultimate components other than zero-sized arrays and
characters with length zero.

4 Tt is processor-dependent whether any other object is contiguous.

NOTE 5.9

If a derived type has only one component that is not zero-sized, it is processor-dependent whether a structure
component of a contiguous array of that type is contiguous. That is, the derived type might contain padding
on Some Processors.

NOTE 5.10

The CONTIGUOUS attribute makes it easier for a processor to enable optimizations that depend on
the memory layout of the object occupying a contiguous block of memory. Examples of CONTIGUOUS
attribute specifications are:

REAL, POINTER, CONTIGUQUS 1t SPTR(:)
REAL, CONTIGUOUS, DIMENSION(:,:) :: D

5.3.7 Attribute declarations and specifications 91

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

5.3.8 DIMENSION attribute
5.3.8.1 General

The DIMENSION attribute specifies that an entity is an array. The rank or rank and shape is specified by its
array-spec.

R514 dimension-spec is DIMENSION (array-spec)

R515 array-spec is explicit-shape-spec-list
or assumed-shape-spec-list
or deferred-shape-spec-list
or assumed-size-spec
or implied-shape-spec-list

NOTE 5.11
The maximum rank of an entity is fifteen minus the corank.

NOTE 5.12
Examples of DIMENSION attribute specifications are:

SUBROUTINE EX (N, A, B)
REAL, DIMENSION (N, 10) :: W ! Automatic explicit-shape array
REAL A (:), B (0:) ! Assumed-shape arrays
REAL, POINTER :: D (:, :) ! Array pointer
REAL, DIMENSION (:), POINTER :: P ! Array pointer
REAL, ALLOCATABLE, DIMENSION (:) :: E ! Allocatable array
!

REAL, PARAMETER :: V(0:%) = [0.1, 1.1] ! Implied-shape array

5.3.8.2 Explicit-shape array

Rb516 explicit-shape-spec is [lower-bound : | upper-bound
R517 lower-bound is specification-expr
R518 upper-bound is specification-expr

C532 (R516) An explicit-shape-spec whose bounds are not initialization expressions shall appear only in a
subprogram, derived type definition, or interface body.

An explicit-shape array is an array whose shape is explicitly declared by an explicit-shape-spec-list. The rank is
equal to the number of explicit-shape-specs.

An explicit-shape array that is a named local variable of a subprogram or BLOCK construct may have bounds
that are not initialization expressions. The bounds, and hence shape, are determined at entry to a procedure
defined by the subprogram, or on execution of the BLOCK statement, by evaluating the bounds’ expressions.
The bounds of such an array are unaffected by the redefinition or undefinition of any variable during execution
of the procedure or BLOCK construct.

The values of each lower-bound and upper-bound determine the bounds of the array along a particular dimension
and hence the extent of the array in that dimension. If lower-bound appears it specifies the lower bound; otherwise
the lower bound is 1. The value of a lower bound or an upper bound may be positive, negative, or zero. The
subscript range of the array in that dimension is the set of integer values between and including the lower and
upper bounds, provided the upper bound is not less than the lower bound. If the upper bound is less than the
lower bound, the range is empty, the extent in that dimension is zero, and the array is of zero size.

92 Attribute declarations and specifications 5.3.8

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

5.3.8.3 Assumed-shape array

An assumed-shape array is a nonallocatable nonpointer dummy argument array that takes its shape from its
effective argument.

R519 assumed-shape-spec is [lower-bound | :
The rank is equal to the number of colons in the assumed-shape-spec-list.

The extent of a dimension of an assumed-shape array dummy argument is the extent of the corresponding
dimension of its effective argument. If the lower bound value is d and the extent of the corresponding dimension
of its effective argument is s, then the value of the upper bound is s +d — 1. If lower-bound appears it specifies
the lower bound; otherwise the lower bound is 1.

5.3.8.4 Deferred-shape array

A deferred-shape array is an allocatable array or an array pointer. (An allocatable array has the ALLOCATABLE
attribute; an array pointer has the POINTER attribute.)

R520 deferred-shape-spec is

C533 An array with the POINTER or ALLOCATABLE attribute shall have an array-spec that is a deferred-
shape-spec-list.

The rank is equal to the number of colons in the deferred-shape-spec-list.

The size, bounds, and shape of an unallocated allocatable array or a disassociated array pointer are undefined.
No part of such an array shall be referenced or defined; however, the array may appear as an argument to an
intrinsic inquiry function as specified in 13.1.

The bounds of each dimension of an allocated allocatable array are those specified when the array is allocated
or, if it is a dummy argument, when it is argument associated with an allocated effective argument.

The bounds of each dimension of an associated array pointer, and hence its shape, may be specified

e in an ALLOCATE statement (6.6.1) when the target is allocated,
e by pointer assignment (7.2.2), or

e if it is a dummy argument, by argument association with a nonpointer actual argument or an associated
pointer effective argument.

The bounds of an array pointer or allocatable array are unaffected by any subsequent redefinition or undefinition
of variables on which the bounds’ expressions depend.

5.3.8.5 Assumed-size array

An assumed-size array is a dummy argument array whose size is assumed from that of its effective argument.
The rank and extents may differ for the effective and dummy arguments; only the size of the effective argument
is assumed by the dummy argument. An assumed-size array is declared with an assumed-size-spec.

R521 assumed-size-spec is [explicit-shape-spec , |... [lower-bound : | *

C534 An assumed-size-spec shall not appear except as the declaration of the array bounds of a dummy data
object.

C535 An assumed-size array with the INTENT (OUT) attribute shall not be polymorphic, finalizable, of a
type with an allocatable ultimate component, or of a type for which default initialization is specified.

The size of an assumed-size array is determined as follows.

5.3.8.4 Attribute declarations and specifications 93

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

If the effective argument associated with the assumed-size dummy array is an array of any type other than
default character, the size is that of the effective argument.

If the actual argument corresponding to the assumed-size dummy array is an array element of any type
other than default character with a subscript order value of r (6.5.3.2) in an array of size z, the size of the
dummy array is z —r + 1.

If the actual argument is a default character array, default character array element, or a default character
array element substring (6.4.1), and if it begins at character storage unit ¢ of an array with ¢ character
storage units, the size of the dummy array is MAX (INT ((¢ — ¢+ 1)/e), 0), where e is the length of an
element in the dummy character array.

If the actual argument is a default character scalar that is not an array element or array element substring
designator, the size of the dummy array is MAX (INT (I/e), 0), where e is the length of an element in the
dummy character array and [is the length of the actual argument.

The rank is equal to one plus the number of ezplicit-shape-specs.

An assumed-size array has no upper bound in its last dimension and therefore has no extent in its last dimension
and no shape. An assumed-size array shall not appear in a context that requires its shape.

If a list of explicit-shape-specs appears, it specifies the bounds of the first rank—1 dimensions. If lower-bound
appears it specifies the lower bound of the last dimension; otherwise that lower bound is 1. An assumed-size
array may be subscripted or sectioned (6.5.3.3). The upper bound shall not be omitted from a subscript triplet
in the last dimension.

If an assumed-size array has bounds that are not initialization expressions, the bounds are determined at entry
to the procedure. The bounds of such an array are unaffected by the redefinition or undefinition of any variable
during execution of the procedure.

5.3.8.

6 Implied-shape array

An implied-shape array is a named constant that takes its shape from the initialization-expr in its declaration.
An implied-shape array is declared with an implied-shape-spec-list.

R522

ChH36

implied-shape-spec is [lower-bound :] *

An implied-shape array shall be a named constant.

The rank of an implied-shape array is the number of implied-shape-specs in the implied-shape-spec-list.

The extent of each dimension of an implied-shape array is the same as the extent of the corresponding dimension
of the initialization-expr. The lower bound of each dimension is lower-bound, if it appears, and 1 otherwise; the
upper bound is one less than the sum of the lower bound and the extent.

5.3.9 EXTERNAL attribute

The EXTERNAL attribute specifies that an entity is an external procedure, dummy procedure, procedure pointer,
or block data subprogram.

Ch37

C538

An entity shall not have both the EXTERNAL attribute and the INTRINSIC attribute.

In an external subprogram, the EXTERNAL attribute shall not be specified for a procedure defined by
the subprogram.

If an external procedure or dummy procedure is used as an actual argument or is the target of a procedure pointer
assignment, it shall be declared to have the EXTERNAL attribute.

A procedure that has both the EXTERNAL and POINTER attributes is a procedure pointer.

94

Attribute declarations and specifications 5.3.8.6

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

5.3.10 INTENT attribute

1 The INTENT attribute specifies the intended use of a dummy argument. An INTENT (IN) dummy argument
is suitable for receiving data from the invoking scoping unit, an INTENT (OUT) dummy argument is suitable
for returning data to the invoking scoping unit, and an INTENT (INOUT) dummy argument is suitable for use
both to receive data from and to return data to the invoking scoping unit.

R523 intent-spec is IN
or OUT
or INOUT

C539 An entity with the INTENT attribute shall be a dummy data object or a dummy procedure pointer.

C540 (R523) A nonpointer object with the INTENT (IN) attribute shall not appear in a variable definition
context (16.6.7).

C541 A pointer with the INTENT (IN) attribute shall not appear in a pointer association context (16.6.8).

2 The INTENT (IN) attribute for a nonpointer dummy argument specifies that it shall neither be defined nor
become undefined during the execution of the procedure. The INTENT (IN) attribute for a pointer dummy
argument specifies that during the execution of the procedure its association shall not be changed except that it
may become undefined if the target is deallocated other than through the pointer (16.5.2.5).

3 The INTENT (OUT) attribute for a nonpointer dummy argument specifies that the dummy argument becomes
undefined on invocation of the procedure, except for any subcomponents that are default-initialized (4.5.4.6). Any
actual argument that corresponds to such a dummy argument shall be definable. The INTENT (OUT) attribute
for a pointer dummy argument specifies that on invocation of the procedure the pointer association status of the
dummy argument becomes undefined. Any actual argument that corresponds to such a pointer dummy shall be
a pointer variable.

4 The INTENT (INOUT) attribute for a nonpointer dummy argument specifies that any actual argument that
corresponds to the dummy argument shall be definable. The INTENT (INOUT) attribute for a pointer dummy
argument specifies that any actual argument that corresponds to the dummy argument shall be a pointer variable.

NOTE 5.13

The INTENT attribute for an allocatable dummy argument applies to both the allocation status and the
definition status. An actual argument that corresponds to an INTENT (OUT) allocatable dummy argument
is deallocated on procedure invocation (6.6.3.2).

5 If no INTENT attribute is specified for a dummy argument, its use is subject to the limitations of its effective
argument (12.5.2).

NOTE 5.14
An example of INTENT specification is:

SUBROUTINE MOVE (FROM, TO)
USE PERSON_MODULE
TYPE (PERSON), INTENT (IN) :: FROM
TYPE (PERSON), INTENT (OUT) :: TO

6 If an object has an INTENT attribute, then all of its subobjects have the same INTENT attribute.

NOTE 5.15

If a dummy argument is a derived-type object with a pointer component, then the pointer as a pointer is
a subobject of the dummy argument, but the target of the pointer is not. Therefore, the restrictions on
subobjects of the dummy argument apply to the pointer in contexts where it is used as a pointer, but not in

5.3.10 Attribute declarations and specifications 95

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

NOTE 5.15 (cont.)

contexts where it is dereferenced to indicate its target. For example, if X is a dummy argument of derived
type with an integer pointer component P, and X is INTENT (IN), then the statement

X%P => NEW_TARGET

is prohibited, but

X%P =0

is allowed (provided that X%P is associated with a definable target).

Similarly, the INTENT restrictions on pointer dummy arguments apply only to the association of the
dummy argument; they do not restrict the operations allowed on its target.

NOTE 5.16

Argument intent specifications serve several purposes in addition to documenting the intended use of dummy
arguments. A processor can check whether an INTENT (IN) dummy argument is used in a way that could
redefine it. A slightly more sophisticated processor could check to see whether an INTENT (OUT) dummy
argument could possibly be referenced before it is defined. If the procedure’s interface is explicit, the
processor can also verify that actual arguments corresponding to INTENT (OUT) or INTENT (INOUT)
dummy arguments are definable. A more sophisticated processor could use this information to optimize
the translation of the referencing scoping unit by taking advantage of the fact that actual arguments
corresponding to INTENT (IN) dummy arguments will not be changed and that any prior value of an
actual argument corresponding to an INTENT (OUT) dummy argument will not be referenced and could
thus be discarded.

INTENT (OUT) means that the value of the argument after invoking the procedure is entirely the result
of executing that procedure. If an argument should retain its current value rather than being redefined,
INTENT (INOUT) should be used rather than INTENT (OUT), even if there is no explicit reference to
the value of the dummy argument.

INTENT (INOUT) is not equivalent to omitting the INTENT attribute. The actual argument corresponding
to an INTENT (INOUT) dummy argument is always required to be definable, while an actual argument
corresponding to a dummy argument without an INTENT attribute need be definable only if the dummy
argument is actually redefined.

5.3.11 INTRINSIC attribute

The INTRINSIC attribute specifies that the entity is an intrinsic procedure. The procedure name may be a
generic name (13.5), a specific name (13.6), or both.

If the specific name of an intrinsic procedure (13.6) is used as an actual argument, the name shall be explicitly
specified to have the INTRINSIC attribute. An intrinsic procedure whose specific name is marked with a bullet
(e) in 13.6 shall not be used as an actual argument.

Cb42 If the generic name of an intrinsic procedure is explicitly declared to have the INTRINSIC attribute,

96

and it is also the generic name of one or more generic interfaces (12.4.3.2) accessible in the same scoping
unit, the procedures in the interfaces and the specific intrinsic procedures shall all be functions or all
be subroutines, and the characteristics of the specific intrinsic procedures and the procedures in the
interfaces shall differ as specified in 12.4.3.4.5.

Attribute declarations and specifications 5.3.11

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

5.3.12 OPTIONAL attribute

The OPTIONAL attribute specifies that the dummy argument need not have a corresponding actual argument
in a reference to the procedure (12.5.2.12).

C543 An entity with the OPTIONAL attribute shall be a dummy argument.

NOTE 5.17

The intrinsic function PRESENT (13.7.131) can be used to determine whether an optional dummy argument
has a corresponding actual argument.

5.3.13 PARAMETER attribute

The PARAMETER attribute specifies that an entity is a named constant. The entity has the value specified by
its initialization-expr, converted, if necessary, to the type, type parameters and shape of the entity.

Cb44 An entity with the PARAMETER attribute shall not be a variable, a coarray, or a procedure.

A named constant shall not be referenced unless it has been defined previously in the same statement, defined in
a prior statement, or made accessible by use or host association.

NOTE 5.18
Examples of declarations with a PARAMETER attribute are:

REAL, PARAMETER :: ONE = 1.0, Y = 4.1 / 3.0
INTEGER, DIMENSION (3), PARAMETER :: ORDER = (/ 1, 2, 3 /)
TYPE(NODE), PARAMETER :: DEFAULT = NODE(O, NULL ())

5.3.14 POINTER attribute

Entities with the POINTER attribute can be associated with different data objects or procedures during execution
of a program. A pointer is either a data pointer or a procedure pointer. Procedure pointers are described in
12.4.3.6.

Cb45 An entity with the POINTER attribute shall not have the ALLOCATABLE, INTRINSIC, or TARGET
attribute, and shall not be a coarray.

Ch46 A procedure with the POINTER attribute shall have the EXTERNAL attribute.

A data pointer shall not be referenced unless it is pointer associated with a target object that is defined. A data
pointer shall not be defined unless it is pointer associated with a target object that is definable.

If a data pointer is associated, the values of its deferred type parameters are the same as the values of the
corresponding type parameters of its target.

A procedure pointer shall not be referenced unless it is pointer associated with a target procedure.

NOTE 5.19
Examples of POINTER attribute specifications are:

TYPE (NODE), POINTER :: CURRENT, TAIL
REAL, DIMENSION (:, :), POINTER :: IN, OUT, SWAP

For a more elaborate example see C.2.1.

5.3.13 Attribute declarations and specifications 97

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

5.3.15 PROTECTED attribute

1 The PROTECTED attribute imposes limitations on the usage of module entities.
Cb547 The PROTECTED attribute shall be specified only in the specification part of a module.
C548 An entity with the PROTECTED attribute shall be a procedure pointer or variable.
C549 An entity with the PROTECTED attribute shall not be in a common block.

C550 A nonpointer object that has the PROTECTED attribute and is accessed by use association shall not
appear in a variable definition context (16.6.7) or as the data-target or proc-target in a pointer-assignment-
stmt.

C551 A pointer that has the PROTECTED attribute and is accessed by use association shall not appear in a
pointer association context (16.6.8).

2 Other than within the module in which an entity is given the PROTECTED attribute, or within any of its
descendants,

e if it is a nonpointer object, it is not definable, and

e if it is a pointer, its association status shall not be changed except that it may become undefined if its target
is deallocated other than through the pointer (16.5.2.5) or if its target becomes undefined by execution of
a RETURN or END statement.

3 If an object has the PROTECTED attribute, all of its subobjects have the PROTECTED attribute.

NOTE 5.20
An example of the PROTECTED attribute:

MODULE temperature
REAL, PROTECTED :: temp_c, temp_f
CONTAINS
SUBROUTINE set_temperature_c(c)
REAL, INTENT(IN) :: c
temp_c = ¢
temp_f = temp_cx*(9.0/5.0) + 32
END SUBROUTINE
END MODULE

The PROTECTED attribute ensures that the variables temp_c and temp_f cannot be modified other than
via the set_temperature_c procedure, thus keeping them consistent with each other.

5.3.16 SAVE attribute

1 The SAVE attribute specifies that a local variable of a program unit or subprogram retains its association status,
allocation status, definition status, and value after execution of a RETURN or END statement unless it is a
pointer and its target becomes undefined (16.5.2.5(5)). If it is a local variable of a subprogram it is shared by all
instances (12.6.2.4) of the subprogram.

2 The SAVE attribute specifies that a local variable of a BLOCK construct retains its association status, allocation
status, definition status, and value after termination of the construct unless it is a pointer and its target becomes
undefined (16.5.2.5(6)). If the BLOCK construct is within a subprogram the variable is shared by all instances
(12.6.2.4) of the subprogram.

98 Attribute declarations and specifications 5.3.16

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

Giving a common block the SAVE attribute confers the attribute on all entities in the common block.
C552 An entity with the SAVE attribute shall be a common block, variable, or procedure pointer.

C553 The SAVE attribute shall not be specified for a dummy argument, a function result, an automatic data
object, or an object that is in a common block.

A variable, common block, or procedure pointer declared in the scoping unit of a main program, module, or
submodule implicitly has the SAVE attribute, which may be confirmed by explicit specification. If a common
block has the SAVE attribute in any other kind of scoping unit, it shall have the SAVE attribute in every scoping
unit that is not a main program, module, or submodule.

5.3.17 TARGET attribute

The TARGET attribute specifies that a data object may have a pointer associated with it (7.2.2). An object
without the TARGET attribute shall not have a pointer associated with it.

Ch54 An entity with the TARGET attribute shall be a variable.
C555 An entity with the TARGET attribute shall not have the POINTER attribute.

NOTE 5.21

In addition to variables explicitly declared to have the TARGET attribute, the objects created by allocation
of pointers (6.6.1.4) have the TARGET attribute.

If an object has the TARGET attribute, then all of its nonpointer subobjects also have the TARGET attribute.

NOTE 5.22
Examples of TARGET attribute specifications are:

TYPE (NODE), TARGET :: HEAD
REAL, DIMENSION (1000, 1000), TARGET :: A, B

For a more elaborate example see C.2.2.

NOTE 5.23

Every object designator that starts from an object with the TARGET attribute will have either the TAR-
GET or POINTER attribute. If pointers are involved, the designator might not necessarily be a subobject
of the original object, but because pointers may point only to entities with the TARGET attribute, there
is no way to end up at a nonpointer that does not have the TARGET attribute.

5.3.18 VALUE attribute
The VALUE attribute specifies a type of argument association (12.5.2.4) for a dummy argument.
C556 An entity with the VALUE attribute shall be a scalar dummy data object.

C557 An entity with the VALUE attribute shall not have the ALLOCATABLE, INTENT (INOUT), INTENT
(OUT), POINTER, or VOLATILE attributes.

C558 If an entity has the VALUE attribute, any length type parameter value in its declaration shall be omitted
or specified by an initialization expression.

5.3.17 Attribute declarations and specifications 99

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

5.3.19 VOLATILE attribute

The VOLATILE attribute specifies that an object may be referenced, defined, or become undefined, by means
not specified by the program, or by another image without synchronization.

C559 An entity with the VOLATILE attribute shall be a variable that is not an INTENT (IN) dummy argu-
ment.

An object may have the VOLATILE attribute in a particular scoping unit without having it in other scoping units
(11.2.2, 16.5.1.4). If an object has the VOLATILE attribute, then all of its subobjects also have the VOLATILE
attribute.

NOTE 5.24

The Fortran processor should use the most recent definition of a volatile object when a value is required.
Likewise, it should make the most recent Fortran definition available. It is the programmer’s responsibility
to manage any interaction with non-Fortran processes.

A pointer with the VOLATILE attribute may additionally have its association status, dynamic type and type
parameters, and array bounds changed by means not specified by the program.

NOTE 5.25

If the target of a pointer is referenced, defined, or becomes undefined, by means not specified by the program,
while the pointer is associated with the target, then the pointer shall have the VOLATILE attribute. Usually
a pointer should have the VOLATILE attribute if its target has the VOLATILE attribute. Similarly,
all members of an EQUIVALENCE group should have the VOLATILE attribute if one member has the
VOLATILE attribute.

An allocatable object with the VOLATILE attribute may additionally have its allocation status, dynamic type
and type parameters, and array bounds changed by means not specified by the program.

5.4 Attribute specification statements

5.4.1 Accessibility statement
R524 access-stmt is access-spec [[1] access-id-list]

R525 access-id is wuse-name
or generic-spec

C560 (R524) An access-stmt shall appear only in the specification-part of a module. Only one accessibility
statement with an omitted access-id-list is permitted in the specification-part of a module.

C561 (R525) Each use-name shall be the name of a named variable, procedure, derived type, named constant,
or namelist group.

An access-stmt with an access-id-list specifies the accessibility attribute, PUBLIC or PRIVATE, of each access-id
in the list. An access-stmt without an access-id list specifies the default accessibility that applies to all potentially
accessible identifiers in the specification-part of the module. The statement

PUBLIC
specifies a default of public accessibility. The statement
PRIVATE

specifies a default of private accessibility. If no such statement appears in a module, the default is public

100 Attribute declarations and specifications 5.4

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

accessibility.

NOTE 5.26
Examples of accessibility statements are:

MODULE EX
PRIVATE
PUBLIC :: A, B, C, ASSIGNMENT (=), OPERATOR (+)

5.4.2 ALLOCATABLE statement
R526 allocatable-stmt is ALLOCATABLE | :: | allocatable-decl-list

R527 allocatable-decl is object-name | (array-spec) | A
W [lbracket coarray-spec rbracket |

1 The ALLOCATABLE statement specifies the ALLOCATABLE attribute (5.3.3) for a list of objects.

NOTE 5.27
An example of an ALLOCATABLE statement is:

REAL A, B (:), SCALAR
ALLOCATABLE :: A (:, :), B, SCALAR

5.4.3 ASYNCHRONOUS statement
R528 asynchronous-stmt is ASYNCHRONOUS [::] object-name-list

1 The ASYNCHRONOUS statement specifies the ASYNCHRONOUS attribute (5.3.4) for a list of objects.

5.4.4 BIND statement
R529 bind-stmt is language-binding-spec [:: | bind-entity-list

R530 bind-entity is entity-name
or / common-block-name /

C562 (R529) If the language-binding-spec has a NAME= specifier, the bind-entity-list shall consist of a single
bind-entity.

1 The BIND statement specifies the BIND attribute for a list of variables and common blocks.

5.4.5 CODIMENSION statement
R531 codimension-stmt is CODIMENSION [:: | codimension-decl-list
R532 codimension-decl is coarray-name lbracket coarray-spec rbracket
1 The CODIMENSION statement specifies the CODIMENSION attribute (5.3.6) for a list of objects.

NOTE 5.28
An example of a CODIMENSION statement is:

CODIMENSION a[*], b[3,*], c[:]

5.4.2 Attribute declarations and specifications 101

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

5.4.6 CONTIGUOUS statement
R533 contiguous-stmt is CONTIGUOUS | :: | object-name-list

The CONTIGUOUS statement specifies the CONTIGUOUS attribute (5.3.7) for a list of objects.

5.4.7 DATA statement

R534 data-stmt is DATA data-stmt-set [[, | data-stmt-set | ...

The DATA statement specifies explicit initialization (5.2.3).

If a nonpointer object has default initialization, it shall not appear in a data-stmt-object-list.

A variable that appears in a DATA statement and has not been typed previously may appear in a subsequent type
declaration only if that declaration confirms the implicit typing. An array name, array section, or array element
that appears in a DATA statement shall have had its array properties established by a previous specification
statement.

Except for variables in named common blocks, a named variable has the SAVE attribute if any part of it is
initialized in a DATA statement, and this may be confirmed by explicit specification.

R535 data-stmt-set is data-stmt-object-list / data-stmt-value-list /

R536 data-stmt-object is wariable
or data-implied-do

R537 data-implied-do is (data-i-do-object-list , data-i-do-variable =l
B scalar-int-initialization-expr , A
B scalar-int-initialization-expr A
B [, scalar-int-initialization-expr |)

R538 data-i-do-object is array-element
or scalar-structure-component
or data-implied-do

R539 data-i-do-variable is do-variable
C563 A data-stmt-object or data-i-do-object shall not be a coindexed variable.

C564 (R536) In a variable that is a data-stmt-object, each subscript, section subscript, substring starting point,
and substring ending point shall be an initialization expression.

C565 (Rb536) A variable whose designator appears as a data-stmi-object or a data-i-do-object shall not be a
dummy argument, accessed by use or host association, in a named common block unless the DATA
statement is in a block data program unit, in blank common, a function name, a function result name,
an automatic object, or an allocatable variable.

C566 (R536) A data-i-do-object or a variable that appears as a data-stmi-object shall not be an object designator
in which a pointer appears other than as the entire rightmost part-ref.

C567 (R538) The array-element shall be a variable.

C568 (R538) The scalar-structure-component shall be a variable.

C569 (R538) The scalar-structure-component shall contain at least one part-ref that contains a subscript-list.

C570 (R538) In an array-element or scalar-structure-component that is a data-i-do-object, any subscript shall
be an initialization expression, and any primary within that subscript that is a data-i-do-variable shall
be a DO variable of this data-implied-do or of a containing data-implied-do.

102 Attribute declarations and specifications 5.4.6

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

R540 data-stmt-value is [data-stmt-repeat * | data-stmt-constant

R541 data-stmt-repeat is scalar-int-constant
or scalar-int-constant-subobject

C571 (R541) The data-stmt-repeat shall be positive or zero. If the data-stmt-repeat is a named constant, it
shall have been declared previously in the scoping unit or made accessible by use or host association.

R542 data-stmt-constant is scalar-constant
or scalar-constant-subobject
or signed-int-literal-constant
or signed-real-literal-constant
or null-init
or initial-data-target
or structure-constructor

C572 (R542) If a DATA statement constant value is a named constant or a structure constructor, the named
constant or derived type shall have been declared previously in the scoping unit or accessed by use or
host association.

C573 (R542) If a data-stmt-constant is a structure-constructor, it shall be an initialization expression.
Rb543 int-constant-subobject is constant-subobject

C574 (R543) int-constant-subobject shall be of type integer.

R544 constant-subobject is designator

C575 (Rb44) constant-subobject shall be a subobject of a constant.

C576 (R544) Any subscript, substring starting point, or substring ending point shall be an initialization ex-
pression.

The data-stmt-object-list is expanded to form a sequence of pointers and scalar variables, referred to as “sequence
of variables” in subsequent text. A nonpointer array whose unqualified name appears as a data-stmt-object or
data-i-do-object is equivalent to a complete sequence of its array elements in array element order (6.5.3.2). An
array section is equivalent to the sequence of its array elements in array element order. A data-implied-do is
expanded to form a sequence of array elements and structure components, under the control of the data-i-do-
variable, as in the DO construct (8.1.7.6).

The data-stmt-value-list is expanded to form a sequence of data-stmt-constants. A data-stmt-repeat indicates the
number of times the following data-stmt-constant is to be included in the sequence; omission of a data-stmt-repeat
has the effect of a repeat factor of 1.

A zero-sized array or a data-implied-do with an iteration count of zero contributes no variables to the expanded
sequence of variables, but a zero-length scalar character variable does contribute a variable to the expanded
sequence. A data-stmi-constant with a repeat factor of zero contributes no data-stmt-constants to the expanded
sequence of scalar data-stmt-constants.

The expanded sequences of variables and data-stmt-constants are in one-to-one correspondence. Each data-stmt-
constant specifies the initial value, initial data target, or null-init for the corresponding variable. The lengths of
the two expanded sequences shall be the same.

A data-stmt-constant shall be null-init or initial-data-target if and only if the corresponding data-stmi-object has
the POINTER attribute. If data-stmt-constant is null-init, the initial association status of the corresponding data
statement object is disassociated. If data-stmi-constant is initial-data-target the corresponding data statement
object shall be data-pointer-initialization compatible with the initial data target; the data statement object is
initially associated with the target.

5.4.7 Attribute declarations and specifications 103

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

10 A data-stmt-constant other than boz-literal-constant, null-init, or initial-data-target shall be compatible with its
corresponding variable according to the rules of intrinsic assignment (7.2.1.2). The variable is initially defined
with the value specified by the data-stmt-constant; if necessary, the value is converted according to the rules of
intrinsic assignment (7.2.1.3) to a value that agrees in type, type parameters, and shape with the variable.

11 If a data-stmt-constant is a boz-literal-constant, the corresponding variable shall be of type integer. The boz-
literal-constant is treated as if it were converted by the intrinsic function INT (13.7.81) to type integer with the
kind type parameter of the variable.

NOTE 5.29

TYPE
TYPE
DATA
DATA
DATA
DATA
DATA
DATA

Examples of DATA statements are:

CHARACTER (LEN = 10) NAME
INTEGER, DIMENSION (0:9) :: MILES
REAL,

DIMENSION (100, 100) :: SKEW

(NODE) , POINTER :: HEAD_QF_LIST

(PERSON) MYNAME, YOURNAME

NAME / ’JOHN DOE’ /, MILES / 10 * O /

((SKEW (K, J), J =1, K), K =1, 100) / 5050 * 0.0 /
((SKEW (K, J), J =K+ 1, 100), K = 1, 99) / 4950 * 1.0 /
HEAD_OF_LIST / NULL(Q) /

MYNAME / PERSON (21, ’JOHN SMITH’) /

YOURNAME % AGE, YOURNAME % NAME / 35, °FRED BROWN’ /

The character variable NAME is initialized with the value JOHN DOE with padding on the right because
the length of the constant is less than the length of the variable. All ten elements of the integer array
MILES are initialized to zero. The two-dimensional array SKEW is initialized so that the lower triangle
of SKEW is zero and the strict upper triangle is one. The structures MYNAME and YOURNAME are
declared using the derived type PERSON from Note 4.17. The pointer HEAD_OF_LIST is declared using
the derived type NODE from Note 4.37; it is initially disassociated. MYNAME is initialized by a structure
constructor. YOURNAME is initialized by supplying a separate value for each component.

5.4.8 DIMENSION statement

R545 dimension-stmt is DIMENSION [:: | array-name (array-spec) B

W [, array-name (array-spec) | ...

1 The DIMENSION statement specifies the DIMENSION attribute (5.3.8) for a list of objects.

NOTE 5.30

An example of a DIMENSION statement is:

DIMENSION A (10), B (10, 70), C (:)

5.4.9 INTENT statement

R546 intent-stmt is INTENT (intent-spec) [2 | dummy-arg-name-list

1 The INTENT statement specifies the INTENT attribute (5.3.10) for the dummy arguments in the list.

NOTE 5.31

An example of an INTENT statement is:

SUBROUTINE EX (A, B)
INTENT (INOUT) :: A, B

104

Attribute declarations and specifications

5.4.8

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

5.4.10 OPTIONAL statement
R547 optional-stmt is OPTIONAL [::] dummy-arg-name-list
The OPTIONAL statement specifies the OPTIONAL attribute (5.3.12) for the dummy arguments in the list.

NOTE 5.32
An example of an OPTIONAL statement is:

SUBROUTINE EX (A, B)
OPTIONAL :: B

5.4.11 PARAMETER statement

The PARAMETER statement specifies the PARAMETER attribute (5.3.13) and the values for the named con-
stants in the list.

R548 parameter-stmt is PARAMETER (named-constant-def -list)
R549 named-constant-def is named-constant = initialization-expr

If a named constant is defined by a PARAMETER statement, it shall not be subsequently declared to have a
type or type parameter value that differs from the type and type parameters it would have if declared implicitly
(5.5). A named array constant defined by a PARAMETER statement shall have its shape specified in a prior
specification statement.

The value of each named constant is that specified by the corresponding initialization expression; if necessary,
the value is converted according to the rules of intrinsic assignment (7.2.1.3) to a value that agrees in type, type
parameters, and shape with the named constant.

NOTE 5.33
An example of a PARAMETER statement is:

PARAMETER (MODULUS = MOD (28, 3), NUMBER_OF_SENATORS = 100)

5.4.12 POINTER statement
R550 pointer-stmt is POINTER [:: | pointer-decl-list

R551 pointer-decl is object-name [(deferred-shape-spec-list)]
or proc-entity-name

The POINTER statement specifies the POINTER attribute (5.3.14) for a list of entities.

NOTE 5.34
An example of a POINTER statement is:

TYPE (NODE) :: CURRENT
POINTER :: CURRENT, A (:, :)

5.4.13 PROTECTED statement
R552 protected-stmt is PROTECTED | :: | entity-name-list

The PROTECTED statement specifies the PROTECTED attribute (5.3.15) for a list of entities.

5.4.10 Attribute declarations and specifications 105

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

5.4.14 SAVE statement
R553 save-stmt is SAVE [[::] saved-entity-list]

R554 saved-entity is object-name
or proc-pointer-name
or / common-block-name /

R555 proc-pointer-name is name

C577 (R553) If a SAVE statement with an omitted saved entity list appears in a scoping unit, no other
appearance of the SAVE attr-spec or SAVE statement is permitted in that scoping unit.

A SAVE statement with a saved entity list specifies the SAVE attribute (5.3.16) for a list of entities. A SAVE
statement without a saved entity list is treated as though it contained the names of all allowed items in the same
scoping unit.

NOTE 5.35

An example of a SAVE statement is:

SAVE A, B, C, / BLOCKA /, D

5.4.15 TARGET statement

R556 target-stmt is TARGET [:: | target-decl-list
R557 target-decl is object-name [(array-spec) | M

B | [bracket coarray-spec rbracket]
The TARGET statement specifies the TARGET attribute (5.3.17) for a list of objects.

NOTE 5.36
An example of a TARGET statement is:

TARGET :: A (1000, 1000), B

5.4.16 VALUE statement
R558 wvalue-stmt is VALUE [:: | dummy-arg-name-list

The VALUE statement specifies the VALUE attribute (5.3.18) for a list of dummy arguments.
5.4.17 VOLATILE statement

R559 wolatile-stmt is VOLATILE [::]| object-name-list

The VOLATILE statement specifies the VOLATILE attribute (5.3.19) for a list of objects.

5.5 IMPLICIT statement

In a scoping unit, an IMPLICIT statement specifies a type, and possibly type parameters, for all implicitly typed
data entities whose names begin with one of the letters specified in the statement. Alternatively, it may indicate
that no implicit typing rules are to apply in a particular scoping unit.

R560 implicit-stmt is IMPLICIT implicit-spec-list
or IMPLICIT NONE

106 Attribute declarations and specifications 5.4.15

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

R561 wmplicit-spec is declaration-type-spec (letter-spec-list)
R562 letter-spec is letter [— letter]

C578 (R560) If IMPLICIT NONE is specified in a scoping unit, it shall precede any PARAMETER statements
that appear in the scoping unit and there shall be no other IMPLICIT statements in the scoping unit.

C579 (R562) If the minus and second letter appear, the second letter shall follow the first letter alphabetically.

A letter-spec consisting of two letters separated by a minus is equivalent to writing a list containing all of the
letters in alphabetical order in the alphabetic sequence from the first letter through the second letter. For example,
A-C is equivalent to A, B, C. The same letter shall not appear as a single letter, or be included in a range of
letters, more than once in all of the IMPLICIT statements in a scoping unit.

In each scoping unit, there is a mapping, which may be null, between each of the letters A, B, ..., Z and a
type (and type parameters). An IMPLICIT statement specifies the mapping for the letters in its letter-spec-list.
IMPLICIT NONE specifies the null mapping for all the letters. If a mapping is not specified for a letter, the
default for a program unit or an interface body is default integer if the letter is I, J, ..., or N and default real
otherwise, and the default for an internal or module procedure is the mapping in the host scoping unit.

Any data entity that is not explicitly declared by a type declaration statement, is not an intrinsic function, and
is not accessed by use or host association is declared implicitly to be of the type (and type parameters) mapped
from the first letter of its name, provided the mapping is not null. The mapping for the first letter of the data
entity shall either have been established by a prior IMPLICIT statement or be the default mapping for the letter.
The mapping may be to a derived type that is inaccessible in the local scope if the derived type is accessible
in the host scoping unit. The data entity is treated as if it were declared in an explicit type declaration in the
outermost scoping unit in which it appears. An explicit type specification in a FUNCTION statement overrides
an IMPLICIT statement for the name of the result variable of that function subprogram.

NOTE 5.37
The following are examples of the use of IMPLICIT statements:

MODULE EXAMPLE_MODULE
IMPLICIT NONE

INTERFACE

FUNCTION FUN (I) ! Not all data entities need to
INTEGER FUN ! be declared explicitly

END FUNCTION FUN
END INTERFACE

CONTAINS
FUNCTION JFUN (J) ! A1l data entities need to
INTEGER JFUN, J ! be declared explicitly.

END FUNCTION JFUN
END MODULE EXAMPLE_MODULE
SUBROUTINE SUB
IMPLICIT COMPLEX (C)
Cc = (3.0, 2.0) ! C is implicitly declared COMPLEX
CONTAINS
SUBROUTINE SUB1
IMPLICIT INTEGER (A, C)
C = (0.0, 0.0) ! C is host associated and of
! type complex
Z 1.0 ! Z is implicitly declared REAL
A=2 ! A is implicitly declared INTEGER

5.5 Attribute declarations and specifications 107

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

NOTE 5.37 (cont.)
cC =1 ! CC is implicitly declared INTEGER

END SUBROUTINE SUB1
SUBROUTINE SUB2
Z=2.0

Z is implicitly declared REAL and
! is different from the variable of
! the same name in SUB1

END SUBROUTINE SUB2
SUBROUTINE SUB3
USE EXAMPLE_MODULE Accesses integer function FUN
by use association
Q is implicitly declared REAL and

K is implicitly declared INTEGER

Q = FUN (K)

END SUBROUTINE SUB3
END SUBROUTINE SUB

NOTE 5.38
The following is an example of a mapping to a derived type that is inaccessible in the local scope:

PROGRAM MAIN
IMPLICIT TYPE(BLOB) (A)
TYPE BLOB
INTEGER :: I
END TYPE BLOB
TYPE(BLOB) :: B
CALL STEVE
CONTAINS
SUBROUTINE STEVE
INTEGER :: BLOB

AA =B
END SUBROUTINE STEVE
END PROGRAM MAIN

In the subroutine STEVE;, it is not possible to explicitly declare a variable to be of type BLOB because
BLOB has been given a different meaning, but implicit mapping for the letter A still maps to type BLOB,
so AA is of type BLOB.

5.6 NAMELIST statement

A NAMELIST statement specifies a group of named data objects, which may be referred to by a single name
for the purpose of data transfer (9.6, 10.11).

R563 namelist-stmt is NAMELIST m
B / namelist-group-name | namelist-group-object-list B
B [[,]/ namelist-group-name / A
B namelist-group-object-list | . ..

C580 (R563) The namelist-group-name shall not be a name accessed by use association.

108 Attribute declarations and specifications 5.6

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

R564 namelist-group-object is wariable-name
C581 (R564) A namelist-group-object shall not be an assumed-size array.

C582 (R563) A namelist-group-object shall not have the PRIVATE attribute if the namelist-group-name has
the PUBLIC attribute.

The order in which the variables are specified in the NAMELIST statement determines the order in which the
values appear on output.

Any namelist-group-name may occur more than once in the NAMELIST statements in a scoping unit. The
namelist-group-object-list following each successive appearance of the same namelist-group-name in a scoping
unit is treated as a continuation of the list for that namelist-group-name.

A namelist group object may be a member of more than one namelist group.

A namelist group object shall either be accessed by use or host association or shall have its type, type parameters,
and shape specified by previous specification statements or the procedure heading in the same scoping unit or
by the implicit typing rules in effect for the scoping unit. If a namelist group object is typed by the implicit
typing rules, its appearance in any subsequent type declaration statement shall confirm the implied type and
type parameters.

NOTE 5.39
An example of a NAMELIST statement is:

NAMELIST /NLIST/ A, B, C

5.7 Storage association of data objects

5.7.1 EQUIVALENCE statement
5.7.1.1 General

An EQUIVALENCE statement is used to specify the sharing of storage units by two or more objects in a
scoping unit. This causes storage association (16.5.3) of the objects that share the storage units.

If the equivalenced objects have differing type or type parameters, the EQUIVALENCE statement does not cause
type conversion or imply mathematical equivalence. If a scalar and an array are equivalenced, the scalar does
not have array properties and the array does not have the properties of a scalar.

R565 equivalence-stmt is EQUIVALENCE equivalence-set-list
R566 equivalence-set is (equivalence-object , equivalence-object-list)
R567 equivalence-object is wariable-name

or array-element
or substring

C583 (RB67) An equivalence-object shall not be a designator with a base object that is a dummy argument,
a pointer, an allocatable variable, a derived-type object that has an allocatable ultimate component,
an object of a nonsequence derived type, an object of a derived type that has a pointer at any level of
component selection, an automatic object, a function name, an entry name, a result name, a variable with

5.7 Attribute declarations and specifications 109

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

the BIND attribute, a variable in a common block that has the BIND attribute, or a named constant.

C584 (R567) An equivalence-object shall not be a designator that has more than one part-ref.

C585 (R567) An equivalence-object shall not be a coarray or a subobject thereof.

C586 (R567) An equivalence-object shall not have the TARGET attribute.

C587 (R567) Each subscript or substring range expression in an equivalence-object shall be an integer initial-

ization expression (7.1.12).

C588 (R566) If an equivalence-object is default integer, default real, double precision real, default complex,

default logical, or of numeric sequence type, all of the objects in the equivalence set shall be of these
types.

C589 (R566) If an equivalence-object is default character or of character sequence type, all of the objects in

the equivalence set shall be of these types and kinds.

C590 (R566) If an equivalence-object is of a sequence type that is not a numeric sequence or character sequence

C591

type, all of the objects in the equivalence set shall be of the same type with the same type parameter
values.

(R566) If an equivalence-object is of an intrinsic type but is not default integer, default real, double
precision real, default complex, default logical, or default character, all of the objects in the equivalence
set shall be of the same type with the same kind type parameter value.

C592 (R567) If an equivalence-object has the PROTECTED attribute, all of the objects in the equivalence set

shall have the PROTECTED attribute.

C593 (R567) The name of an equivalence-object shall not be a name made accessible by use association.

C594 (R567) A substring shall not have length zero.

NOTE 5.40

The EQUIVALENCE statement allows the equivalencing of sequence structures and the equivalencing of
objects of intrinsic type with nondefault type parameters, but there are strict rules regarding the appearance
of these objects in an EQUIVALENCE statement.

A structure that appears in an EQUIVALENCE statement shall be a sequence structure. If a sequence
structure is not of numeric sequence type or of character sequence type, it shall be equivalenced only to
objects of the same type with the same type parameter values.

A structure of a numeric sequence type shall be equivalenced only to another structure of a numeric sequence
type, an object that is default integer, default real, double precision real, default complex, or default logical
type such that components of the structure ultimately become associated only with objects of these types
and kinds.

A structure of a character sequence type shall be equivalenced only to an object of default character type
or another structure of a character sequence type.

An object of intrinsic type with nondefault kind type parameters shall not be equivalenced to objects of
different type or kind type parameters.

Further rules on the interaction of EQUIVALENCE statements and default initialization are given in
16.5.3.4.

110

Attribute declarations and specifications 5.7.1.2

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

5.7.1.2 Equivalence association

1 An EQUIVALENCE statement specifies that the storage sequences (16.5.3.2) of the data objects specified in an
equivalence-set are storage associated. All of the nonzero-sized sequences in the equivalence-set, if any, have the
same first storage unit, and all of the zero-sized sequences in the equivalence-set, if any, are storage associated with
one another and with the first storage unit of any nonzero-sized sequences. This causes the storage association
of the data objects in the equivalence-set and may cause storage association of other data objects.

5.7.1.3 Equivalence of default character objects

1 A default character data object shall not be equivalenced to an object that is not default character and not of a
character sequence type. The lengths of equivalenced default character objects need not be the same.

2 An EQUIVALENCE statement specifies that the storage sequences of all the default character data objects
specified in an equivalence-set are storage associated. All of the nonzero-sized sequences in the equivalence-set, if
any, have the same first character storage unit, and all of the zero-sized sequences in the equivalence-set, if any,
are storage associated with one another and with the first character storage unit of any nonzero-sized sequences.
This causes the storage association of the data objects in the equivalence-set and may cause storage association
of other data objects.

NOTE 5.41
For example, using the declarations:

CHARACTER (LEN = 4) :: A, B
CHARACTER (LEN = 3) :: C (2)
EQUIVALENCE (A, C (1)), (B, C (2))

the association of A, B, and C can be illustrated graphically as:

1 2 3 4 5 6 7
e
|--= —=B - -
|--- e -—-| I--- C@ -

5.7.1.4 Array names and array element designators

1 For a nonzero-sized array, the use of the array name unqualified by a subscript list as an equivalence-object has
the same effect as using an array element designator that identifies the first element of the array.

5.7.1.5 Restrictions on EQUIVALENCE statements

1 An EQUIVALENCE statement shall not specify that the same storage unit is to occur more than once in a
storage sequence.

NOTE 5.42

For example:

REAL, DIMENSION (2) :: A
REAL :: B
EQUIVALENCE (A (1), B), (A (2), B) ! Not standard-conforming

is prohibited, because it would specify the same storage unit for A (1) and A (2).

2 An EQUIVALENCE statement shall not specify that consecutive storage units are to be nonconsecutive.

5.7.1.3 Attribute declarations and specifications 111

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

NOTE 5.43
For example, the following is prohibited:

REAL A (2)
DOUBLE PRECISION D (2)
EQUIVALENCE (A (1), D (1)), (A (2), D (2)) ! Not standard-conforming

5.7.2 COMMON statement
5.7.2.1 General

The COMMON statement specifies blocks of physical storage, called common blocks, that can be accessed by
any of the scoping units in a program. Thus, the COMMON statement provides a global data facility based on
storage association (16.5.3).

A common block that does not have a name is called blank common.

R568 common-stmt is COMMON m
B [/ [common-block-name | /] common-block-object-list M
W [[,]/ [common-block-name] /M

B common-block-object-list | ...

R569 common-block-object is wariable-name [(array-spec)]
or proc-pointer-name

C595 (R569) An array-spec in a common-block-object shall be an explicit-shape-spec-list.

C596 (R569) Only one appearance of a given variable-name or proc-pointer-name is permitted in all common-
block-object-lists within a scoping unit.

C597 (R569) A common-block-object shall not be a dummy argument, an allocatable variable, a derived-type
object with an ultimate component that is allocatable, an automatic object, a function name, an entry
name, a variable with the BIND attribute, a coarray, or a result name.

C598 (R569) If a common-block-object is of a derived type, the type shall have the BIND attribute or the
SEQUENCE attribute and it shall have no default initialization.

C599 (R569) A wariable-name or proc-pointer-name shall not be a name made accessible by use association.

In each COMMON statement, the data objects whose names appear in a common block object list following a
common block name are declared to be in that common block. If the first common block name is omitted, all
data objects whose names appear in the first common block object list are specified to be in blank common.
Alternatively, the appearance of two slashes with no common block name between them declares the data objects
whose names appear in the common block object list that follows to be in blank common.

Any common block name or an omitted common block name for blank common may occur more than once in one
or more COMMON statements in a scoping unit. The common block list following each successive appearance
of the same common block name in a scoping unit is treated as a continuation of the list for that common block
name. Similarly, each blank common block object list in a scoping unit is treated as a continuation of blank
common.

The form variable-name (array-spec) specifies the DIMENSION attribute for that variable.

If derived-type objects of numeric sequence type (4.5.2) or character sequence type (4.5.2) appear in common, it
is as if the individual components were enumerated directly in the common list.

112 Attribute declarations and specifications 5.7.2

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 5.44
Examples of COMMON statements are:

COMMON /BLOCKA/ A, B, D (10, 30)
COMMON I, J, K

5.7.2.2 Common block storage sequence

1 For each common block in a scoping unit, a common block storage sequence is formed as follows:

(1) A storage sequence is formed consisting of the sequence of storage units in the storage sequences
(16.5.3.2) of all data objects in the common block object lists for the common block. The order of
the storage sequences is the same as the order of the appearance of the common block object lists in
the scoping unit.

(2) The storage sequence formed in (1) is extended to include all storage units of any storage sequence
associated with it by equivalence association. The sequence shall be extended only by adding storage
units beyond the last storage unit. Data objects associated with an entity in a common block are
considered to be in that common block.

2 Only COMMON statements and EQUIVALENCE statements appearing in the scoping unit contribute to common
block storage sequences formed in that scoping unit.

5.7.2.3 Size of a common block

1 The size of a common block is the size of its common block storage sequence, including any extensions of the
sequence resulting from equivalence association.

5.7.2.4 Common association

1 Within a program, the common block storage sequences of all nonzero-sized common blocks with the same name
have the same first storage unit, and the common block storage sequences of all zero-sized common blocks with the
same name are storage associated with one another. Within a program, the common block storage sequences of
all nonzero-sized blank common blocks have the same first storage unit and the storage sequences of all zero-sized
blank common blocks are associated with one another and with the first storage unit of any nonzero-sized blank
common blocks. This results in the association of objects in different scoping units. Use or host association may
cause these associated objects to be accessible in the same scoping unit.

2 A nonpointer object that is default integer, default real, double precision real, default complex, default logical,
or of numeric sequence type shall be associated only with nonpointer objects of these types and kinds.

3 A nonpointer object that is default character or of character sequence type shall be associated only with nonpointer
objects of these types and kinds.

4 A nonpointer object of a derived type that is not a numeric sequence or character sequence type shall be associated
only with nonpointer objects of the same type with the same type parameter values.

5 A nonpointer object of intrinsic type but which is not default integer, default real, double precision real, default
complex, default logical, or default character shall be associated only with nonpointer objects of the same type
and type parameters.

6 A data pointer shall be storage associated only with data pointers of the same type and rank. Data pointers that
are storage associated shall have deferred the same type parameters; corresponding nondeferred type parameters
shall have the same value. A procedure pointer shall be storage associated only with another procedure pointer;
either both interfaces shall be explicit or both interfaces shall be implicit. If the interfaces are explicit, the
characteristics shall be the same. If the interfaces are implicit, either both shall be subroutines or both shall be
functions with the same type and type parameters.

5.7.2.2 Attribute declarations and specifications 113

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

7 An object with the TARGET attribute shall be storage associated only with another object that has the TARGET
attribute and the same type and type parameters.

NOTE 5.45

A common block is permitted to contain sequences of different storage units, provided each scoping unit
that accesses the common block specifies an identical sequence of storage units for the common block. For
example, this allows a single common block to contain both numeric and character storage units.

Association in different scoping units between objects of default type, objects of double precision real type,
and sequence structures is permitted according to the rules for equivalence objects (5.7.1).

5.7.2.5 Differences between named common and blank common

1 A blank common block has the same properties as a named common block, except for the following.

e Execution of a RETURN or END statement might cause data objects in a named common block to become
undefined unless the common block has the SAVE attribute, but never causes data objects in blank common
to become undefined (16.6.6).

e Named common blocks of the same name shall be of the same size in all scoping units of a program in which
they appear, but blank common blocks may be of different sizes.

e A data object in a named common block may be initially defined by means of a DATA statement or type
declaration statement in a block data program unit (11.3), but objects in blank common shall not be initially
defined.

5.7.3 Restrictions on common and equivalence

1 An EQUIVALENCE statement shall not cause the storage sequences of two different common blocks to be
associated.

2 Equivalence association shall not cause a derived-type object with default initialization to be associated with an
object in a common block.

3 Equivalence association shall not cause a common block storage sequence to be extended by adding storage units
preceding the first storage unit of the first object specified in a COMMON statement for the common block.

NOTE 5.46
For example, the following is not permitted:

COMMON /X/ A
REAL B (2)
EQUIVALENCE (A, B (2)) ! Not standard-conforming

114 Attribute declarations and specifications 5.7.2.5

08-007r2:2008/03/11 CD 1539-1

6

6.1

R601

Use of data objects

Designator

designator is object-name
or array-element
or array-section
or complex-part-designator
or structure-component
or substring

ISO/IEC SC22/WG5/N1723

The appearance of a data object designator in a context that requires its value is termed a reference.

6.2

Variable

R602 wariable is designator
or expr
C601 (R602) designator shall not be a constant or a subobject of a constant.

C602

(R602) expr shall be a reference to a function that has a pointer result.

A variable is either the data object denoted by designator or the target of expr.

A reference is permitted only if the variable is defined. A reference to a data pointer is permitted only if the
pointer is associated with a target object that is defined. A data object becomes defined with a value when events
described in 16.6.5 occur.

R603 wvariable-name is name

C603 (R603) wvariable-name shall be the name of a variable.

R604 logical-variable is wariable

C604 (R604) logical-variable shall be of type logical.

R605 char-variable is wariable

C605 (R605) char-variable shall be of type character.

R606 default-char-variable is wariable

C606 (R606) default-char-variable shall be default character.

R607 int-variable is wariable

C607 (R607) int-variable shall be of type integer.

NOTE 6.1

For example, given the declarations:

CHARACTER (10) A, B (10)
TYPE (PERSON) P ! See Note 4.17

Use of data objects

115

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

NOTE 6.1 (cont.)
then A, B, B (1), B (1:5), P % AGE, and A (1:1) are all variables. |

6.3 Constants

A constant (3.2.3) is a literal constant or a named constant. A literal constant is a scalar denoted by a syntactic
form, which indicates its type, type parameters, and value. A named constant is a constant that has a name; the
name has the PARAMETER attribute (5.3.13, 5.4.11). A reference to a constant is always permitted; redefinition
of a constant is never permitted.

6.4 Scalars

6.4.1 Substrings

A substring is a contiguous portion of a character string (4.4.5).
R608 substring is parent-string (substring-range)

R609 parent-string is scalar-variable-name
or array-element
or scalar-structure-component
or scalar-constant

R610 substring-range is [scalar-int-expr | : [scalar-int-expr]
C608 (R609) parent-string shall be of type character.

The value of the first scalar-int-expr in substring-range is called the starting point and the value of the second
one is called the ending point. The length of a substring is the number of characters in the substring and is
MAX (I — f 41, 0), where f and [are the starting and ending points, respectively.

Let the characters in the parent string be numbered 1, 2, 3, ..., n, where n is the length of the parent string.
Then the characters in the substring are those from the parent string from the starting point and proceeding in
sequence up to and including the ending point. Both the starting point and the ending point shall be within the
range 1, 2, ..., n unless the starting point exceeds the ending point, in which case the substring has length zero.
If the starting point is not specified, the default value is 1. If the ending point is not specified, the default value
is n.

NOTE 6.2
Examples of character substrings are:

B(1) (1:5) array element as parent string
PYNAME(1:1) structure component as parent string
ID(4:9) scalar variable name as parent string
70123456789 (N:N) character constant as parent string

6.4.2 Structure components

A structure component is part of an object of derived type; it may be referenced by an object designator. A
structure component may be a scalar or an array.

R611 data-ref is part-ref [% part-ref | ...

116 Use of data objects 6.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

R612 part-ref is part-name | (section-subscript-list) | [image-selector |
C609 (R611) Each part-name except the rightmost shall be of derived type.

C610 (R611) Each part-name except the leftmost shall be the name of a component of the declared type of the
preceding part-name.

C611 (R611) If the rightmost part-name is of abstract type, data-ref shall be polymorphic.
C612 (R611) The leftmost part-name shall be the name of a data object.

C613 (R612) If a section-subscript-list appears, the number of section-subscripts shall equal the rank of part-
name.

C614 (R612) If image-selector appears, the number of cosubscripts shall be equal to the corank of part-name.
C615 (R612) If image-selector appears and part-name is an array, section-subscript-list shall appear.
C616 (R611) If smage-selector appears, data-ref shall not be of type C_.PTR or C_FUNPTR (15.3.3).

The rank of a part-ref of the form part-name is the rank of part-name. The rank of a part-ref that has a section
subscript list is the number of subscript triplets and vector subscripts in the list.

C617 (R611) There shall not be more than one part-ref with nonzero rank. A part-name to the right of a
part-ref with nonzero rank shall not have the ALLOCATABLE or POINTER attribute.

The rank of a data-ref is the rank of the part-ref with nonzero rank, if any; otherwise, the rank is zero. The
base object of a data-ref is the data object whose name is the leftmost part name.

The type and type parameters, if any, of a data-ref are those of the rightmost part name.

A data-ref with more than one part-ref is a subobject of its base object if none of the part-names, except
for possibly the rightmost, are pointers. If the rightmost part-name is the only pointer, then the data-ref is a
subobject of its base object in contexts that pertain to its pointer association status but not in any other contexts.

NOTE 6.3

If X is an object of derived type with a pointer component P, then the pointer X%P is a subobject of X
when considered as a pointer — that is in contexts where it is not dereferenced.

However the target of X%P is not a subobject of X. Thus, in contexts where X%P is dereferenced to refer
to the target, it is not a subobject of X.

R613 structure-component is data-ref
C618 (R613) There shall be more than one part-ref and the rightmost part-ref shall be of the form part-name.

A structure component shall be neither referenced nor defined before the declaration of the base object. A
structure component is a pointer only if the rightmost part name is defined to have the POINTER attribute.

NOTE 6.4

Examples of structure components are:

SCALAR_PARENTY,SCALAR_FIELD scalar component of scalar parent
ARRAY_PARENT (J)%SCALAR_FIELD component of array element parent
ARRAY_PARENT(1:N)%SCALAR_FIELD component of array section parent

For a more elaborate example see C.3.1.

6.4.2 Use of data objects 117

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

NOTE 6.5

The syntax rules are structured such that a data-ref that ends in a component name without a following
subscript list is a structure component, even when other component names in the data-ref are followed
by a subscript list. A data-ref that ends in a component name with a following subscript list is either an
array element or an array section. A data-ref of nonzero rank that ends with a substring-range is an array
section. A data-ref of zero rank that ends with a substring-range is a substring.

6.4.3 Complex parts

R614 complex-part-designator is designator % RE
or designator % IM

C619 (R614) The designator shall be of complex type.

If complez-part-designator is designator%RE it designates the real part of designator. If it is designator%IM
it designates the imaginary part of designator. The type of a complex-part-designator is real, and its kind and
shape are those of the designator.

NOTE 6.6
The following are examples of complex part designators:

impedance,re !-- Same value as REAL(impedance)
fftiim !-- Same value as AIMAG(fft)
x%im = 0.0 I-- Sets the imaginary part of X to zero

6.4.4 Type parameter inquiry

A type parameter inquiry is used to inquire about a type parameter of a data object. It applies to both intrinsic
and derived types.

R615 type-param-inquiry is designator % type-param-name

C620 (R615) The type-param-name shall be the name of a type parameter of the declared type of the object
designated by the designator.

A deferred type parameter of a pointer that is not associated or of an unallocated allocatable variable shall not
be inquired about.

NOTE 6.7

A type-param-inquiry has a syntax like that of a structure component reference, but it does not have the
same semantics. It is not a variable and thus can never be assigned to. It may be used only as a primary
in an expression. It is scalar even if designator is an array.

The intrinsic type parameters can also be inquired about by using the intrinsic functions KIND and LEN.

NOTE 6.8

The following are examples of type parameter inquiries:

a%kind I-— A is real. Same value as KIND(a).
shlen !1-— S is character. Same value as LEN(s).
b(10)%kind !-- Inquiry about an array element.

p/dim !-— P is of the derived type general_point.

See Note 4.24 for the definition of the general_point type used in the last example above.

118 Use of data objects 6.4.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

6.5 Arrays

6.5.1 Order of reference

No order of reference to the elements of an array is indicated by the appearance of the array designator, except
where array element ordering (6.5.3.2) is specified.

6.5.2 Whole arrays

A whole array is a named array, which may be either a named constant (5.3.13, 5.4.11) or a variable; no subscript
list is appended to the name.

The appearance of a whole array variable in an executable construct specifies all the elements of the array (2.5.6).
The appearance of a whole array name in a nonexecutable statement specifies the entire array except for the
appearance of a whole array name in an equivalence set (5.7.1.4). An assumed-size array is permitted to appear
as a whole array in an executable construct or specification expression only as an actual argument in a procedure
reference that does not require the shape.

6.5.3 Array elements and array sections

6.5.3.1 Syntax

R616 array-element is data-ref

C621 (R616) Every part-ref shall have rank zero and the last part-ref shall contain a subscript-list.

R617 array-section is data-ref [(substring-range) |
or complex-part-designator

C622 (R617) Exactly one part-ref shall have nonzero rank, and either the final part-ref shall have a section-
subscript-list with nonzero rank, another part-ref shall have nonzero rank, or the complex-part-designator
shall be an array.

€623 (R617) If a substring-range appears, the rightmost part-name shall be of type character.
R618 subscript is scalar-int-expr

R619 section-subscript is subscript
or subscript-triplet
or wvector-subscript

R620 subscript-triplet is [subscript] : [subscript] [: stride]
R621 stride is scalar-int-expr
R622 wvector-subscript is int-expr

C624 (R622) A wvector-subscript shall be an integer array expression of rank one.

C625 (R620) The second subscript shall not be omitted from a subscript-triplet in the last dimension of an
assumed-size array.

An array element is a scalar. An array section is an array. If a substring-range appears in an array-section, each
element is the designated substring of the corresponding element of the array section.

The value of a subscript in an array element shall be within the bounds for its dimension.

6.5 Use of data objects 119

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

NOTE 6.9
For example, with the declarations:

REAL A (10, 10)
CHARACTER (LEN = 10) B (5, 5, 5)

A (1, 2) is an array element, A (1:N:2, M) is a rank-one array section, and B (, :, :) (2:3) is an array of
shape (5, 5, 5) whose elements are substrings of length 2 of the corresponding elements of B.

NOTE 6.10

Unless otherwise specified, an array element or array section does not have an attribute of the whole array.
In particular, an array element or an array section does not have the POINTER or ALLOCATABLE
attribute.

NOTE 6.11
Examples of array elements and array sections are:

ARRAY_A(1:N:2)%ARRAY_B(I, J)%STRING(K) (:) array section
SCALAR_PARENT,ARRAY_FIELD(J) array element
SCALAR_PARENTY%ARRAY_FIELD(1:N) array section

SCALAR_PARENT%ARRAY_FIELD(1:N)%SCALAR_FIELD array section

6.5.3.2 Array element order

1 The elements of an array form a sequence known as the array element order. The position of an array element
in this sequence is determined by the subscript order value of the subscript list designating the element. The
subscript order value is computed from the formulas in Table 6.1.

Table 6.1: Subscript order value

Rank Subscript bounds Subscript list Subscript order value
1 jlikl S1 1 + (81 —]1)
. . 1+ (81 - .71)
2 :k1,g2:k S1,8 .
J1iR1,J2:R2 1,52 Y sy —]2)'>< d
1+ (81 — j1)
3 Ji:ki, joika, jaiks 81,52, 83 +(s2 = j2) x dy

+(s3 —j3) X dy x dy

1+ (s1—Jj1)

—|—(82 —jg) X dy
+(s3 — Jj3) X da x dy
+...

+(s15 — J15) X d14
Xdlf; X ... X d1

15 Juki, ..., jisikis S1,...,515

Notes for Table 6.1:
1) d; = max (k; —j; +1, 0) is the size of the ith dimension.
2) If the size of the array is nonzero, j; < s; < k; for all
i=1,2, .., 15.

120 Use of data objects 6.5.3.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

6.5.3.3 Array sections

1 In an array-section having a section-subscript-list, each subscript-triplet and vector-subscript in the section sub-
script list indicates a sequence of subscripts, which may be empty. Each subscript in such a sequence shall be
within the bounds for its dimension unless the sequence is empty. The array section is the set of elements from
the array determined by all possible subscript lists obtainable from the single subscripts or sequences of subscripts
specified by each section subscript.

2 In an array-section with no section-subscript-list, the rank and shape of the array is the rank and shape of the
part-ref with nonzero rank; otherwise, the rank of the array section is the number of subscript triplets and vector
subscripts in the section subscript list. The shape is the rank-one array whose ith element is the number of
integer values in the sequence indicated by the ith subscript triplet or vector subscript. If any of these sequences
is empty, the array section has size zero. The subscript order of the elements of an array section is that of the
array data object that the array section represents.

6.5.3.3.1 Subscript triplet

1 A subscript triplet designates a regular sequence of subscripts consisting of zero or more subscript values. The
third expression in the subscript triplet is the increment between the subscript values and is called the stride.
The subscripts and stride of a subscript triplet are optional. An omitted first subscript in a subscript triplet
is equivalent to a subscript whose value is the lower bound for the array and an omitted second subscript is
equivalent to the upper bound. An omitted stride is equivalent to a stride of 1.

2 The stride shall not be zero.

3 When the stride is positive, the subscripts specified by a triplet form a regularly spaced sequence of integers
beginning with the first subscript and proceeding in increments of the stride to the largest such integer not
greater than the second subscript; the sequence is empty if the first subscript is greater than the second.

NOTE 6.12

For example, suppose an array is declared as A (5, 4, 3). The section A (3 : 5, 2, 1: 2) is the array of shape
(3, 2):

A (3, 2, 1) A (3, 2, 2)

A 4, 2, 1) A (4, 2, 2)

A (5, 2, 1) A (5, 2, 2)

4 When the stride is negative, the sequence begins with the first subscript and proceeds in increments of the stride
down to the smallest such integer equal to or greater than the second subscript; the sequence is empty if the
second subscript is greater than the first.

NOTE 6.13

For example, if an array is declared B (10), the section B (9 : 1 : —2) is the array of shape (5) whose elements
are B (9), B (7), B (5), B (3), and B (1), in that order.

NOTE 6.14

A subscript in a subscript triplet need not be within the declared bounds for that dimension if all values
used in selecting the array elements are within the declared bounds.

For example, if an array is declared as B (10), the array section B (3 : 11 : 7) is the array of shape (2)
consisting of the elements B (3) and B (10), in that order.

6.5.3.3.2 Vector subscript

1 A vector subscript designates a sequence of subscripts corresponding to the values of the elements of the expression.
Each element of the expression shall be defined.

6.5.3.3 Use of data objects 121

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

An array section with a vector subscript shall not be

e argument associated with a dummy array that is defined or redefined,
e the data-target in a pointer assignment statement, or
e an internal file.

If a vector subscript has two or more elements with the same value, an array section with that vector subscript
shall not appear in a variable definition context (16.6.7).

NOTE 6.15

For example, suppose Z is a two-dimensional array of shape [5, 7] and U and V are one-dimensional arrays
of shape (3) and (4), respectively. Assume the values of U and V are:

u=1[11,3, 2]
V=[2: 1’ 1,3]

Then Z (3, V) consists of elements from the third row of Z in the order:
Z@,2 z@ 1 z2@G6, 1) (@B, 3

and Z (U, 2) consists of the column elements:

Z (1,2 Z (3,2 2z (2,2

and Z (U, V) consists of the elements:

2,2 z(@@,1 z3@,1 z1,3)
2@,2 z@G 1D z2@B 1 zG,3
Z (2,2 z(@,1) z(@2,1) Z(@2,3)

Because Z (3, V) and Z (U, V) contain duplicate elements from Z, the sections Z (3, V) and Z (U, V) shall
not be redefined as sections.

6.5.4 Simply contiguous array designators

A section-subscript-list specifies a simply contiguous section if and only if it does not have a vector subscript and

e all but the last subscript-triplet is a colon,
e the last subscript-triplet does not have a stride, and
e no subscript-triplet is preceded by a section-subscript that is a subscript.

An array designator is simply contiguous if and only if it is

e an object-name that has the CONTIGUOUS attribute,
e an object-name that is not a pointer or assumed-shape,

e a structure-component whose final part-name is an array and that either has the CONTIGUOUS attribute
or is not a pointer, or

e an array section
— that is not a complex-part-designator,
— that does not have a substring-range,
— whose final part-ref has nonzero rank,

— whose rightmost part-name has the CONTIGUOUS attribute or is neither assumed-shape nor a pointer,
and

— which either does not have a section-subscript-list, or has a section-subscript-list which specifies a
simply contiguous section.

122 Use of data objects 6.5.4

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

a function that returns a pointer with the CONTIGUOUS attribute.

NOTE 6.16

3 An array variable is simply contiguous if and only if it is a simply contiguous array designator or a reference to

simply contiguous base object, for example:

ARRAY1 (10:20, 3)
X3D (:, i:j, 2)

passes part of the third column of ARRAY1.

YSD (:y iy, i, i, T) passes the seventh hypercube of Y5D.

All simply contiguous designators designate contiguous objects.

Array sections that are simply contiguous include column, plane, cube, and hypercube subobjects of a

!

! passes part of the second plane of X3D (or the whole
! plane if i==LBOUND(X3D,2) and j==UBOUND(X3D,2).
!

6.5.5 Image selectors
An image selector specifies the image index for coarray data.
R623 image-selector is Ibracket cosubscript-list rbracket

R624 cosubscript is scalar-int-expr

The number of cosubscripts shall be equal to the corank of the object. The value of a cosubscript in an image
selector shall be within the cobounds for its codimension. Taking account of the cobounds, the cosubscript list in
an image selector determines the image index in the same way that a subscript list in an array element determines
the subscript order value (6.5.3.2), taking account of the bounds. An image selector shall specify an image index

value that is not greater than the number of images.

NOTE 6.17

For example, if there are 16 images and the coarray A is declared

REAL :: A(10)[5,%*]

A(:)[1,4] is valid because it specifies image 16, but A(:)[2,4] is invalid because it specifies image 17.

6.6 Dynamic association

6.6.1 ALLOCATE statement
6.6.1.1 Syntax
The ALLOCATE statement dynamically creates pointer targets and allocatable variables.

R625 allocate-stmi is ALLOCATE ([type-spec :: | allocation-list B
B |, alloc-opt-list |)

R626 alloc-opt is ERRMSG = errmsg-variable
or MOLD = source-expr
or SOURCE = source-expr
or STAT = stat-variable

R627 stat-variable is scalar-int-variable
R628 errmsg-variable is scalar-default-char-variable
R629 source-expr is expr

6.5.5 Use of data objects

123

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

R630

R631

R632
R633
R634
R635
R636
C626

C627

C628
C629

C630

C631

C632

C633

C634
C635
C636

C637
C638
C639

€640

C641

C642

124

allocation is allocate-object [(allocate-shape-spec-list) | M
W [lbracket allocate-coarray-spec rbracket]

allocate-object is wariable-name
or structure-component

allocate-shape-spec is [lower-bound-expr : | upper-bound-expr
lower-bound-expr is scalar-int-expr

upper-bound-expr is scalar-int-expr

allocate-coarray-spec is [allocate-coshape-spec-list , | [lower-bound-expr : | *
allocate-coshape-spec is [lower-bound-expr : | upper-bound-expr

(R631) Each allocate-object shall be a nonprocedure pointer or an allocatable variable.

(R625) If any allocate-object has a deferred type parameter, is unlimited polymorphic, or is of abstract
type, either type-spec or source-expr shall appear.

(R625) If type-spec appears, it shall specify a type with which each allocate-object is type compatible.

(R625) A type-param-value in a type-spec shall be an asterisk if and only if each allocate-object is a
dummy argument for which the corresponding type parameter is assumed.

(R625) If type-spec appears, the kind type parameter values of each allocate-object shall be the same as
the corresponding type parameter values of the type-spec.

(R630) If allocate-object is an array either allocate-shape-spec-list shall appear or source-expr shall appear
and have the same rank as allocate-object. If allocate-object is scalar, allocate-shape-spec-list shall not
appear.

(R630) An allocate-coarray-spec shall appear if and only if the allocate-object is a coarray.

(R630) The number of allocate-shape-specs in an allocate-shape-spec-list shall be the same as the rank
of the allocate-object. The number of allocate-coshape-specs in an allocate-coarray-spec shall be one less
than the corank of the allocate-object.

(R626) No alloc-opt shall appear more than once in a given alloc-opt-list.
(R625) At most one of source-expr and type-spec shall appear.

(R625) Each allocate-object shall be type compatible (4.3.1.3) with source-expr. If SOURCE= appears,
source-expr shall be a scalar or have the same rank as each allocate-object.

(R625) Corresponding kind type parameters of allocate-object and source-expr shall have the same values.
(R625) type-spec shall not specify a type that has a coarray ultimate component.

(R625) type-spec shall not specify the type C_.PTR or C_FUNPTR if an allocate-object is a coarray.
(R625) The declared type of source-expr shall not be C_.PTR or C_FUNPTR if an allocate-object is a
coarray.

(R629) The declared type of source-expr shall not have a coarray ultimate component.

(R631) An allocate-object shall not be a coindexed object.

Use of data objects 6.6.1.1

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 6.18

If a coarray is of a derived type that has an allocatable component, the component shall be allocated by its
own image:

TYPE(SOMETHING), ALLOCATABLE :: T[:]

I.U;I:.DCATE (Tx1)
ALLOCATE (T%AAC(N))
ALLOCATE (T [Q] %AAC(N))

Allowed - implies synchronization
Allowed - allocated by its own image
Not allowed, because it is not
necessarily executed on image Q.

An allocate-object or a bound or type parameter of an allocate-object shall not depend on the value of stat-variable,
the value of errmsg-variable, or on the value, bounds, length type parameters, allocation status, or association
status of any allocate-object in the same ALLOCATE statement.

source-expr shall not be allocated within the ALLOCATE statement in which it appears; nor shall it depend on
the value, bounds, deferred type parameters, allocation status, or association status of any allocate-object in that
statement.

If type-spec is specified, each allocate-object is allocated with the specified dynamic type and type parameter
values; if source-expr is specified, each allocate-object is allocated with the dynamic type and type parameter
values of source-expr; otherwise, each allocate-object is allocated with its dynamic type the same as its declared

type.

If type-spec appears and the value of a type parameter it specifies differs from the value of the corresponding
nondeferred type parameter specified in the declaration of any allocate-object, an error condition occurs. If the
value of a nondeferred length type parameter of an allocate-object differs from the value of the corresponding type
parameter of source-expr, an error condition occurs.

If a type-param-value in a type-spec in an ALLOCATE statement is an asterisk, it denotes the current value of
that assumed type parameter. If it is an expression, subsequent redefinition or undefinition of any entity in the
expression does not affect the type parameter value.

NOTE 6.19
An example of an ALLOCATE statement is:

ALLOCATE (X (N), B (-3 : M, 0:9), STAT = IERR_ALLOC)

6.6.1.2 Execution of an ALLOCATE statement

When an ALLOCATE statement is executed for an array for which allocate-shape-spec-list is specified, the values
of the lower bound and upper bound expressions determine the bounds of the array. Subsequent redefinition
or undefinition of any entities in the bound expressions do not affect the array bounds. If the lower bound is
omitted, the default value is 1. If the upper bound is less than the lower bound, the extent in that dimension is
zero and the array has zero size.

When an ALLOCATE statement is executed for a coarray, the values of the lower cobound and upper cobound
expressions determine the cobounds of the coarray. Subsequent redefinition or undefinition of any entities in the
cobound expressions do not affect the cobounds. If the lower cobound is omitted, the default value is 1. The
upper cobound shall not be less than the lower cobound.

If an allocation specifies a coarray, its dynamic type and the values of corresponding type parameters shall be
the same on each image. The values of corresponding bounds and corresponding cobounds shall be the same on
each image. If the coarray is a dummy argument, its ultimate argument (12.5.2.3) shall be the same coarray on
every image.

6.6.1.2 Use of data objects 125

10

11

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

There is implicit synchronization of all images in association with each ALLOCATE statement that allocates one
or more coarrays. On each image, execution of the segment (8.5.1) following the statement is delayed until all
other images have executed the same statement the same number of times.

NOTE 6.20

When an image executes an ALLOCATE statement, communication is not necessarily involved apart from
any required for synchronization. The image allocates its coarray and records how the corresponding
coarrays on other images are to be addressed. The processor is not required to detect violations of the
rule that the bounds are the same on all images, nor is it responsible for detecting or resolving deadlock
problems (such as two images waiting on different ALLOCATE statements).

If source-expr is a pointer, it shall be associated with a target. If source-expr is allocatable, it shall be allocated.

When an ALLOCATE statement is executed for an array with no allocate-shape-spec-list, the bounds of source-
expr determine the bounds of the array. Subsequent changes to the bounds of source-ezpr do not affect the array
bounds.

If SOURCE= appears, source-expr shall be conformable (2.5.6) with allocation. If the value of a nondeferred
length type parameter of allocate-object is different from the value of the corresponding type parameter of source-
expr, an error condition occurs. On successful allocation, if allocate-object and source-expr have the same rank
the value of allocate-object becomes that of source-expr, otherwise the value of each element of allocate-object
becomes that of source-expr.

If MOLD= appears and source-ezpr is a variable, its value need not be defined.
The STAT= specifier is described in 6.6.4.

If an error condition occurs during execution of an ALLOCATE statement that does not contain the STAT=
specifier, error termination is initiated.

The ERRMSG= specifier is described in 6.6.5.
6.6.1.3 Allocation of allocatable variables

The allocation status of an allocatable entity is one of the following at any time.

e The status of an allocatable variable becomes allocated if it is allocated by an ALLOCATE statement,
if it is allocated during assignment, or if it is given that status by the intrinsic subroutine MOVE_AL-
LOC(13.7.117). An allocatable variable with this status may be referenced, defined, or deallocated; allo-
cating it causes an error condition in the ALLOCATE statement. The intrinsic function ALLOCATED
(13.7.11) returns true for such a variable.

e An allocatable variable has a status of unallocated if it is not allocated. The status of an allocatable
variable becomes unallocated if it is deallocated (6.6.3) or if it is given that status by the allocation transfer
procedure. An allocatable variable with this status shall not be referenced or defined. It shall not be
supplied as an actual argument corresponding to a nonallocatable dummy argument, except to certain
intrinsic inquiry functions. It may be allocated with the ALLOCATE statement. Deallocating it causes an
error condition in the DEALLOCATE statement. The intrinsic function ALLOCATED (13.7.11) returns
false for such a variable.

At the beginning of execution of a program, allocatable variables are unallocated.

When the allocation status of an allocatable variable changes, the allocation status of any associated allocat-
able variable changes accordingly. Allocation of an allocatable variable establishes values for the deferred type
parameters of all associated allocatable variables.

An unsaved allocatable local variable of a procedure has a status of unallocated at the beginning of each invocation
of the procedure. An unsaved local variable of a construct has a status of unallocated at the beginning of each
execution of the construct.

126 Use of data objects 6.6.1.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

When an object of derived type is created by an ALLOCATE statement, any allocatable ultimate components
have an allocation status of unallocated.

6.6.1.4 Allocation of pointer targets

Allocation of a pointer creates an object that implicitly has the TARGET attribute. Following successful execution
of an ALLOCATE statement for a pointer, the pointer is associated with the target and may be used to reference
or define the target. Additional pointers may become associated with the pointer target or a part of the pointer
target by pointer assignment. It is not an error to allocate a pointer that is already associated with a target.
In this case, a new pointer target is created as required by the attributes of the pointer and any array bounds,
type, and type parameters specified by the ALLOCATE statement. The pointer is then associated with this
new target. Any previous association of the pointer with a target is broken. If the previous target had been
created by allocation, it becomes inaccessible unless other pointers are associated with it. The intrinsic function
ASSOCTATED (13.7.16) may be used to determine whether a pointer that does not have undefined association
status is associated.

At the beginning of execution of a function whose result is a pointer, the association status of the result pointer
is undefined. Before such a function returns, it shall either associate a target with this pointer or cause the
association status of this pointer to become disassociated.

6.6.2 NULLIFY statement
The NULLIFY statement causes pointers to be disassociated.
R637 nullify-stmt is NULLIFY (pointer-object-list)

R638 pointer-object is wariable-name
or structure-component
or proc-pointer-name

C643 (R638) Each pointer-object shall have the POINTER attribute.

A pointer-object shall not depend on the value, bounds, or association status of another pointer-object in the
same NULLIFY statement.

NOTE 6.21

When a NULLIFY statement is applied to a polymorphic pointer (4.3.1.3), its dynamic type becomes the
declared type.

6.6.3 DEALLOCATE statement
6.6.3.1 Syntax

The DEALLOCATE statement causes allocatable variables to be deallocated; it causes pointer targets to be
deallocated and the pointers to be disassociated.

R639 deallocate-stmt is DEALLOCATE (allocate-object-list [, dealloc-opt-list])
C644 (R639) Each allocate-object shall be a nonprocedure pointer or an allocatable variable.

R640 dealloc-opt is STAT = stat-variable
or ERRMSG = errmsg-variable

C645 (R640) No dealloc-opt shall appear more than once in a given dealloc-opt-list.

An allocate-object shall not depend on the value, bounds, allocation status, or association status of another
allocate-object in the same DEALLOCATE statement; it also shall not depend on the value of the stat-variable
or errmsg-variable in the same DEALLOCATE statement.

6.6.1.4 Use of data objects 127

10

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

The STAT= specifier is described in 6.6.4.

If an error condition occurs during execution of a DEALLOCATE statement that does not contain the STAT=
specifier, error termination is initiated.

The ERRMSG= specifier is described in 6.6.5.

NOTE 6.22
An example of a DEALLOCATE statement is:

DEALLOCATE (X, B)

6.6.3.2 Deallocation of allocatable variables

Deallocating an unallocated allocatable variable causes an error condition in the DEALLOCATE statement.
Deallocating an allocatable variable with the TARGET attribute causes the pointer association status of any
pointer associated with it to become undefined.

When the execution of a procedure is terminated by execution of a RETURN or END statement, an unsaved
allocatable local variable of the procedure retains its allocation and definition status if it is a function result
variable or a subobject thereof; otherwise, it is deallocated.

When a BLOCK construct terminates, an unsaved allocatable local variable of the construct is deallocated.

NOTE 6.23

The intrinsic function ALLOCATED may be used to determine whether a variable is allocated or unallo-
cated.

If an executable construct references a function whose result is either allocatable or a structure with a subobject
that is allocatable, and the function reference is executed, an allocatable result and any subobject that is an
allocated allocatable entity in the result returned by the function is deallocated after execution of the innermost
executable construct containing the reference.

If a function whose result is either allocatable or a structure with an allocatable subobject is referenced in the
specification part of a scoping unit or BLOCK construct, and the function reference is executed, an allocatable
result and any subobject that is an allocated allocatable entity in the result returned by the function is deallocated
before execution of the executable constructs of the scoping unit or block.

When a procedure is invoked, any allocated allocatable object that is an actual argument corresponding to an
INTENT (OUT) allocatable dummy argument is deallocated; any allocated allocatable object that is a subobject
of an actual argument corresponding to an INTENT (OUT) dummy argument is deallocated.

When an intrinsic assignment statement (7.2.1.3) is executed, any noncoarray allocated allocatable subobject of
the variable is deallocated before the assignment takes place.

When a variable of derived type is deallocated, any allocated allocatable subobject is deallocated.

If an allocatable component is a subobject of a finalizable object, that object is finalized before the component
is automatically deallocated.

The effect of automatic deallocation is the same as that of a DEALLOCATE statement without a dealloc-opt-list.

NOTE 6.24

In the following example:

SUBROUTINE PROCESS
REAL, ALLOCATABLE :: TEMP(:)

128 Use of data objects 6.6.3.2

11

12

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 6.24 (cont.)
REAL, ALLOCATABLE, SAVE :: X(:)

END SUBROUTINE PROCESS

on return from subroutine PROCESS, the allocation status of X is preserved because X has the SAVE
attribute. TEMP does not have the SAVE attribute, so it will be deallocated if it was allocated. On the
next invocation of PROCESS, TEMP will have an allocation status of unallocated.

There is implicit synchronization of all images in association with each DEALLOCATE statement that deallocates
one or more coarrays. On each image, execution of the segment (8.5.1) following the statement is delayed until all
other images have executed the same statement the same number of times. If the coarray is a dummy argument,
its ultimate argument (12.5.2.3) shall be the same coarray on every image.

There is also an implicit synchronization of all images in association with the deallocation of a coarray or coarray
subcomponent caused by the execution of a RETURN or END statement or the termination of a BLOCK
construct.

6.6.3.3 Deallocation of pointer targets

If a pointer appears in a DEALLOCATE statement, its association status shall be defined. Deallocating a pointer
that is disassociated or whose target was not created by an ALLOCATE statement causes an error condition
in the DEALLOCATE statement. If a pointer is associated with an allocatable entity, the pointer shall not be
deallocated.

If a pointer appears in a DEALLOCATE statement, it shall be associated with the whole of an object that was
created by allocation. Deallocating a pointer target causes the pointer association status of any other pointer
that is associated with the target or a portion of the target to become undefined.

6.6.4 STAT= specifier

The stat-variable shall not be allocated or deallocated within the ALLOCATE or DEALLOCATE statement
in which it appears; nor shall it depend on the value, bounds, deferred type parameters, allocation status, or
association status of any allocate-object in that statement.

If the STAT= specifier appears, successful execution of the ALLOCATE or DEALLOCATE statement causes the
stat-variable to become defined with a value of zero.

If an ALLOCATE or DEALLOCATE statement with a coarray allocate-object is executed when one or more
images has initiated termination of execution, the stat-variable becomes defined with the processor-dependent
positive integer value of the constant STAT_STOPPED_IMAGE from the intrinsic module ISO_FORTRAN _-
ENV (13.8.2). If any other error condition occurs during execution of the ALLOCATE or DEALLOCATE
statement, the stat-variable becomes defined with a processor-dependent positive integer value different from
STAT_STOPPED_IMAGE. In either case, each allocate-object has a processor-dependent status:

e each allocate-object that was successfully allocated shall have an allocation status of allocated or a pointer
association status of associated;

e each allocate-object that was successfully deallocated shall have an allocation status of unallocated or a
pointer association status of disassociated;

e each allocate-object that was not successfully allocated or deallocated shall retain its previous allocation
status or pointer association status.

NOTE 6.25

The status of objects that were not successfully allocated or deallocated can be individually checked with
the intrinsic functions ALLOCATED or ASSOCIATED.

6.6.3.3 Use of data objects 129

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

6.6.5 ERRMSG= specifier

The errmsg-variable shall not be allocated or deallocated within the ALLOCATE or DEALLOCATE statement
in which it appears; nor shall it depend on the value, bounds, deferred type parameters, allocation status, or
association status of any allocate-object in that statement.

If an error condition occurs during execution of an ALLOCATE or DEALLOCATE statement, the processor shall
assign an explanatory message to errmsg-variable. If no such condition occurs, the processor shall not change
the value of errmsg-variable.

130 Use of data objects 6.6.5

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

7 Expressions and assignment

7.1 Expressions

7.1.1 General

An expression represents either a data reference or a computation, and its value is either a scalar or an array.
An expression is formed from operands, operators, and parentheses.

An operand is either a scalar or an array. An operation is either intrinsic (7.1.5) or defined (7.1.6). More
complicated expressions can be formed using operands which are themselves expressions.

Evaluation of an expression produces a value, which has a type, type parameters (if appropriate), and a shape
(7.1.9). The corank of an expression that is not a variable is zero.

7.1.2 Form of an expression
7.1.2.1 Expression categories

An expression is defined in terms of several categories: primary, level-1 expression, level-2 expression, level-3
expression, level-4 expression, and level-5 expression.

These categories are related to the different operator precedence levels and, in general, are defined in terms of
other categories. The simplest form of each expression category is a primary.

7.1.2.2 Primary

R701 primary is constant
or designator
or array-constructor
or structure-constructor
or function-reference
or type-param-inquiry
or type-param-name
or (expr)

C701 (R701) The type-param-name shall be the name of a type parameter.

C702 (R701) The designator shall not be a whole assumed-size array.

NOTE 7.1

Examples of a primary are:
Example Syntactic class
1.0 constant
> ABCDEFGHIJKLMNOPQRSTUVWXYZ> (I:I) designator
[1.0, 2.0] array-constructor
PERSON (12, ’Jones’) structure-constructor
F X, Y function-reference
X%KIND type-param-inquiry
KIND type-param-name
(s +T) (expr)

7 Expressions and assignment 131

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

7.1.2.3 Level-1 expressions

Defined unary operators have the highest operator precedence (Table 7.2). Level-1 expressions are primaries
optionally operated on by defined unary operators:

R702 level-1-expr is [defined-unary-op | primary
R703 defined-unary-op is . letter [letter]

C703 (R703) A defined-unary-op shall not contain more than 63 letters and shall not be the same as any
intrinsic-operator or logical-literal-constant.

NOTE 7.2

Simple examples of a level-1 expression are:
Example Syntactic class
A primary (R701)
.INVERSE. B level-1-expr (R702)

A more complicated example of a level-1 expression is:

.INVERSE. (A + B)

7.1.2.4 Level-2 expressions

Level-2 expressions are level-1 expressions optionally involving the numeric operators power-op, mult-op, and
add-op.

R704 mult-operand is level-1-expr | power-op mult-operand]
R705 add-operand is [add-operand mult-op | mult-operand
R706 level-2-expr is [[level-2-expr | add-op | add-operand
R707 power-op is *¥
R708 mult-op is *
or /
R709 add-op is +
or -
NOTE 7.3
Simple examples of a level-2 expression are:
Example Syntactic class Remarks
A level-1-expr A is a primary. (R702)
B *x C mult-operand B is a level-1-expr, ** is a power-op,
and C is a mult-operand. (R704)
D x E add-operand D is an add-operand, * is a mult-op,
and E is a mult-operand. (R705)
+1 level-2-expr + is an add-op
and 1 is an add-operand. (R706)
F-1I level-2-expr F is a level-2-expr, — is an add-op,
and I is an add-operand. (R706)

132 Expressions and assignment 7.1.2.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 7.3 (cont.)

A more complicated example of a level-2 expression is:

- A+D*xE+ B *xx (C

7.1.2.5 Level-3 expressions

Level-3 expressions are level-2 expressions optionally involving the character operator concat-op.

R710 level-3-expr is [level-3-expr concat-op | level-2-expr
R711 concat-op is //
NOTE 7.4
Simple examples of a level-3 expression are:
Example Syntactic class
A level-2-expr (R706)
B//C level-3-expr (R710)

A more complicated example of a level-3 expression is:

X // Y // ’ABCD’

7.1.2.6 Level-4 expressions

Level-4 expressions are level-3 expressions optionally involving the relational operators rel-op.

R712 level-4-expr is [level-3-expr rel-op | level-3-expr
R713 rel-op is .EQ.
or .NE.
or .LT.
or .LE.
or .GT.
or .GE.
or ==
or /=
or <
or <=
or >
or >=
NOTE 7.5
Simple examples of a level-4 expression are:
Example Syntactic class
A level-3-expr (R710)
B ==C level-4-expr (R712)
D < E level-4-expr (R712)

A more complicated example of a level-4 expression is:

(A+B) /=C

7.1.2.5 Expressions and assignment 133

ISO/IEC SC22/WG5/N1723

7.1.2.7 Level-5 expressions

CD 1539-1 08-007r2:2008/03/11

Level-5 expressions are level-4 expressions optionally involving the logical operators not-op, and-op, or-op, and

equiv-op.
R714 and-operand is [not-op] level-4-expr
R715 or-operand is [or-operand and-op | and-operand
R716 equiv-operand is [equiv-operand or-op | or-operand
R717 level-5-expr is [level-5-expr equiv-op | equiv-operand
R718 not-op is .NOT.
R719 and-op is .AND.
R720 or-op is .OR.
R721 equiv-op is .EQV.
or .NEQV.
NOTE 7.6
Simple examples of a level-5 expression are:
Example Syntactic class
A level-4-expr (R712)
.NOT. B and-operand (R714)
C .AND. D or-operand (R715)
E .OR. F equiv-operand (R716)
G .EQV. H level-5-expr (RT17)
S .NEQV. T level-5-expr (R717)

A more complicated example of a level-5 expression is:

A .AND. B .EQV. .NOT. C

7.1.2.8 General form of an expression

Expressions are level-5 expressions optionally involving defined binary operators. Defined binary operators have
the lowest operator precedence (Table 7.2).

[expr defined-binary-op | level-5-expr

. letter [letter |

(R723) A defined-binary-op shall not contain more than 63 letters and shall not be the same as any

Syntactic class
level-5-expr (RT717)

R722 expr is
R723 defined-binary-op is
C704
intrinsic-operator or logical-literal-constant.
NOTE 7.7
Simple examples of an expression are:
Example
A
B.UNION.C

More complicated examples of an expression are:

expr (R722)

134

Expressions and assignment 7.1.2.8

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 7.7 (cont.)

(B .INTERSECT. C) .UNION. (X - Y)
A+B==C=x*xD
.INVERSE. (A + B)
A +B .AND. C * D
E// G=="H (1:10)

7.1.3 Precedence of operators

1 There is a precedence among the intrinsic and extension operations corresponding to the form of expressions
specified in 7.1.2, which determines the order in which the operands are combined unless the order is changed by
the use of parentheses. This precedence order is summarized in Table 7.2.

Table 7.2: Categories of operations and relative precedence

Category of operation Operators Precedence
Extension defined-unary-op Highest
Numeric ok
Numeric */

Numeric unary +, —

Numeric binary +, —
Character //
Relational .EQ., .NE., .LT., .LE., .GT., .GE.,

==, /=, <, <=, >, >=

Logical .NOT.

Logical AND.

Logical .OR.

Logical EQV., NEQV. .
Extension defined-binary-op Lowest

2 The precedence of a defined operation is that of its operator.

NOTE 7.8
For example, in the expression

-A k% 2

the exponentiation operator (**) has precedence over the negation operator (—); therefore, the operands of
the exponentiation operator are combined to form an expression that is used as the operand of the negation
operator. The interpretation of the above expression is the same as the interpretation of the expression

- (A ** 2)

3 The general form of an expression (7.1.2) also establishes a precedence among operators in the same syntactic class.
This precedence determines the order in which the operands are to be combined in determining the interpretation
of the expression unless the order is changed by the use of parentheses.

NOTE 7.9

In interpreting a level-2-expr containing two or more binary operators + or —, each operand (add-operand)
is combined from left to right. Similarly, the same left-to-right interpretation for a mult-operand in add-
operand, as well as for other kinds of expressions, is a consequence of the general form. However, for
interpreting a mult-operand expression when two or more exponentiation operators ** combine level-1-expr
operands, each level-1-expr is combined from right to left.

For example, the expressions

7.1.3 Expressions and assignment 135

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

NOTE 7.9 (cont.)

2.1 + 3.4 +4.9

2.1 x 3.4 x 4.9
2.1/ 3.4/ 4.9

2 %% 3 xx 4

)AB) // 7CD7 // ’EF)

have the same interpretations as the expressions

2 xx (3 *xx 4)
(’AB’ // °CD’) // ’EF’

As a consequence of the general form (7.1.2), only the first add-operand of a level-2-expr may be preceded
by the identity (+) or negation (—) operator. These formation rules do not permit expressions containing
two consecutive numeric operators, such as A ** —B or A + —B. However, expressions such as A ** (-B)
and A + (-B) are permitted. The rules do allow a binary operator or an intrinsic unary operator to be
followed by a defined unary operator, such as:

A x _INVERSE. B
- .INVERSE. (B)

As another example, in the expression
A .OR. B .AND. C

the general form implies a higher precedence for the .AND. operator than for the .OR. operator; therefore,
the interpretation of the above expression is the same as the interpretation of the expression

A .OR. (B .AND. C)

NOTE 7.10

An expression may contain more than one category of operator. The logical expression

L .O0R. A+B>=C

where A, B, and C are of type real, and L is of type logical, contains a numeric operator, a relational
operator, and a logical operator. This expression would be interpreted the same as the expression

L .0R. ((A + B) >=C)

NOTE 7.11

If

the operator ** is extended to type logical,
the operator .STARSTAR. is defined to duplicate the function of ** on type real,
.MINUS. is defined to duplicate the unary operator —, and

L1 and L2 are type logical and X and Y are type real,

then in precedence: L1 ** L2 is higher than X * Y; X * Y is higher than X .STARSTAR. Y; and .MINUS. X
is higher than —X.

136

Expressions and assignment 7.1.4

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

7.1.4 Evaluation of operations
1 An intrinsic operation requires the values of its operands.

2 The evaluation of a function reference shall neither affect nor be affected by the evaluation of any other entity
within the statement. If a function reference causes definition or undefinition of an actual argument of the
function, that argument or any associated entities shall not appear elsewhere in the same statement. However,
execution of a function reference in the logical expression in an IF statement (8.1.8.4), the mask expression in a
WHERE statement (7.2.3.1), or the subscripts and strides in a FORALL statement (7.2.4) is permitted to define
variables in the statement that is conditionally executed.

NOTE 7.12

For example, the statements

A (I

F (I
Y) +

=)
G X X
are prohibited if the reference to F defines or undefines I or the reference to G defines or undefines X.

However, in the statements

IF (F (X)) A =X
WHERE (G (X)) B = X

F or G may define X.

3 The appearance of an array constructor requires the evaluation of each scalar-int-expr of the ac-implied-do-control
in any ac-implied-do it may contain.

4 When an elemental binary operation is applied to a scalar and an array or to two arrays of the same shape, the
operation is performed element-by-element on corresponding array elements of the array operands.

NOTE 7.13

For example, the array expression

A+ B

produces an array of the same shape as A and B. The individual array elements of the result have the
values of the first element of A added to the first element of B, the second element of A added to the second
element of B, etc.

5 When an elemental unary operator operates on an array operand, the operation is performed element-by-element,
and the result is the same shape as the operand.

NOTE 7.14

If an elemental operation is intrinsically pure or is implemented by a pure elemental function (12.8), the
element operations may be performed simultaneously or in any order.

7.1.5 Intrinsic operations
7.1.5.1 Definitions

1 An intrinsic operation is either an intrinsic unary operation or an intrinsic binary operation. An intrinsic
unary operation is an operation of the form intrinsic-operator xo where xo is of an intrinsic type (4.4) listed
in Table 7.3 for the unary intrinsic operator.

7.1.5 Expressions and assignment 137

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

An intrinsic binary operation is an operation of the form xi intrinsic-operator xo where x1 and xo are
conformable and of the intrinsic types (4.4) listed in Table 7.3 for the binary intrinsic operator.

A numeric intrinsic operation is an intrinsic operation for which the intrinsic-operator is a numeric operator
(4, — *, /, or ¥*). A numeric intrinsic operator is the operator in a numeric intrinsic operation.

The character intrinsic operation is the intrinsic operation for which the intrinsic-operator is (//) and both
operands are of type character. The operands shall have the same kind type parameter. The character intrinsic
operator is the operator in a character intrinsic operation.

A logical intrinsic operation is an intrinsic operation for which the intrinsic-operator is .AND., .OR., . XOR.,
.NOT., .EQV., or .NEQV. and both operands are of type logical. A logical intrinsic operator is the operator
in a logical intrinsic operation.

A relational intrinsic operator is an intrinsic-operator that is .EQ., .NE., .GT., .GE., .LT., .LE., ==, /=, >,
>= <, or <=. A relational intrinsic operation is an intrinsic operation for which the intrinsic-operator is a
relational intrinsic operator. A numeric relational intrinsic operation is a relational intrinsic operation for
which both operands are of numeric type. A character relational intrinsic operation is a relational intrinsic
operation for which both operands are of type character. The kind type parameters of the operands of a character
relational intrinsic operation shall be the same.

The interpretations defined in subclause 7.1.5 apply to both scalars and arrays; the interpretation for arrays is
obtained by applying the interpretation for scalars element by element.

NOTE 7.15

For example, if X is of type real, J is of type integer, and INT is the real-to-integer intrinsic conversion
function, the expression INT (X + J) is an integer expression and X + J is a real expression.

Table 7.3: Type of operands and results for intrinsic operators

Intrinsic operator Type of Type of Type of
op L1 L2 [z1] op xo
Unary +, — LR, Z LR, Z
I LR, Z LR, Z
Binary +, —, *, /, ** R LR, Z R, R, Z
Z LR, Z 7,7,7
// C C C
I LR, Z L,L, L
EQ., NE., R LR, Z L,L, L
== /= Z LR, Z L,L, L
C C L
I LR L, L
.GT., .GE., .LT., .LE. R LR L,L
> >= <, <= C C L
NOT. L L
AND., .OR., .EQV., NEQV. L L L
Note: The symbols I, R, Z, C, and L stand for the types integer, real, complex,
character, and logical, respectively. Where more than one type for zs is
given, the type of the result of the operation is given in the same relative
position in the next column.

138 Expressions and assignment 7.1.5.2

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

7.1.5.2 Numeric intrinsic operations
7.1.5.2.1 Interpretation of numeric intrinsic operations

The two operands of numeric intrinsic binary operations may be of different numeric types or different kind type
parameters. Except for a value raised to an integer power, if the operands have different types or kind type
parameters, the effect is as if each operand that differs in type or kind type parameter from those of the result is
converted to the type and kind type parameter of the result before the operation is performed. When a value of
type real or complex is raised to an integer power, the integer operand need not be converted.

A numeric operation is used to express a numeric computation. Evaluation of a numeric operation produces a
numeric value. The permitted data types for operands of the numeric intrinsic operations are specified in 7.1.5.1.

The numeric operators and their interpretation in an expression are given in Table 7.4, where x; denotes the
operand to the left of the operator and x5 denotes the operand to the right of the operator.

Table 7.4: Interpretation of the numeric intrinsic operators

Operator Representing Use of operator Interpretation
*ok Exponentiation 1 ** 29 Raise x; to the power x5
/ Division 1 [9 Divide x1 by x5
* Multiplication x1 ¥ 19 Multiply z1 by z2
- Subtraction T1 - To Subtract zo from
- Negation - X Negate o
+ Addition T1 + To Add z; and x5
+ Identity + x9 Same as o

The interpretation of a division operation depends on the types of the operands (7.1.5.2.2).

If 1 and x5 are of type integer and zo has a negative value, the interpretation of z; ** x5 is the same as the

interpretation of 1/(z1 ** ABS (z2)), which is subject to the rules of integer division (7.1.5.2.2).

NOTE 7.16
For example, 2 ** (=3) has the value of 1/(2 ** 3), which is zero.

7.1.5.2.2 Integer division

One operand of type integer may be divided by another operand of type integer. Although the mathematical
quotient of two integers is not necessarily an integer, Table 7.3 specifies that an expression involving the division
operator with two operands of type integer is interpreted as an expression of type integer. The result of such an
operation is the integer closest to the mathematical quotient and between zero and the mathematical quotient
inclusively.

NOTE 7.17
For example, the expression (—8) / 3 has the value (-2).

7.1.5.2.3 Complex exponentiation

*k

In the case of a complex value raised to a complex power, the value of the operation x x9 is the principal

value of 7.

7.1.5.2.4 Evaluation of numeric intrinsic operations

Once the interpretation of a numeric intrinsic operation is established, the processor may evaluate any mathe-
matically equivalent expression, provided that the integrity of parentheses is not violated.

7.1.5.2 Expressions and assignment 139

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

2 Two expressions of a numeric type are mathematically equivalent if, for all possible values of their primaries, their
mathematical values are equal. However, mathematically equivalent expressions of numeric type may produce
different computational results.

NOTE 7.18

Any difference between the values of the expressions (1./3.)*3. and 1. is a computational difference,
not a mathematical difference. The difference between the values of the expressions 5/2 and 5./2. is a
mathematical difference, not a computational difference.

The mathematical definition of integer division is given in 7.1.5.2.2.

NOTE 7.19

The following are examples of expressions with allowable alternative forms that may be used by the processor
in the evaluation of those expressions. A, B, and C represent arbitrary real or complex operands; I and J
represent arbitrary integer operands; and X, Y, and Z represent arbitrary operands of numeric type.

Expression Allowable alternative form
X+Y Y + X

X*Y Y * X

X +Y Y -X

X+Y+7Z X + (Y +2Z)

X-Y+7Z X-(Y-2)

X*A/Z X*(A/7)
X*Y-X*Z X *(Y-2)

A/B/C A/ (B*C)

A /5.0 0.2 * A

The following are examples of expressions with forbidden alternative forms that shall not be used by a
processor in the evaluation of those expressions.

Expression Forbidden alternative form
I/2 0.5*1

X*1/1J X*T/J)

I1/J/A I/(J*A)

X+Y)+17Z X+ (Y+72)

X*Y)- (X*2Z) X*(Y-12)

X*(Y-7Z) X*Y-X*7Z

3 The execution of any numeric operation whose result is not defined by the arithmetic used by the processor is
prohibited. Raising a negative-valued primary of type real to a real power is prohibited.

NOTE 7.20

In addition to the parentheses required to establish the desired interpretation, parentheses may be included
to restrict the alternative forms that may be used by the processor in the actual evaluation of the expression.
This is useful for controlling the magnitude and accuracy of intermediate values developed during the
evaluation of an expression.

For example, in the expression
A+ (B-0
the parenthesized expression (B — C) shall be evaluated and then added to A.

The inclusion of parentheses may change the mathematical value of an expression. For example, the two
expressions

140 Expressions and assignment 7.1.5.2

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 7.20 (cont.)

AxTI/J
Ax(I/ D

may have different mathematical values if T and J are of type integer.

NOTE 7.21

Each operand in a numeric intrinsic operation has a type that may depend on the order of evaluation used
by the processor.

For example, in the evaluation of the expression

Z+R+1

where Z, R, and I represent data objects of complex, real, and integer type, respectively, the type of the
operand that is added to I may be either complex or real, depending on which pair of operands (Z and R,
R and I, or Z and I) is added first.

7.1.5.3 Character intrinsic operation
7.1.5.3.1 Interpretation of the character intrinsic operation

The character intrinsic operator // is used to concatenate two operands of type character with the same kind
type parameter. Evaluation of the character intrinsic operation produces a result of type character.

The interpretation of the character intrinsic operator // when used to form an expression is given in Table 7.6,
where 1 denotes the operand to the left of the operator and z2 denotes the operand to the right of the operator.

Table 7.6: Interpretation of the character intrinsic operator //
Operator Representing Use of operator Interpretation

// Concatenation x1 /] @9 Concatenate x1 with x4

The result of the character intrinsic operation // is a character string whose value is the value of 1 concatenated
on the right with the value of o and whose length is the sum of the lengths of x; and x. Parentheses used to
specify the order of evaluation have no effect on the value of a character expression.

NOTE 7.22

For example, the value of (AB’ // 'CDE’) // ’F’ is the string ’TABCDEF’. Also, the value of
'AB’ // CCDE’ // 'F’) is the string "ABCDEF".

7.1.5.3.2 Evaluation of the character intrinsic operation

A processor is only required to evaluate as much of the character intrinsic operation as is required by the context
in which the expression appears.

NOTE 7.23
For example, the statements

CHARACTER (LEN = 2) C1, C2, C3, CF
C1 =C2 // CF (C3)

do not require the function CF to be evaluated, because only the value of C2 is needed to determine the
value of C1 because C1 and C2 both have a length of 2.

7.1.5.3 Expressions and assignment 141

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

7.1.5.4 Logical intrinsic operations
7.1.5.4.1 Interpretation of logical intrinsic operations

1 A logical operation is used to express a logical computation. Evaluation of a logical operation produces a result
of type logical. The permitted types for operands of the logical intrinsic operations are specified in 7.1.5.1.

2 The logical operators and their interpretation when used to form an expression are given in Table 7.7, where x
denotes the operand to the left of the operator and zs denotes the operand to the right of the operator.

Table 7.7: Interpretation of the logical intrinsic operators

Operator Representing Use of operator Interpretation

.NOT. Logical negation NOT. x4 True if x5 is false

AND. Logical conjunction z1 .AND. x4 True if 1 and x5 are both true
.OR. Logical inclusive disjunction z1 .OR. x5 True if 27 and/or x5 is true

True if both z; and x5 are true or
both are false

True if either x; or x> is true, but
not both

EQV. Logical equivalence r1 .EQV. zo

.NEQV. Logical nonequivalence z1 .NEQV. z2

3 The values of the logical intrinsic operations are shown in Table 7.8.

Table 7.8: The values of operations involving logical intrinsic operators

1) .NOT. xTo T AND. T2 T .OR. T2 Iy EQV i) T NEQV T2
true true false true true true false
true false true false true false true
false true false false true false true
false false true false false true false

7.1.5.4.2 Evaluation of logical intrinsic operations

1 Once the interpretation of a logical intrinsic operation is established, the processor may evaluate any other
expression that is logically equivalent, provided that the integrity of parentheses in any expression is not violated.

NOTE 7.24

For example, for the variables L1, L2, and L3 of type logical, the processor may choose to evaluate the
expression

L1 .AND. L2 .AND. L3

as

L1 .AND. (L2 .AND. L3)

2 Two expressions of type logical are logically equivalent if their values are equal for all possible values of their
primaries.

7.1.5.5 Relational intrinsic operations
7.1.5.5.1 Interpretation of relational intrinsic operations
1 A relational intrinsic operation is used to compare values of two operands using the relational intrinsic operators

ALT., .LE., .GT., .GE., .EQ., .NE., <, <=, >, >=, ==, and /=. The permitted types for operands of the
relational intrinsic operators are specified in 7.1.5.1.

142 Expressions and assignment 7.1.5.5

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

2 The operators <, <=, >, >=, ==, and /= always have the same interpretations as the operators .LT., .LE.,
.GT., .GE., .EQ., and .NE., respectively.

NOTE 7.25

As shown in Table 7.3, a relational intrinsic operator cannot be used to compare the value of an expression
of a numeric type with one of type character or logical. Also, two operands of type logical cannot be
compared, a complex operand may be compared with another numeric operand only when the operator is
EQ., NE., ==, or /=, and two character operands cannot be compared unless they have the same kind
type parameter value.

3 Evaluation of a relational intrinsic operation produces a default logical result.

4 The interpretation of the relational intrinsic operators is given in Table 7.9, where x; denotes the operand to the
left of the operator and x5 denotes the operand to the right of the operator.

Table 7.9: Interpretation of the relational intrinsic operators

Operator Representing Use of operator Interpretation
.LT. Less than z1 LT. 29 1 less than zo
< Less than T < X2 1 less than xo
.LE. Less than or equal to z1 .LE. 25 x1 less than or equal to xo
<= Less than or equal to T <= X2 x1 less than or equal to x-
.GT. Greater than z1 .GT. 2o 1 greater than xo
> Greater than T, > Xo x1 greater than xo
.GE. Greater than or equal to r1 .GE. z9 x1 greater than or equal to x5
>= Greater than or equal to T1 >= X9 x1 greater than or equal to x5
EQ. Equal to x1 .EQ. zo 1 equal to xo
== Equal to T == X9 1 equal to o
.NE. Not equal to z1 .NE. x5 r1 not equal to xo
/= Not equal to T /= 29 1 not equal to

5 A numeric relational intrinsic operation is interpreted as having the logical value true if and only if the values of
the operands satisfy the relation specified by the operator.

6 In the numeric relational operation
x1 rel-op xo

7 if the types or kind type parameters of x; and x5 differ, their values are converted to the type and kind type
parameter of the expression x; + x5 before evaluation.

8 A character relational intrinsic operation is interpreted as having the logical value true if and only if the values
of the operands satisfy the relation specified by the operator.

9 For a character relational intrinsic operation, the operands are compared one character at a time in order,
beginning with the first character of each character operand. If the operands are of unequal length, the shorter
operand is treated as if it were extended on the right with blanks to the length of the longer operand. If both
x1 and zo are of zero length, x; is equal to xo; if every character of x; is the same as the character in the
corresponding position in xo, x; is equal to x5. Otherwise, at the first position where the character operands
differ, the character operand x; is considered to be less than xo if the character value of x; at this position
precedes the value of z5 in the collating sequence (2.1); z7 is greater than xo if the character value of 1 at this
position follows the value of x5 in the collating sequence.

NOTE 7.26
The collating sequence depends partially on the processor; however, the result of the use of the operators
.EQ., NE., ==, and /= does not depend on the collating sequence.

7.1.5.5 Expressions and assignment 143

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

NOTE 7.26 (cont.)

For nondefault character types, the blank padding character is processor dependent.

7.1.5.5.2 Evaluation of relational intrinsic operations

1 Once the interpretation of a relational intrinsic operation is established, the processor may evaluate any other
expression that is relationally equivalent, provided that the integrity of parentheses in any expression is not
violated.

2 Two relational intrinsic operations are relationally equivalent if their logical values are equal for all possible values
of their primaries.

7.1.6 Defined operations

7.1.6.1 Definitions

1 A defined operation is either a defined unary operation or a defined binary operation. A defined unary op-
eration is an operation that has the form defined-unary-op x4 or intrinsic-operator xo and that is defined by a
function and a generic interface (4.5.2, 12.4.3.4).

2 A function defines the unary operation op x5 if

(1) the function is specified with a FUNCTION (12.6.2.2) or ENTRY (12.6.2.6) statement that specifies one
dummy argument ds,

(2) either
(a) a generic interface (12.4.3.2) provides the function with a generic-spec of OPERATOR . (op),
or
(b) there is a generic binding (4.5.2) in the declared type of xo with a generic-spec of OPERA-
TOR (op) and there is a corresponding binding to the function in the dynamic type of 2,
(3) the type of dy is compatible with the dynamic type of x5,
(4) the type parameters, if any, of dy match the corresponding type parameters of xo, and
(5) either
(a) the rank of 25 matches that of ds or
(b) the function is elemental and there is no other function that defines the operation.

3 If dy is an array, the shape of x5 shall match the shape of ds.

4 A defined binary operation is an operation that has the form z defined-binary-op xs or x1 intrinsic-operator o
and that is defined by a function and a generic interface.

5 A function defines the binary operation z; op x5 if

(1) the function is specified with a FUNCTION (12.6.2.2) or ENTRY (12.6.2.6) statement that specifies
two dummy arguments, d; and da,

(2) either
(a) a generic interface (12.4.3.2) provides the function with a generic-spec of OPERATOR (op),
or

(b) there is a generic binding (4.5.2) in the declared type of x; or xo with a generic-spec of
OPERATOR (op) and there is a corresponding binding to the function in the dynamic type
of x1 or xzo, respectively,

(3) the types of dy and ds are compatible with the dynamic types of z1 and x5, respectively,

(4) the type parameters, if any, of d; and ds match the corresponding type parameters of x; and xs,
respectively, and

144 Expressions and assignment 7.1.6

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

(5) either
(a) the ranks of z; and x5 match those of d; and ds or

(b) the function is elemental, 1 and z9 are conformable, and there is no other function that defines
the operation.

If d; or ds is an array, the shapes of 1 and x5 shall match the shapes of d; and ds, respectively.

NOTE 7.27

An intrinsic operator may be used as the operator in a defined operation. In such a case, the generic
properties of the operator are extended.

An extension operation is a defined operation in which the operator is of the form defined-unary-op or defined-
binary-op. Such an operator is called an extension operator. The operator used in an extension operation may
be such that a generic interface for the operator may specify more than one function.

7.1.6.2 Interpretation of a defined operation
The interpretation of a defined operation is provided by the function that defines the operation.

The operators <, <=, >, >=, ==, and /= always have the same interpretations as the operators .LT., .LE.,
.GT., .GE., .EQ., and .NE., respectively.

7.1.6.3 Evaluation of a defined operation

Once the interpretation of a defined operation is established, the processor may evaluate any other expression
that is equivalent, provided that the integrity of parentheses is not violated.

Two expressions of derived type are equivalent if their values are equal for all possible values of their primaries.

7.1.7 Evaluation of operands

It is not necessary for a processor to evaluate all of the operands of an expression, or to evaluate entirely each
operand, if the value of the expression can be determined otherwise.

NOTE 7.28

This principle is most often applicable to logical expressions, zero-sized arrays, and zero-length strings, but
it applies to all expressions.

For example, in evaluating the expression

X>Y .0R. L (2)

where X, Y, and Z are real and L is a function of type logical, the function reference L (Z) need not be
evaluated if X is greater than Y. Similarly, in the array expression

W (Z) + A

where A is of size zero and W is a function, the function reference W (Z) need not be evaluated.

If a statement contains a function reference in a part of an expression that need not be evaluated, all entities that
would have become defined in the execution of that reference become undefined at the completion of evaluation
of the expression containing the function reference.

NOTE 7.29

In the examples in Note 7.28, if L or W defines its argument, evaluation of the expressions under the specified
conditions causes Z to become undefined, no matter whether or not L(Z) or W(Z) is evaluated.

7.1.6.2 Expressions and assignment 145

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

If a statement contains a function reference in a part of an expression that need not be evaluated, no invocation
of that function in that part of the expression shall execute an image control statement other than CRITICAL
or END CRITICAL.

NOTE 7.30

‘ This restriction is intended to avoid inadvertant deadlock caused by optimization.

7.1.8 Integrity of parentheses

The rules for evaluation specified in subclause 7.1.5 state certain conditions under which a processor may evaluate
an expression that is different from the one specified by applying the rules given in 7.1.2 and rules for interpretation
specified in subclause 7.1.5. However, any expression in parentheses shall be treated as a data entity.

NOTE 7.31

For example, in evaluating the expression A + (B — C) where A, B, and C are of numeric types, the
difference of B and C shall be evaluated before the addition operation is performed; the processor shall not
evaluate the mathematically equivalent expression (A + B) — C.

7.1.9 Type, type parameters, and shape of an expression
7.1.9.1 General

The type, type parameters, and shape of an expression depend on the operators and on the types, type parameters,
and shapes of the primaries used in the expression, and are determined recursively from the syntactic form of the
expression. The type of an expression is one of the intrinsic types (4.4) or a derived type (4.5).

If an expression is a polymorphic primary or defined operation, the type parameters and the declared and dynamic
types of the expression are the same as those of the primary or defined operation. Otherwise the type parameters
and dynamic type of the expression are the same as its declared type and type parameters; they are referred to
simply as the type and type parameters of the expression.

R724 logical-expr is expr

C705 (R724) logical-expr shall be of type logical.

R725 char-expr is expr

C706 (R725) char-expr shall be of type character.

R726 default-char-expr is expr

C707 (R726) default-char-ezpr shall be default character.
R727 int-expr is expr

C708 (R727) int-expr shall be of type integer.

R728 numeric-expr is expr

C709 (R728) numeric-expr shall be of type integer, real, or complex.

7.1.9.2 Type, type parameters, and shape of a primary

The type, type parameters, and shape of a primary are determined according to whether the primary is a
constant, variable, array constructor, structure constructor, function reference, type parameter inquiry, type
parameter name, or parenthesized expression. If a primary is a constant, its type, type parameters, and shape
are those of the constant. If it is a structure constructor, it is scalar and its type and type parameters are as
described in 4.5.10. If it is an array constructor, its type, type parameters, and shape are as described in 4.8.

146 Expressions and assignment 7.1.8

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

If it is a variable or function reference, its type, type parameters, and shape are those of the variable (5.2, 5.3)
or the function reference (12.5.3), respectively. If the function reference is generic (12.4.3.2, 13.5) then its type,
type parameters, and shape are those of the specific function referenced, which is determined by the types, type
parameters, and ranks of its actual arguments as specified in 12.5.5.2. If it is a type parameter inquiry or type
parameter name, it is a scalar integer with the kind of the type parameter.

If a primary is a parenthesized expression, its type, type parameters, and shape are those of the expression.
The associated target object is referenced if a pointer appears as

e a primary in an intrinsic or defined operation,
e the expr of a parenthesized primary, or
e the only primary on the right-hand side of an intrinsic assignment statement.

The type, type parameters, and shape of the primary are those of the current target. If the pointer is not
associated with a target, it may appear as a primary only as an actual argument in a reference to a procedure
whose corresponding dummy argument is declared to be a pointer, or as the target in a pointer assignment
statement.

A disassociated array pointer or an unallocated allocatable array has no shape but does have rank. The type,
type parameters, and rank of the result of the intrinsic function NULL (13.7.124) depend on context.

7.1.9.3 Type, type parameters, and shape of the result of an operation

The type of the result of an intrinsic operation [z1] op 2 is specified by Table 7.3. The shape of the result of an
intrinsic operation is the shape of x5 if op is unary or if x; is scalar, and is the shape of 1 otherwise.

The type, type parameters, and shape of the result of a defined operation [z1] op 2 are specified by the function
defining the operation (7.1.6).

An expression of an intrinsic type has a kind type parameter. An expression of type character also has a character
length parameter.

The type parameters of the result of an intrinsic operation are as follows.

e For an expression 1 // x2 where // is the character intrinsic operator and x; and x5 are of type character,
the character length parameter is the sum of the lengths of the operands and the kind type parameter is
the kind type parameter of x1, which shall be the same as the kind type parameter of x,.

e For an expression op z2 where op is an intrinsic unary operator and x, is of type integer, real, complex, or
logical, the kind type parameter of the expression is that of the operand.

e For an expression x1 op x2 where op is a numeric intrinsic binary operator with one operand of type integer
and the other of type real or complex, the kind type parameter of the expression is that of the real or
complex operand.

e For an expression x1 op x2 where op is a numeric intrinsic binary operator with both operands of the same
type and kind type parameters, or with one real and one complex with the same kind type parameters, the
kind type parameter of the expression is identical to that of each operand. In the case where both operands
are integer with different kind type parameters, the kind type parameter of the expression is that of the
operand with the greater decimal exponent range if the decimal exponent ranges are different; if the decimal
exponent ranges are the same, the kind type parameter of the expression is processor dependent, but it is
the same as that of one of the operands. In the case where both operands are any of type real or complex
with different kind type parameters, the kind type parameter of the expression is that of the operand with
the greater decimal precision if the decimal precisions are different; if the decimal precisions are the same,
the kind type parameter of the expression is processor dependent, but it is the same as that of one of the
operands.

e For an expression 1 op x2 where op is a logical intrinsic binary operator with both operands of the same
kind type parameter, the kind type parameter of the expression is identical to that of each operand. In the

7.1.9.3 Expressions and assignment 147

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

case where both operands are of type logical with different kind type parameters, the kind type parameter
of the expression is processor dependent, but it is the same as that of one of the operands.

e For an expression x1 op x5 where op is a relational intrinsic operator, the expression has the default logical
kind type parameter.

7.1.10 Conformability rules for elemental operations
1 An elemental operation is an intrinsic operation or a defined operation for which the function is elemental (12.8).

2 For all elemental binary operations, the two operands shall be conformable. In the case where one is a scalar and
the other an array, the scalar is treated as if it were an array of the same shape as the array operand with every
element, if any, of the array equal to the value of the scalar.

7.1.11 Specification expression

1 A specification expression is an expression with limitations that make it suitable for use in specifications such
as length type parameters (C404) and array bounds (R517, R518). A specification-expr shall be an initialization
expression unless it is in an interface body (12.4.3.2), the specification part of a subprogram or BLOCK construct,
a derived type definition, or the declaration-type-spec of a FUNCTION statement (12.6.2.2).

R729 specification-expr is scalar-int-expr
C710 (R729) The scalar-int-expr shall be a restricted expression.

2 A restricted expression is an expression in which each operation is intrinsic or defined by a specification
function and each primary is
(1) a constant or subobject of a constant,

(2) an object designator with a base object that is a dummy argument that has neither the OPTIONAL
nor the INTENT (OUT) attribute,

(3) an object designator with a base object that is in a common block,
(4) an object designator with a base object that is made accessible by use or host association,
()

an object designator with a base object that is a local variable of the procedure containing the
BLOCK construct in which the restricted expression appears,

(6) an object designator with a base object that is a local variable of an outer BLOCK construct con-
taining the BLOCK construct in which the restricted expression appears,

(7) an array constructor where each element and each scalar-int-expr of each ac-implied-do-control is a
restricted expression,

(8) a structure constructor where each component is a restricted expression,
(9) a specification inquiry where each designator or function argument is
(a) a restricted expression or
(b) a variable whose properties inquired about are not
(i) dependent on the upper bound of the last dimension of an assumed-size array,
(ii) deferred, or
(iii) defined by an expression that is not a restricted expression,

(10) a reference to any other standard intrinsic function where each argument is a restricted expression,
(11) a reference to a specification function where each argument is a restricted expression,

(12) a type parameter of the derived type being defined,

(13) an ac-do-variable within an array constructor where each scalar-int-expr of the corresponding ac-

implied-do-control is a restricted expression, or
(14) a restricted expression enclosed in parentheses,

3 where each subscript, section subscript, substring starting point, substring ending point, and type parameter
value is a restricted expression, and where any final subroutine that is invoked is pure.

148 Expressions and assignment 7.1.10

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

A specification inquiry is a reference to

(1) an intrinsic inquiry function,

(2) a type parameter inquiry (6.4.4),

(3) an IEEE inquiry function (14.10.2),

(4) the function C_SIZEOFfrom the intrinsic module ISO_C_BINDING (15.2.3.7), or
(5)

5 the COMPILER_VERSION or COMPILER_OPTIONS inquiry function from the intrinsic module
ISO_.FORTRAN_ENV (13.8.2.4, 13.8.2.5).

A function is a specification function if it is a pure function, is not a standard intrinsic function, is not an
internal function, is not a statement function, and does not have a dummy procedure argument.

Evaluation of a specification expression shall not directly or indirectly cause a procedure defined by the subpro-
gram in which it appears to be invoked.

NOTE 7.32

Specification functions are nonintrinsic functions that may be used in specification expressions to determine
the attributes of data objects. The requirement that they be pure ensures that they cannot have side effects
that could affect other objects being declared in the same specification-part. The requirement that they
not be internal ensures that they cannot inquire, via host association, about other objects being declared
in the same specification-part. The prohibition against recursion avoids the creation of a new instance of a
procedure while construction of one is in progress.

A variable in a specification expression shall have its type and type parameters, if any, specified by a previous
declaration in the same scoping unit, by the implicit typing rules in effect for the scoping unit, or by host or use
association. If a variable in a specification expression is typed by the implicit typing rules, its appearance in any
subsequent type declaration statement shall confirm the implied type and type parameters.

If a specification expression includes a specification inquiry that depends on a type parameter or an array bound
of an entity specified in the same specification-part, the type parameter or array bound shall be specified in a prior
specification of the specification-part. The prior specification may be to the left of the specification inquiry in the
same statement, but shall not be within the same entity-decl. If a specification expression includes a reference to
the value of an element of an array specified in the same specification-part, the array shall be completely specified
in prior declarations.

If a specification expression in the specification-part of a module or submodule includes a reference to a generic
entity, that generic entity shall have no specific procedures defined in the module or submodule subsequent to
the specification expression.

NOTE 7.33
The following are examples of specification expressions:

LBOUND (B, 1) + 5
M + LEN (C)
2 * PRECISION (A)

B is an assumed-shape dummy array

M and C are dummy arguments

A is a real variable made accessible
by a USE statement

7.1.12 Initialization expression

An initialization expression is an expression with limitations that make it suitable for use as a kind type
parameter, initializer, or named constant. It is an expression in which each operation is intrinsic, and each
primary is

(1) a constant or subobject of a constant,

(2) an array constructor where each element and each scalar-int-expr of each ac-implied-do-control is an
initialization expression,

7.1.12 Expressions and assignment 149

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

3)

(12)

a structure constructor where each component-spec corresponding to

(a) an allocatable component is a reference to the intrinsic function NULL,

(b) a pointer component is an initialization target or a reference to the intrinsic function NULL,
and

(¢) any other component is an initialization expression,

a specification inquiry where each designator or function argument is
(a) an initialization expression or
(b) a variable whose properties inquired about are not
(i) assumed,
(ii) deferred, or
(iii) defined by an expression that is not an initialization expression,

a reference to an elemental standard intrinsic function, where each argument is an initialization
expression,

a reference to a transformational standard intrinsic function other than NULL, where each argument
is an initialization expression,

A reference to the intrinsic function NULL that does not have an argument with a type parameter
that is assumed or is defined by an expression that is not an initialization expression,

a reference to the transformational function IEEE_SELECTED_REAL_KIND from the intrinsic mod-
ule IEEE_ARITHMETIC (14.11.18), where each argument is an initialization expression,

a kind type parameter of the derived type being defined,

a data-i-do-variable within a data-implied-do,

an ac-do-variable within an array constructor where each scalar-int-expr of the corresponding ac-
implied-do-control is an initialization expression, or

an initialization expression enclosed in parentheses,

2 and where each subscript, section subscript, substring starting point, substring ending point, and type parameter
value is an initialization expression.

R730
C711
R731
C712
R732
C713
R733

C714

initialization-expr is expr

(R730) initialization-expr shall be an initialization expression.

char-initialization-expr is char-expr

(R731) char-initialization-expr shall be an initialization expression.

int-initialization-expr is int-expr

(R732) int-initialization-expr shall be an initialization expression.

logical-initialization-expr is logical-expr

(R733) logical-initialization-expr shall be an initialization expression.

3 If an initialization expression includes a specification inquiry that depends on a type parameter or an array bound
of an entity specified in the same specification-part, the type parameter or array bound shall be specified in a
prior specification of the specification-part. The prior specification may be to the left of the specification inquiry
in the same statement, but shall not be within the same entity-decl.

4 If an initialization expression in the specification-part of a module or submodule includes a reference to a generic
entity, that generic entity shall have no specific procedures defined in the module or submodule subsequent to
the initialization expression.

150

Expressions and assignment 7.1.12

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 7.34

The following are examples of initialization expressions:

3

-3+ 4

)AB)

JAB? // 'CD?

(’AB’ // ’CD’) // ’EF’

SIZE (A)

DIGITS (X) + 4

4.0 * atan(1.0)

ceiling (number_of_decimal_digits / loglO(radix(0.0)))

where A is an explicit-shape array with constant bounds and X is default real.

7.2 Assignment

7.2.1 Assignment statement

7.2.1.1 General form

R734 assignment-stmt is wariable = expr
C715 (R734) The variable shall not be a whole assumed-size array.
NOTE 7.35

Examples of an assignment statement are:

A
I

3.5+ X *Y
INT (B)

An assignment-stmt shall meet the requirements of either a defined assignment statement or an intrinsic assign-
ment statement.

7.2.1.2

Intrinsic assignment statement

An intrinsic assignment statement is an assignment statement that is not a defined assignment statement
(7.2.1.4). In an intrinsic assignment statement,

7.2

if the variable is polymorphic it shall be allocatable,
if variable is a coindexed object, it shall not be of a type that has an allocatable ultimate component,
if expr is an array then the variable shall also be an array,

the shapes of the variable and expr shall conform unless the variable is an allocatable array that has
the same rank as ezpr and is neither a coarray nor a coindexed object,

if the variable is an allocatable coarray or coindexed object, it shall not be polymorphic,

if the variable is polymorphic it shall be type compatible with expr and have the same rank; otherwise
the declared types of the variable and expr shall conform as specified in Table 7.10,

if the variable is of derived type each kind type parameter of the variable shall have the same value
as the corresponding type parameter of expr, and

if the variable is of derived type each length type parameter of the variable shall have the same value
as the corresponding type parameter of expr unless the variable is allocatable, is not a coarray or
coindexed object, and its corresponding type parameter is deferred.

Expressions and assignment 151

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

Table 7.10: Type conformance for the intrinsic assignment statement

Type of the variable Type of expr

integer integer, real, complex
real integer, real, complex

complex integer, real, complex

ISO 10646, ASCII, or default character ISO 10646, ASCII, or default character
other character character of the same kind type parameter as the variable
logical logical
derived type same derived type as the variable

A numeric intrinsic assignment statement is an intrinsic assignment statement for which the variable and
expr are of numeric type. A character intrinsic assignment statement is an intrinsic assignment statement
for which the variable and ezpr are of type character. A logical intrinsic assignment statement is an
intrinsic assignment statement for which the variable and expr are of type logical. A derived-type intrinsic
assignment statement is an intrinsic assignment statement for which the variable and expr are of derived type.

An array intrinsic assignment statement is an intrinsic assignment statement for which the variable is an
array.

If the variable is a pointer, it shall be associated with a definable target such that the type, type parameters, and
shape of the target and expr conform.

7.2.1.3 Interpretation of intrinsic assignments

Execution of an intrinsic assignment causes, in effect, the evaluation of the expression expr and all expressions
within variable (7.1), the possible conversion of expr to the type and type parameters of the variable (Table 7.11),
and the definition of the variable with the resulting value. The execution of the assignment shall have the same
effect as if the evaluation of expr and the evaluation of all expressions in wvariable occurred before any portion
of the variable is defined by the assignment. The evaluation of expressions within variable shall neither affect
nor be affected by the evaluation of expr. No value is assigned to the variable if it is of type character and zero
length, or is an array of size zero.

If the variable is a pointer, the value of expr is assigned to the target of the variable.

If the variable is an allocated allocatable variable, it is deallocated if expr is an array of different shape, any of
the corresponding length type parameter values of the variable and expr differ, or the variable is polymorphic
and the dynamic type of the variable and expr differ. If the variable is or becomes an unallocated allocatable
variable, then it is allocated with each deferred type parameter equal to the corresponding type parameter of
expr, with the shape of expr, with each lower bound equal to the corresponding element of LBOUND (ezpr), and
if the variable is polymorphic, with the same dynamic type as expr.

NOTE 7.36

For example, given the declaration

CHARACTER(:) ,ALLOCATABLE :: NAME

then after the assignment statement

NAME = °Dr. ’//FIRST_NAME//’ °’//SURNAME

NAME will have the length LEN(FIRST_NAME)+LEN(SURNAME)+5, even if it had previously been
unallocated, or allocated with a different length. However, for the assignment statement

NAME(:) = ’Dr. ’//FIRST_NAME//’ ’//SURNAME

NAME must already be allocated at the time of the assignment; the assigned value is truncated or blank

152 Expressions and assignment 7.2.1.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 7.36 (cont.)
padded to the previously allocated length of NAME.

4 Both variable and expr may contain references to any portion of the variable.

NOTE 7.37

For example, in the character intrinsic assignment statement:

STRING (2:5) = STRING (1:4)

the assignment of the first character of STRING to the second character does not affect the evaluation of
STRING (1:4). If the value of STRING prior to the assignment was ’ABCDEF’, the value following the
assignment is "AABCDEF’.

5 If expr is a scalar and the variable is an array, the ezpr is treated as if it were an array of the same shape as the
variable with every element of the array equal to the scalar value of expr.

6 If the variable is an array, the assignment is performed element-by-element on corresponding array elements of
the variable and expr.

NOTE 7.38
For example, if A and B are arrays of the same shape, the array intrinsic assignment

A =B

assigns the corresponding elements of B to those of A; that is, the first element of B is assigned to the first
element of A, the second element of B is assigned to the second element of A, etc.

If C is an allocatable array of rank 1, then

C = PACK(ARRAY,ARRAY>0)

will cause C to contain all the positive elements of ARRAY in array element order; if C is not allocated or
is allocated with the wrong size, it will be re-allocated to be of the correct size to hold the result of PACK.

7 The processor may perform the element-by-element assignment in any order.

NOTE 7.39
For example, the following program segment results in the values of the elements of array X being reversed:

REAL X (10)

X (i;iO) =X (10:1:-1)

8 For a numeric intrinsic assignment statement, the variable and expr may have different numeric types or different
kind type parameters, in which case the value of ezpr is converted to the type and kind type parameter of the
variable according to the rules of Table 7.11.

Table 7.11: Numeric conversion and the assignment statement
Type of the variable Value Assigned

integer INT (expr, KIND = KIND (variable))
real REAL (ezpr, KIND = KIND (variable))
complex CMPLX (expr, KIND = KIND (variable))

Note: INT, REAL, CMPLX, and KIND are the generic names of
functions defined in 13.7

7.2.1.3 Expressions and assignment 153

10

11

12

13

14

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

For a logical intrinsic assignment statement, the variable and expr may have different kind type parameters, in
which case the value of expr is converted to the kind type parameter of the variable.

For a character intrinsic assignment statement, the variable and expr may have different character length param-
eters in which case the conversion of ezpr to the length of the variable is as follows.

(1) If the length of the variable is less than that of expr, the value of expr is truncated from the right
until it is the same length as the variable.

(2) If the length of the variable is greater than that of expr, the value of expr is extended on the right
with blanks until it is the same length as the variable.

If the variable and ezpr have different kind type parameters, each character ¢ in expr is converted to the kind
type parameter of the variable by ACHAR(TACHAR(c¢),KIND(variable)).

NOTE 7.40

For nondefault character types, the blank padding character is processor dependent. When assigning a char-
acter expression to a variable of a different kind, each character of the expression that is not representable
in the kind of the variable is replaced by a processor-dependent character.

For an intrinsic assignment of the type C_PTR or C_FUNPTR, the variable becomes undefined if the variable
and ezpr are not on the same image.

NOTE 7.41

An intrinsic assignment statement for a variable of type C_PTR or C_FUNPTR is not permitted to involve
a coindexed object, see C614, which prevents inappropriate copying from one image to another. However,
such copying may occur as an intrinsic assignment for a component in a derived-type assignment, in which
case the copy is regarded as undefined.

A derived-type intrinsic assignment is performed as if each component of the variable were assigned from the
corresponding component of expr using pointer assignment (7.2.2) for each pointer component, defined assignment
for each nonpointer nonallocatable component of a type that has a type-bound defined assignment consistent with
the component, intrinsic assignment for each other nonpointer nonallocatable component, and intrinsic assignment
for each allocated coarray component. For unallocated coarray components, the corresponding component of the
variable shall be unallocated. For a non-coarray allocatable component the following sequence of operations is
applied.

(1) If the component of the variable is allocated, it is deallocated.

(2) If the component of the value of expr is allocated, the corresponding component of the variable is
allocated with the same dynamic type and type parameters as the component of the value of ezpr.
If it is an array, it is allocated with the same bounds. The value of the component of the value of
expr is then assigned to the corresponding component of the variable using defined assignment if the
declared type of the component has a type-bound defined assignment consistent with the component,
and intrinsic assignment for the dynamic type of that component otherwise.

The processor may perform the component-by-component assignment in any order or by any means that has the
same effect.

NOTE 7.42

For an example of a derived-type intrinsic assignment statement, if C and D are of the same derived type
with a pointer component P and nonpointer components S, T, U, and V of type integer, logical, character,
and another derived type, respectively, the intrinsic

C=D

pointer assigns D%P to C%P. It assigns D%S to C%S, D%T to C%T, and D%U to C%U using intrinsic
assignment. It assigns D%V to C%V using defined assignment if objects of that type have a compatible

154 Expressions and assignment 7.2.1.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 7.42 (cont.)

type-bound defined assignment, and intrinsic assignment otherwise.

NOTE 7.43

If an allocatable component of expr is unallocated, the corresponding component of the variable has an
allocation status of unallocated after execution of the assignment.

7.2.1.4 Defined assignment statement

1 A defined assignment statement is an assignment statement that is defined by a subroutine and a generic interface
(4.5.2, 12.4.3.4.3) that specifies ASSIGNMENT (=).

2 A subroutine defines the defined assignment z; = o if

(1)
(2)

the subroutine is specified with a SUBROUTINE (12.6.2.3) or ENTRY (12.6.2.6) statement that specifies
two dummy arguments, d; and ds,

either

(a) ageneric interface (12.4.3.2) provides the subroutine with a generic-spec of ASSIGNMENT (=),
or

(b) there is a generic binding (4.5.2) in the declared type of x; or xo with a generic-spec of
ASSIGNMENT (=) and there is a corresponding binding to the subroutine in the dynamic
type of z1 or x3, respectively,

the types of d; and dy are compatible with the dynamic types of x; and x5, respectively,

the type parameters, if any, of d; and dy match the corresponding type parameters of x; and xo,
respectively, and

either
(a) the ranks of z7 and x5 match those of d; and ds or

(b) the subroutine is elemental, 1 and zs are conformable, and there is no other subroutine that
defines the assignment.

3 If dy or ds is an array, the shapes of 1 and x5 shall match the shapes of d; and ds, respectively.

7.2.1.5

Interpretation of defined assignment statements

1 The interpretation of a defined assignment is provided by the subroutine that defines it.

2 If the defined assignment is an elemental assignment and the variable in the assignment is an array, the defined
assignment is performed element-by-element, on corresponding elements of the variable and expr. If expr is a
scalar, it is treated as if it were an array of the same shape as the variable with every element of the array equal
to the scalar value of expr.

NOTE 7.44

The rules of defined assignment (12.4.3.4.3), procedure references (12.5), subroutine references (12.5.4), and
elemental subroutine arguments (12.8.3) ensure that the defined assignment has the same effect as if the
evaluation of all operations in x5 and x; occurs before any portion of x; is defined. If an elemental assignment
is defined by a pure elemental subroutine, the element assignments may be performed simultaneously or in
any order.

7.2.2 Pointer assignment

7.2.2.1 General

1 Pointer assignment causes a pointer to become associated with a target or causes its pointer association status
to become disassociated or undefined. Any previous association between the pointer and a target is broken.

7.21.4

Expressions and assignment 155

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

Pointer assignment for a pointer component of a structure may also take place by execution of a derived-type
intrinsic assignment statement (7.2.1.3).

7.2.2.2 Syntax

R735 pointer-assignment-stmt is data-pointer-object [(bounds-spec-list) | => data-target
or data-pointer-object (bounds-remapping-list) => data-target
or proc-pointer-object => proc-target

R736 data-pointer-object is wariable-name
or scalar-variable % data-pointer-component-name

C716 (R735) If data-target is not unlimited polymorphic, data-pointer-object shall be type compatible (4.3.1.3)
with it and the corresponding kind type parameters shall be equal.

C717 (R735) If data-target is unlimited polymorphic, data-pointer-object shall be unlimited polymorphic, or of
a type with the BIND attribute or the SEQUENCE attribute.

C718 (R735) If bounds-spec-list is specified, the number of bounds-specs shall equal the rank of data-pointer-
object.

C719 (R735) If bounds-remapping-list is specified, the number of bounds-remappings shall equal the rank of
data-pointer-object.

C720 (R735) If bounds-remapping-list is not specified, the ranks of data-pointer-object and data-target shall be
the same.

C721 (R736) A variable-name shall have the POINTER attribute.
C722 (R736) A scalar-variable shall be a data-ref.

C723 (R736) A data-pointer-component-name shall be the name of a component of scalar-variable that is a
data pointer.

C724 (R736) A data-pointer-object shall not be a coindexed object.

R737 bounds-spec is lower-bound-expr :
R738 bounds-remapping is lower-bound-expr : upper-bound-expr
R739 data-target is wariable

or expr

C725 (R739) A wariable shall have either the TARGET or POINTER attribute, and shall not be an array

section with a vector subscript.
C726 (R739) A data-target shall not be a coindexed object.

NOTE 7.45

A data pointer and its target are always on the same image. A coarray may be of a derived type with pointer
or allocatable subcomponents. For example, if PTR is a pointer component, Z[P]%PTR is a reference to the
target of component PTR of Z on image P. This target is on image P and its association with Z[P]%PTR
must have been established by the execution of an ALLOCATE statement or a pointer assignment on image
P.

C727 (R739) An expr shall be a reference to a function whose result is a data pointer.

R740 proc-pointer-object is proc-pointer-name
or proc-component-ref

156 Expressions and assignment 7.2.2.2

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

R741 proc-component-ref is scalar-variable % procedure-component-name
C728 (R741) The scalar-variable shall be a data-ref .

C729 (R741) The procedure-component-name shall be the name of a procedure pointer component of the
declared type of scalar-variable.

R742 proc-target is expr
or procedure-name
or proc-component-ref

C730 (R742) An expr shall be a reference to a function whose result is a procedure pointer.

C731 (R742) A procedure-name shall be the name of an external, internal, module, or dummy procedure, a
procedure pointer, or a specific intrinsic function listed in 13.6 and not marked with a bullet (e).

C732 (R742) The proc-target shall not be a nonintrinsic elemental procedure.
7.2.2.3 Data pointer assignment

If data-pointer-object is not polymorphic (4.3.1.3) and data-target is polymorphic with dynamic type that differs
from its declared type, the assignment target is the ancestor component of data-target that has the type of
data-pointer-object. Otherwise, the assignment target is data-target.

If data-target is not a pointer, data-pointer-object becomes pointer associated with the assignment target; if data-
target is a pointer with a target that is not on the same image, the pointer association status of data-pointer-object
becomes undefined. Otherwise, the pointer association status of data-pointer-object becomes that of data-target;
if data-target is associated with an object, data-pointer-object becomes associated with the assignment target. If
data-target is allocatable, it shall be allocated.

NOTE 7.46

A pointer assignment statement is not permitted to involve a coindexed pointer or target, see C724 and C726.
This prevents this statement associating a pointer with a target on another image. If such an association
would otherwise be implied, such as for a pointer component in a derived-type intrinsic assignment, the
association status of the pointer becomes undefined.

If data-pointer-object is polymorphic, it assumes the dynamic type of data-target. If data-pointer-object is of a
type with the BIND attribute or the SEQUENCE attribute, the dynamic type of data-target shall be that type.

If data-target is a disassociated pointer, all nondeferred type parameters of the declared type of data-pointer-object
that correspond to nondeferred type parameters of data-target shall have the same values as the corresponding
type parameters of data-target.

Otherwise, all nondeferred type parameters of the declared type of data-pointer-object shall have the same values
as the corresponding type parameters of data-target.

If data-pointer-object has nondeferred type parameters that correspond to deferred type parameters of data-target,
data-target shall not be a pointer with undefined association status.

If data-pointer-object has the CONTIGUOUS attribute, data-target shall be contiguous.

If bounds-remapping-list is specified, data-target shall be simply contiguous (6.5.4) or of rank one. It shall not
be a disassociated or undefined pointer, and the size of data-target shall not be less than the size of data-
pointer-object. The elements of the target of data-pointer-object, in array element order (6.5.3.2), are the first
SIZE(data-pointer-object) elements of data-target.

If no bounds-remapping-list is specified, the extent of a dimension of data-pointer-object is the extent of the
corresponding dimension of data-target. If bounds-spec-list appears, it specifies the lower bounds; otherwise,
the lower bound of each dimension is the result of the intrinsic function LBOUND (13.7.90) applied to the

7.2.2.3 Expressions and assignment 157

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

corresponding dimension of data-target. The upper bound of each dimension is one less than the sum of the lower
bound and the extent.

7.2.2.4 Procedure pointer assignment

If the proc-target is not a pointer, proc-pointer-object becomes pointer associated with proc-target. Otherwise,
the pointer association status of proc-pointer-object becomes that of proc-target; if proc-target is associated with
a procedure, proc-pointer-object becomes associated with the same procedure.

If proc-target is the name of an internal procedure the host instance of proc-pointer-object becomes the innermost
currently executing instance of the host procedure. Otherwise if proc-target has a host instance the host instance
of proc-pointer-object becomes that instance. Otherwise proc-pointer-object has no host instance.

If proc-pointer-object has an explicit interface, its characteristics shall be the same as proc-target except that
proc-target may be pure even if proc-pointer-object is not pure and proc-target may be an elemental intrinsic
procedure even if proc-pointer-object is not elemental.

If the characteristics of proc-pointer-object or proc-target are such that an explicit interface is required, both
proc-pointer-object and proc-target shall have an explicit interface.

If proc-pointer-object has an implicit interface and is explicitly typed or referenced as a function, proc-target shall
be a function. If proc-pointer-object has an implicit interface and is referenced as a subroutine, proc-target shall
be a subroutine.

If proc-target and proc-pointer-object are functions, they shall have the same type; corresponding type parameters
shall either both be deferred or both have the same value.

If procedure-name is a specific procedure name that is also a generic name, only the specific procedure is associated
with pointer-object.

7.2.2.5 Examples

NOTE 7.47

The following are examples of pointer assignment statements. (See Note 12.14 for declarations of P and
BESSEL.)

NEW_NODE % LEFT => CURRENT_NODE

SIMPLE_NAME => TARGET_STRUCTURE 7 SUBSTRUCT % COMPONENT
PTR => NULL ()

ROW => MAT2D (N, :)

WINDOW => MAT2D (I-1:I+1, J-1:J+1)

POINTER_OBJECT => POINTER_FUNCTION (ARG_1, ARG_2)
EVERY_OTHER => VECTOR (1:N:2)

WINDOW2 (O0:, 0:) => MAT2D (ML:MU, NL:NU)

! P is a procedure pointer and BESSEL is a procedure with a
! compatible interface.

P => BESSEL

! Likewise for a structure component.
STRUCT % COMPONENT => BESSEL

NOTE 7.48

It is possible to obtain different-rank views of parts of an object by specifying upper bounds in pointer
assignment statements. This requires that the object be either rank one or contiguous. Consider the
following example, in which a matrix is under consideration. The matrix is stored as a rank-one object in

158 Expressions and assignment 7.2.2.4

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 7.48 (cont.)

MYDATA because its diagonal is needed for some reason — the diagonal cannot be gotten as a single object
from a rank-two representation. The matrix is represented as a rank-two view of MYDATA.

real, target :: MYDATA (NR*NC) ! An automatic array

real, pointer :: MATRIX (:, :) ! A rank-two view of MYDATA
real, pointer :: VIEW_DIAG (:)

MATRIX(1:NR, 1:NC) => MYDATA ! The MATRIX view of the data
VIEW_DIAG => MYDATA(1::NR+1) ! The diagonal of MATRIX

Rows, columns, or blocks of the matrix can be accessed as sections of MATRIX.

Rank remapping can be applied to CONTIGUOUS arrays, for example:

REAL, CONTIGUOUS, POINTER :: A(:)
REAL, CONTIGUOUS, TARGET :: B(:,:) ! Dummy argument
A(1:SIZE(B)) => B | Linear view of a rank-2 array

7.2.3

Masked array assignment — WHERE

7.2.3.1 General form of the masked array assignment

A masked array assignment is either a WHERE statement or a WHERE construct. It is used to mask the
evaluation of expressions and assignment of values in array assignment statements, according to the value of a
logical array expression.

R743

R744

R745

R746

R747
R748
R749
R750
R751
C733
C734

7.2.3

where-stmt is WHERE (mask-expr) where-assignment-stmt

where-construct is where-construct-stmt
[where-body-construct | ...
[masked-elsewhere-stmt
[where-body-construct] ...] ...
[elsewhere-stmt
[where-body-construct | ... |
end-where-stmt

where-construct-stmt is [where-construct-name:] WHERE (mask-expr)

where-body-construct is where-assignment-stmt
or where-stmt
or where-construct

where-assignment-stmt is assignment-stmt

mask-expr is logical-expr

masked-elsewhere-stmt is ELSEWHERE (mask-expr) [where-construct-name)]
elsewhere-stmt is ELSEWHERE [where-construct-name]
end-where-stmt is END WHERE [where-construct-name)

(R747) A where-assignment-stmt that is a defined assignment shall be elemental.

(R744) If the where-construct-stmt is identified by a where-construct-name, the corresponding end-where-
stmt shall specify the same where-construct-name. If the where-construct-stmt is not identified by a
where-construct-name, the corresponding end-where-stmt shall not specify a where-construct-name. If
an elsewhere-stmt or a masked-elsewhere-stmt is identified by a where-construct-name, the corresponding

Expressions and assignment 159

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

where-construct-stmt shall specify the same where-construct-name.
C735 (R746) A statement that is part of a where-body-construct shall not be a branch target statement.

If a where-construct contains a where-stmt, a masked-elsewhere-stmt, or another where-construct then each mask-
expr within the where-construct shall have the same shape. In each where-assignment-stmt, the mask-expr and
the variable being defined shall be arrays of the same shape.
NOTE 7.49

Examples of a masked array assignment are:

WHERE (TEMP > 100.0) TEMP = TEMP - REDUCE_TEMP
WHERE (PRESSURE <= 1.0)
PRESSURE = PRESSURE + INC_PRESSURE
TEMP = TEMP - 5.0
ELSEWHERE
RAINING = .TRUE.
END WHERE

7.2.3.2 Interpretation of masked array assignments

When a WHERE statement or a where-construct-stmt is executed, a control mask is established. In addition,
when a WHERE construct statement is executed, a pending control mask is established. If the statement does
not appear as part of a where-body-construct, the mask-expr of the statement is evaluated, and the control mask is
established to be the value of mask-expr. The pending control mask is established to have the value .NOT. mask-
expr upon execution of a WHERE construct statement that does not appear as part of a where-body-construct.
The mask-ezxpr is evaluated only once.

Each statement in a WHERE construct is executed in sequence.

Upon execution of a masked-elsewhere-stmt, the following actions take place in sequence.
(1) The control mask m, is established to have the value of the pending control mask.

(2) The pending control mask is established to have the value m. .AND. (.NOT. mask-expr).
(3) The control mask m, is established to have the value m. .AND. mask-expr.

The mask-expr is evaluated at most once.

Upon execution of an ELSEWHERE statement, the control mask is established to have the value of the pending
control mask. No new pending control mask value is established.

Upon execution of an ENDWHERE statement, the control mask and pending control mask are established to
have the values they had prior to the execution of the corresponding WHERE construct statement. Following
the execution of a WHERE statement that appears as a where-body-construct, the control mask is established to
have the value it had prior to the execution of the WHERE statement.

NOTE 7.50
The establishment of control masks and the pending control mask is illustrated with the following example:
WHERE (cond1) ! Statement 1
éLéE\;JHERE(condQ) ! Statement 2
}:ZLéEb‘\IHERE I Statement 3
éNb WHERE
Following execution of statement 1, the control mask has the value condl and the pending

160 Expressions and assignment 7.2.3.2

10

11

12

13

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 7.50 (cont.)

control mask has the value .NOT. condl. Following execution of statement 2, the control
mask has the value (NOT. condl) .AND. cond2 and the pending control mask has the value
(.NOT. condl) .AND. (.NOT. cond2). Following execution of statement 3, the control mask has the value
(.NOT. condl) .AND. (.NOT. cond2). The false condition values are propagated through the execution of
the masked ELSEWHERE statement.

Upon execution of a WHERE construct statement that is part of a where-body-construct, the pending control
mask is established to have the value m. .AND. (\NOT. mask-ezpr). The control mask is then established to
have the value m. .AND. mask-expr. The mask-expr is evaluated at most once.

Upon execution of a WHERE statement that is part of a where-body-construct, the control mask is established
to have the value m. .AND. mask-expr. The pending control mask is not altered.

If a nonelemental function reference occurs in the expr or variable of a where-assignment-stmt or in a mask-expr,
the function is evaluated without any masked control; that is, all of its argument expressions are fully evaluated
and the function is fully evaluated. If the result is an array and the reference is not within the argument list
of a nonelemental function, elements corresponding to true values in the control mask are selected for use in
evaluating the expr, variable or mask-expr.

If an elemental operation or function reference occurs in the expr or variable of a where-assignment-stmt or in a
mask-expr, and is not within the argument list of a nonelemental function reference, the operation is performed
or the function is evaluated only for the elements corresponding to true values of the control mask.

If an array constructor appears in a where-assignment-stmt or in a mask-expr, the array constructor is evaluated
without any masked control and then the where-assignment-stmt is executed or the mask-expr is evaluated.

When a where-assignment-stmt is executed, the values of expr that correspond to true values of the control mask
are assigned to the corresponding elements of the variable.

The value of the control mask is established by the execution of a WHERE statement, a WHERE construct
statement, an ELSEWHERE statement, a masked ELSEWHERE statement, or an ENDWHERE statement.
Subsequent changes to the value of entities in a mask-expr have no effect on the value of the control mask. The
execution of a function reference in the mask expression of a WHERE statement is permitted to affect entities in
the assignment statement.

NOTE 7.51

Examples of function references in masked array assignments are:

WHERE (A > 0.0)
A = 10G (B ! LOG is invoked only for positive elements.
A=A/ SUM (LOG (A)) ! LOG is invoked for all elements
! because SUM is transformational.
END WHERE

7.2.4 FORALL
7.2.4.1 Form of the FORALL Construct

The FORALL construct allows multiple assignments, masked array (WHERE) assignments, and nested FORALL
constructs and statements to be controlled by a single forall-triplet-spec-list and scalar-mask-expr.

R752 forall-construct is forall-construct-stmt
[forall-body-construct | ...
end-forall-stmt

R753 forall-construct-stmt is [forall-construct-name :] FORALL forall-header

7.2.4 Expressions and assignment 161

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

R754 forall-header is ([type-spec :: | forall-triplet-spec-list [, scalar-mask-expr])
R755 forall-triplet-spec is index-name = subscript : subscript [: stride]

R618 subscript is scalar-int-expr

R621 stride is scalar-int-expr

R756 forall-body-construct is forall-assignment-stmt

or where-stmt
or where-construct
or forall-construct
or forall-stmt

R757 forall-assignment-stmt is assignment-stmt

or pointer-assignment-stmt

R758 end-forall-stmt is END FORALL [forall-construct-name |

C736 (R758) If the forall-construct-stmt has a forall-construct-name, the end-forall-stmt shall have the same

forall-construct-name. If the end-forall-stmt has a forall-construct-name, the forall-construct-stmt shall
have the same forall-construct-name.

C737 (R754) type-spec shall specify type integer.

C738 (R754) The scalar-mask-expr shall be scalar and of type logical.

C739 (R754) Any procedure referenced in the scalar-mask-expr, including one referenced by a defined operation,

shall be a pure procedure (12.7).

C740 (R755) The indez-name shall be a named scalar variable of type integer.

C741 (R755) A subscript or stride in a forall-triplet-spec shall not contain a reference to any indez-name in

the forall-triplet-spec-list in which it appears.

C742 (R756) A statement in a forall-body-construct shall not define an index-name of the forall-construct.

C743 (R756) Any procedure referenced in a forall-body-construct, including one referenced by a defined oper-

ation, assignment, or finalization, shall be a pure procedure.

C744 (R756) A forall-body-construct shall not be a branch target.

NOTE 7.52

An example of a FORALL construct is:
REAL :: A(10, 10), B(10, 10) = 1.0

FORALL (I = 1:10, J = 1:10, B(I, J) /= 0.0)
A(I, J) = REAL (I +J - 2)
B(I, J) = A(I, J) + B(I, J) * REAL (I * J)
END FORALL

NOTE 7.53

An assignment statement that is a FORALL body construct may be a scalar or array assignment statement,
or a defined assignment statement. The variable being defined will normally use each index name in the
forall-triplet-spec-list. For example

= 1:N)
1.0 / REAL(I + J - 1)

FORALL (I = 1:N
J

J
AC:, I, :, =

)

162

Expressions and assignment 7.2.4.1

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 7.53 (cont.)

END FORALL

broadcasts scalar values to rank-two subarrays of A.

NOTE 7.54

TYPE ELEMENT
REAL ELEMENT_WT
CHARACTER (32), POINTER :: NAME
END TYPE ELEMENT
TYPE (ELEMENT) CHART (200)
REAL WEIGHTS (1000)
CHARACTER (32), TARGET :: NAMES (1000)

FORALL (I = 1:200, WEIGHTS (I + N - 1) > .5)
CHART(I) % ELEMENT_WT = WEIGHTS (I + N - 1)
CHART(I) % NAME => NAMES (I + N - 1)

END FORALL

assignment statement is not permitted in a WHERE construct.

An example of a FORALL construct containing a pointer assignment statement is:

The results of this FORALL construct cannot be achieved with a WHERE construct because a pointer

2 An index-name in a forall-construct has a scope of the construct (16.4). It is a scalar variable. If type-spec
appears, the variable has the specified type and type parameters; otherwise it has the type and type parameters
that it would have if it were the name of a variable in the scoping unit that includes the FORALL, and this type

shall be integer type; it has no other attributes.

NOTE 7.55

example:

INTEGER :: X = -1
REAL A(5, 4)
J = 100
FORALL (X =
A X, D
END FORALL

N
NN N NN
W wwww
E NS O NS

The use of index-name variables in a FORALL construct does not affect variables of the same name, for

1:5, J = 1:4) ! Note that X and J are local to the FORALL.
=7J

After execution of the FORALL, the variables X and J have the values -1 and 100 and A has the value

NOTE 7.56

variable in the scoping unit. For example, in

SUBROUTINE s(a)

The type and kind of the index-name variables may be declared independently of the type of any normal

7.2.4.1 Expressions and assignment

163

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

NOTE 7.56 (cont.)

IMPLICIT NONE
INTEGER, PARAMETER :: big = SELECTED_INT_KIND(18)
REAL a(:,:), x, theta

FORALL (INTEGER(big) :: x=1:SIZE(a,1,big), y=1:SIZE(a,2,big), a(x,y)/=0)
alx,y) =1 / a(x,y)*x2
END FORALL

the kind of the index-names X and Y is selected to be big enough for subscript values even if the array A
has more than 23! elements. Since the type of the indez-names X and Y in the FORALL construct are
declared explicitly in the FORALL header, it is not necessary for integer variables of the same names to be
declared in the containing scoping unit. In this example, there is a variable X of type real declared in the
containing scoping unit, and no variable Y declared in the containing scoping unit.

7.2.4.2 Execution of the FORALL construct
7.2.4.2.1 Execution stages

There are three stages in the execution of a FORALL construct:

(1) determination of the values for index-name variables,
(2) evaluation of the scalar-mask-expr, and
(3) execution of the FORALL body constructs.

7.2.4.2.2 Determination of the values for index variables

The subscript and stride expressions in the forall-triplet-spec-list are evaluated. These expressions may be eval-
uated in any order. The set of values that a particular index-name variable assumes is determined as follows.

(1) The lower bound m;, the upper bound mg, and the stride mg are of type integer with the same kind
type parameter as the indez-name. Their values are established by evaluating the first subscript, the
second subscript, and the stride expressions, respectively, including, if necessary, conversion to the
kind type parameter of the index-name according to the rules for numeric conversion (Table 7.11).
If a stride does not appear, ms has the value 1. The value m3 shall not be zero.

(2) Let the value of maz be (ma —my + mg)/mg. If max< 0 for some index-name, the execution of the
construct is complete. Otherwise, the set of values for the index-name is

my+ (k—1) x m3 where k =1, 2, ..., maxz.

The set of combinations of index-name values is the Cartesian product of the sets defined by each triplet specifi-
cation. An index-name becomes defined when this set is evaluated.

7.2.4.2.3 Evaluation of the mask expression

The scalar-mask-expr, if any, is evaluated for each combination of indexr-name values. If there is no scalar-
mask-expr, it is as if it appeared with the value true. The indez-name variables may be primaries in the
scalar-mask-expr.

The active combination of indez-name values is defined to be the subset of all possible combinations (7.2.4.2.2)
for which the scalar-mask-expr has the value true.

NOTE 7.57
The indez-name variables may appear in the mask, for example

FORALL (I=1:10, J=1:10, A(I) > 0.0 .AND. B(J) < 1.0)

164 Expressions and assignment 7.2.4.2

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 7.57 (cont.)

l

7.2.4.2.4 Execution of the FORALL body constructs

1 The forall-body-constructs are executed in the order in which they appear. Each construct is executed for all
active combinations of the index-name values with the following interpretation:

2 Execution of a forall-assignment-stmt that is an assignment-stmt causes the evaluation of expr and all expressions
within variable for all active combinations of index-name values. These evaluations may be done in any order.
After all these evaluations have been performed, each expr value is assigned to the corresponding variable. The
assignments may occur in any order.

3 Execution of a forall-assignment-stmt that is a pointer-assignment-stmt causes the evaluation of all expressions
within data-target and data-pointer-object or proc-target and proc-pointer-object, the determination of any point-
ers within data-pointer-object or proc-pointer-object, and the determination of the target for all active combina-
tions of index-name values. These evaluations may be done in any order. After all these evaluations have been
performed, each data-pointer-object or proc-pointer-object is associated with the corresponding target. These
associations may occur in any order.

4 In a forall-assignment-stmt, a defined assignment subroutine shall not reference any variable that becomes defined
by the statement.

NOTE 7.58

The following FORALL construct contains two assignment statements. The assignment to array B uses

the values of array A computed in the previous statement, not the values A had prior to execution of the
FORALL.

FORALL (I = 2:N-1, J = 2:N-1)

A (I, J) = A(I, J-1) + A(I, J+1) + A(I-1, J) + A(I+1, J)
B (I, J) =1.0/ A1, J)
END FORALL

Computations that would otherwise cause error conditions can be avoided by using an appropriate scalar-
mask-expr that limits the active combinations of the index-name values. For example:

FORALL (I = 1:N, Y(I) /= 0.0)
X(I) = 1.0 / Y(D
END FORALL

5 Each statement in a where-construct (7.2.3) within a forall-construct is executed in sequence. When a where-stmt,
where-construct-stmt or masked-elsewhere-stmt is executed, the statement’s mask-expr is evaluated for all active
combinations of index-name values as determined by the outer forall-constructs, masked by any control mask
corresponding to outer where-constructs. Any where-assignment-stmt is executed for all active combinations of
index-name values, masked by the control mask in effect for the where-assignment-stmit.

NOTE 7.59
This FORALL construct contains a WHERE statement and an assignment statement.

INTEGER A(5,4), B(5,4)

FORALL (I = 1:5)
WHERE (A(I,:) == 0) A(I,:) =1
B (I,:) =1/ A(I,:)

END FORALL

When executed with the input array

7.2.4.2 Expressions and assignment 165

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

NOTE 7.59 (cont.)

0 0 0 O
1 1 1 0
A = 2 2 0 2
1 0 2 3
0 0 0 O

the results will be

1 1 1 1 1 1 1 1
1 1 1 2 2 2 2 1
A = 2 2 3 2 B = 1 1 1 1
1 4 2 3 4 1 2 1
5 5 5 5 1 1 1 1

For an example of a FORALL construct containing a WHERE construct with an ELSEWHERE statement,
see C.4.5.

6 Execution of a forall-stmt or forall-construct causes the evaluation of the subscript and stride expressions in
the forall-triplet-spec-list for all active combinations of the indez-name values of the outer FORALL construct.
The set of combinations of indez-name values for the inner FORALL is the union of the sets defined by these
bounds and strides for each active combination of the outer index-name values; it also includes the outer index-
name values. The scalar-mask-expr is then evaluated for all combinations of the index-name values of the inner
construct to produce a set of active combinations for the inner construct. If there is no scalar-mask-expr, it is
as if it appeared with the value true. Each statement in the inner FORALL is then executed for each active
combination of the indez-name values.

NOTE 7.60

This FORALL construct contains a nested FORALL construct. It assigns the transpose of the strict lower
triangle of array A (the section below the main diagonal) to the strict upper triangle of A.

INTEGER A (3, 3)
FORALL (I = 1:N-1)
FORALL (J=I+1:N)
ACT,J) = AQJ,D)
END FORALL
END FORALL

If prior to execution N = 3 and

=

]
N =~ O
a b w
0 N O

then after execution

=
]
N = O

1
4
5

Q0 o N

7.2.4.3 The FORALL statement

1 The FORALL statement allows a single assignment statement or pointer assignment to be controlled by a set of
index values and an optional mask expression.

R759 forall-stmt is FORALL forall-header forall-assignment-stmit

166 Expressions and assignment 7.2.43

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

2 A FORALL statement is equivalent to a FORALL construct containing a single forall-body-construct that is a
forall-assignment-stmit.

3 The scope of an indez-name in a forall-stmt is the statement itself (16.4).

NOTE 7.61
Examples of FORALL statements are:

FORALL (I=1:N) A(I,I) = X(I)

This statement assigns the elements of vector X to the elements of the main diagonal of matrix A.

FORALL (I = 1:N, J = 1:N) X(I,J) = 1.0 / REAL (I+J-1)

Array element X(I,J) is assigned the value (1.0 / REAL (I4+J-1)) for values of I and J between 1 and N,

inclusive.

FORALL (I=1:N, J=1:N, Y(I,J) /=0 .AND. I /=J) X(I,J) =1.0/ Y(I,D)

This statement takes the reciprocal of each nonzero off-diagonal element of array Y (1:N, 1:N) and assigns it
to the corresponding element of array X. Elements of Y that are zero or on the diagonal do not participate,
and no assignments are made to the corresponding elements of X. The results from the execution of the
example in Note 7.60 could be obtained with a single FORALL statement:

FORALL (I = 1:N-1, J=1:N, J > I) A(I,J) = AQJ,D

For more examples of FORALL statements, see C.4.6.

7.2.4.4 Restrictions on FORALL constructs and statements

1 A many-to-one assignment is more than one assignment to the same object, or association of more than one target
with the same pointer, whether the object is referenced directly or indirectly through a pointer. A many-to-one
assignment shall not occur within a single statement in a FORALL construct or statement. It is possible to assign
or pointer assign to the same object in different assignment statements in a FORALL construct.

NOTE 7.62

The appearance of each index-name in the identification of the left-hand side of an assignment statement
is helpful in eliminating many-to-one assignments, but it is not sufficient to guarantee there will be none.
For example, the following is allowed

FORALL (I = 1:10)
A (INDEX (I)) = B(I)
END FORALL

if and only if INDEX(1:10) contains no repeated values.

2 Within the scope of a FORALL construct, a nested FORALL statement or FORALL construct shall not have the
same index-name. The forall-header expressions within a nested FORALL may depend on the values of outer
index-name variables.

7.2.4.4 Expressions and assignment 167

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

168 Expressions and assignment 7.2.4.4

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

8 Execution control

8.1 Executable constructs containing blocks

8.1.1 General

The following are executable constructs that contain blocks:

ASSOCIATE construct;
e BLOCK construct;

e CASE construct;
CRITICAL construct;
DO construct;

IF construct;
SELECT TYPE construct.

There is also a nonblock form of the DO construct.
R801 block is [execution-part-construct | ...

Executable constructs may be used to control which blocks of a program are executed or how many times a
block is executed. Blocks are always bounded by statements that are particular to the construct in which they
are embedded; however, in some forms of the DO construct, a sequence of executable constructs without a terminating boundary

statement shall obey all other rules governing blocks (8.1.2).

NOTE 8.1
A block need not contain any executable constructs. Execution of such a block has no effect.

NOTE 8.2

An example of a construct containing a block is:

IF (A > 0.0) THEN
B = SQRT (A) ! These two statements
C = LOG (A) ! form a block.

END IF

8.1.2 Rules governing blocks
8.1.2.1 Control flow in blocks

Transfer of control to the interior of a block from outside the block is prohibited. Transfers within a block and
transfers from the interior of a block to outside the block may occur.

Subroutine and function references (12.5.3, 12.5.4) may appear in a block.

8.1.2.2 Execution of a block

Execution of a block begins with the execution of the first executable construct in the block. Execution of the
block is completed when the last executable construct in the sequence is executed, when a branch (8.2) within
the block that has a branch target outside the block occurs, when a RETURN statement within the block is
executed, or when an EXIT or CYCLE statement that belongs to a construct that contains the block is executed.

8 Execution control 169

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

NOTE 8.3

The action that takes place at the terminal boundary depends on the particular construct and on the block
within that construct.

8.1.3 ASSOCIATE construct
8.1.3.1 Purpose and form of the ASSOCIATE construct

The ASSOCIATE construct associates named entities with expressions or variables during the execution of its
block. These named construct entities (16.4) are associating entities (16.5.1.6). The names are associate names.

R802 associate-construct is associate-stmt
block
end-associate-stmt

R803 associate-stmt is [associate-construct-name : | ASSOCIATE B
B (association-list)

R804 association is associate-name => selector

R805 selector is expr
or wvariable

C801 (R804) If selector is not a variable or is a variable that has a vector subscript, associate-name shall not
appear in a variable definition context (16.6.7).

C802 (R804) An associate-name shall not be the same as another associate-name in the same associate-stmit.
C803 (R805) variable shall not be a coindexed object.

C804 (R805) expr shall not be a variable.

R806 end-associate-stmt is END ASSOCIATE [associate-construct-name]

C805 (R806) If the associate-stmt of an associate-construct specifies an associate-construct-name, the corre-
sponding end-associate-stmt shall specify the same associate-construct-name. If the associate-stmt of an
associate-construct does not specify an associate-construct-name, the corresponding end-associate-stmt
shall not specify an associate-construct-name.

8.1.3.2 Execution of the ASSOCIATE construct

Execution of an ASSOCIATE construct causes evaluation of every expression within every selector that is a
variable designator and evaluation of every other selector, followed by execution of its block. During execution of
that block each associate name identifies an entity which is associated (16.5.1.6) with the corresponding selector.
The associating entity assumes the declared type and type parameters of the selector. If and only if the selector
is polymorphic, the associating entity is polymorphic.

The other attributes of the associating entity are described in 8.1.3.3.

It is permissible to branch to an end-associate-stmt only from within its ASSOCIATE construct.

8.1.3.3 Attributes of associate names

Within an ASSOCIATE or SELECT TYPE construct, each associating entity has the same rank and corank
as its associated selector. The lower bound of each dimension is the result of the intrinsic function LBOUND
(13.7.90) applied to the corresponding dimension of selector. The upper bound of each dimension is one less

than the sum of the lower bound and the extent. The cobounds of each codimension of the associating entity are
the same as those of the selector. The associating entity has the ASYNCHRONOUS or VOLATILE attribute if

170 Execution control 8.1.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

and only if the selector is a variable and has the attribute. The associating entity has the TARGET attribute
if and only if the selector is a variable and has either the TARGET or POINTER attribute. If the associating
entity is polymorphic, it assumes the dynamic type and type parameter values of the selector. If the selector has
the OPTIONAL attribute, it shall be present. The associating entity is contiguous if and only if the selector is
contiguous.

If the selector is not permitted to appear in a variable definition context (16.6.7), the associate name shall not
appear in a variable definition context.

8.1.3.4 Examples of the ASSOCIATE construct

NOTE 8.4
The following example illustrates an association with an expression.

ASSOCIATE (Z => EXP(-(X**2+Y*x2)) x COS(THETA))
PRINT *, A+Z, A-Z
END ASSOCIATE

The following example illustrates an association with a derived-type variable.

ASSOCIATE (XC => AXY%B(I,J%C)
XCY%DV = XC¥%DV + PRODUCT (XC%EV(1:N))
END ASSOCIATE

The following example illustrates association with an array section.

ASSOCIATE (ARRAY => AX%B(I,:)%C)
ARRAY (N)%EV = ARRAY(N-1)%EV
END ASSOCIATE

The following example illustrates multiple associations.

ASSOCIATE (W => RESULT(I,J)%W, ZX => AXYB(I,J)%D, ZY => AYYB(I,J)%D)
W = ZX*X + ZYxY
END ASSOCIATE

8.1.4 BLOCK construct

The BLOCK construct is an executable construct which may contain declarations.

R807 block-construct is block-stmt

[specification-part]

block

end-block-stmt
R808 block-stmt is [block-construct-name : | BLOCK
R809 end-block-stmt is END BLOCK [block-construct-name |

C806 (R807) The specification-part of a BLOCK construct shall not contain a COMMON, EQUIVALENCE,
IMPLICIT, INTENT, NAMELIST, or OPTIONAL statement.

C807 (R807) A SAVE statement in a BLOCK construct shall contain a saved-entity-list that does not specify
a common-block-name.

C808 (R807) If the block-stmt of a block-construct specifies a block-construct-name, the corresponding end-block-
stmt shall specify the same block-construct-name. If the block-stmt does not specify a block-construct-
name, the corresponding end-block-stmt shall not specify a block-construct-name.

8.1.3.4 Execution control 171

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

Except for the ASYNCHRONOUS and VOLATILE statements, specifications in a BLOCK construct declare
construct entities whose scope is that of the BLOCK construct (16.4).

Execution of a BLOCK construct causes evaluation of the specification expressions within its specification part
in a processor-dependent order, followed by execution of its block.

8.1.5 CASE construct
8.1.5.1 Purpose and form of the CASE construct

The CASE construct selects for execution at most one of its constituent blocks. The selection is based on the
value of an expression.

R810 case-construct is select-case-stmt
[case-stmt
block | ...
end-select-stmt
R811 select-case-stmt is [case-construct-name : | SELECT CASE (case-expr)
R812 case-stmt is CASE case-selector [case-construct-name]
R813 end-select-stmt is END SELECT [case-construct-name |

C809 (R810) If the select-case-stmt of a case-construct specifies a case-construct-name, the corresponding end-
select-stmt shall specify the same case-construct-name. If the select-case-stmt of a case-construct does
not specify a case-construct-name, the corresponding end-select-stmt shall not specify a case-construct-
name. If a case-stmt specifies a case-construct-name, the corresponding select-case-stmt shall specify the
same case-construct-name.

R814 case-expr is scalar-int-expr
or scalar-char-expr
or scalar-logical-expr

R815 case-selector is (case-value-range-list)
or DEFAULT

C810 (R810) No more than one of the selectors of one of the CASE statements shall be DEFAULT.

R816 case-value-range is case-value
or case-value :
or : case-value
or case-value : case-value

R817 case-value is scalar-int-initialization-expr
or scalar-char-initialization-expr
or scalar-logical-initialization-expr

C811 (R810) For a given case-construct, each case-value shall be of the same type as case-expr. For character
type, the kind type parameters shall be the same; character length differences are allowed.

C812 (R810) A case-value-range using a colon shall not be used if case-expr is of type logical.

C813 (R810) For a given case-construct, there shall be no possible value of the case-expr that matches more
than one case-value-range.

172 Execution control 8.1.5

08-007r2:2008/03/11 CD 1539-1

8.1.5.2 Execution of a CASE construct

ISO/IEC SC22/WG5/N1723

The execution of the SELECT CASE statement causes the case expression to be evaluated. The resulting value
is called the case index. For a case value range list, a match occurs if the case index matches any of the case
value ranges in the list. For a case index with a value of ¢, a match is determined as follows.

(1) If the case value range contains a single value v without a colon, a match occurs for type logical if
the expression ¢ .EQV. v is true, and a match occurs for type integer or character if the expression

c == v is true.

(2) If the case value range is of the form low : high, a match occurs if the expression low <= ¢ .AND.

c <= high is true.

(3) If the case value range is of the form low :, a match occurs if the expression low <= ¢ is true.
(4) If the case value range is of the form : high, a match occurs if the expression ¢ <= high is true.
(5) If no other selector matches and a DEFAULT selector appears, it matches the case index.

(6) If no other selector matches and the DEFAULT selector does not appear, there is no match.

It is permissible to branch to an end-select-stmt only from within its CASE construct.

8.1.5.3 Examples of CASE constructs

NOTE 8.5

The block following the CASE statement containing the matching selector, if any, is executed. This completes
execution of the construct.

An integer signum function:

INTEGER FUNCTION SIGNUM (N)
SELECT CASE (N)
CASE (:-1)
SIGNUM
CASE (0)
SIGNUM
CASE (1:)
SIGNUM
END SELECT
END

-1

]
o

]
—

NOTE 8.6

A code fragment to check for balanced parentheses:
CHARACTER (80) :: LINE

LEVEL = 0
SCAN_LINE: DO I =1, 80
CHECK_PARENS: SELECT CASE (LINE (I:I))
CASE C(*)
LEVEL = LEVEL + 1
CASE (°)”)
LEVEL = LEVEL - 1
IF (LEVEL < 0) THEN
PRINT *, ’UNEXPECTED RIGHT PARENTHESIS’
EXIT SCAN_LINE
END IF
CASE DEFAULT
I Ignore all other characters

8.1.5.3 Execution control

173

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

NOTE 8.6 (cont.)

END SELECT CHECK_PARENS
END DO SCAN_LINE
IF (LEVEL > 0) THEN

PRINT *, ’MISSING RIGHT PARENTHESIS’
END IF

NOTE 8.7

The following three fragments are equivalent:

IF (SILLY == 1) THEN
CALL THIS
ELSE
CALL THAT
END IF
SELECT CASE (SILLY == 1)
CASE (.TRUE.)
CALL THIS
CASE (.FALSE.)
CALL THAT
END SELECT
SELECT CASE (SILLY)
CASE DEFAULT
CALL THAT
CASE (1)
CALL THIS
END SELECT

NOTE 8.8

A code fragment showing several selections of one block:

SELECT CASE (N)

CASE (1, 3:5, 8) ! Selects 1, 3, 4, 5, 8
CALL SUB

CASE DEFAULT
CALL OTHER

END SELECT

8.1.6 CRITICAL construct

A CRITICAL construct limits execution of a block to one image at a time.

R818 critical-construct is critical-stmt

block

end-critical-stmt
R819 critical-stmt is [critical-construct-name : | CRITICAL
R820 end-critical-stmt is END CRITICAL [critical-construct-name |

C814 (RR818) If the critical-stmt of a critical-construct specifies a critical-construct-name, the corresponding
end-critical-stmt shall specify the same critical-construct-name. If the critical-stmt of a critical-construct
does not specify a critical-construct-name, the corresponding end-critical-stmt shall not specify a critical-

174 Execution control 8.1.6

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

construct-name.
C815 (R818) The block of a critical-construct shall not contain an image control statement.
Execution of the CRITICAL construct is completed when execution of its block is completed.

The processor shall ensure that once an image has commenced executing block, no other image shall commence
executing block until this image has completed executing block. The image shall not execute an image control
statement during the execution of block. The sequence of executed statements is therefore a segment (8.5.1). If
image T is the next to execute the construct after image M, the segment on image M precedes the segment on
image T.

NOTE 8.9

If more than one image executes the block of a CRITICAL construct, its execution by one image always
either precedes or succeeds its execution by another image. Typically no other statement ordering is needed.
Consider the following example:

CRITICAL
GLOBAL_COUNTER[1] = GLOBAL_COUNTER[1] + 1
END CRITICAL

The definition of GLOBAL_.COUNTER]J1] by a particular image will always precede the reference to the
same variable by the next image to execute the block.

NOTE 8.10
The following example permits a large number of jobs to be shared among the images:

INTEGER :: NUM_JOBS[*], JOB

IF (THIS_IMAGE() == 1) READ(*,*) NUM_JOBS
SYNC ALL
DO
CRITICAL
JOB = NUM_JOBS[1]
NUM_JOBS[1] = JOB - 1
END CRITICAL
IF (JOB > 0) THEN
! Work on JOB
ELSE
EXIT
END IF
END DO
SYNC ALL

8.1.7 DO construct
8.1.7.1 Purpose and form of the DO construct

The DO construct specifies the repeated execution of a sequence of executable constructs. Such a repeated
sequence is called a loop.

The number of iterations of a loop may be determined at the beginning of execution of the DO construct, or
may be left indefinite (“DO forever” or DO WHILE). Except in the case of a DO CONCURRENT construct, the
loop can be terminated immediately (8.1.7.6.4). The current iteration of the loop may be curtailed by executing
a CYCLE statement (8.1.7.6.3).

8.1.7 Execution control 175

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

There are three phases in the execution of a DO construct: initiation of the loop, execution of the loop range,
and termination of the loop.

The DO CONCURRENT construct is a DO construct whose DO statement contains the CONCURRENT
keyword.

The DO construct may be written in either a block form or a nonblock form.

R821 do-construct is block-do-construct

or nonblock-do-construct

8.1.7.2 Form of the block DO construct

R822 block-do-construct is do-stmt

do-block

end-do
R823 do-stmt is label-do-stmt

or nonlabel-do-stmt

R824 label-do-stmt is [do-construct-name :] DO label [loop-control |
R825 nonlabel-do-stmt is [do-construct-name :] DO [loop-control |
R826 loop-control is [,] do-variable = scalar-int-expr, scalar-int-expr A

[
W [, scalar-int-expr |
[
[

or [,] WHILE (scalar-logical-expr)
or [,] CONCURRENT jforall-header
R827 do-variable is scalar-int-variable-name

C816 (R827) The do-variable shall be a variable of type integer.
R828 do-block is block

R829 end-do is end-do-stmt
or continue-stmt

R830 end-do-stmt is END DO [do-construct-name |

C817 (R822) If the do-stmt of a block-do-construct specifies a do-construct-name, the corresponding end-do
shall be an end-do-stmt specifying the same do-construct-name. If the do-stmt of a block-do-construct
does not specify a do-construct-name, the corresponding end-do shall not specify a do-construct-name.

C818 (R822) If the do-stmt is a nonlabel-do-stmt, the corresponding end-do shall be an end-do-stmt.

C819 (R822) If the do-stmt is a label-do-stmt, the corresponding end-do shall be identified with the same label.

8.1.7.3 Form of the nonblock DO construct

R&31 nonblock-do-construct is action-term-do-construct
or outer-shared-do-construct

R832 action-term-do-construct is label-do-stmt
do-body
do-term-action-stmt
R833 do-body is [execution-part-construct | ...
R834 do-term-action-stmt is action-stmt
C820 (R834) A do-term-action-stmt shall not be an allstop-stmt, arithmetic-if-stmt, continue-stmt, cycle-stmt, end-function-

176 Execution control 8.1.7.2

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

stmt, end-mp-subprogram-stmt, end-program-stmt, end-subroutine-stmt, exit-stmt, goto-stmt, return-stmt, or stop-stmt.

C821 (R831) The do-term-action-stmt shall be identified with a label and the corresponding label-do-stmt shall refer to the same

label.
R8&35 outer-shared-do-construct is label-do-stmt
do-body
shared-term-do-construct
R&36 shared-term-do-construct is outer-shared-do-construct
or inner-shared-do-construct
R&37 inner-shared-do-construct is label-do-stmt
do-body
do-term-shared-stmt
R&38 do-term-shared-stmt is action-stmt

C822 (R838) A do-term-shared-stmt shall not be an allstop-stmt, arithmetic-if-stmt, cycle-stmt, end-function-stmt, end-program-
stmt, end-mp-subprogram-stmt, end-subroutine-stmt, exit-stmt, goto-stmt, return-stmt, or stop-stmt.

C823 (R836) The do-term-shared-stmt shall be identified with a label and all of the label-do-stmts of the inner-shared-do-construct
and outer-shared-do-construct shall refer to the same label.

The do-term-action-stmt, do-term-shared-stmt, or shared-term-do-construct following the do-body of a nonblock DO construct is
called the DO termination of that construct.

Within a scoping unit, all DO constructs whose DO statements refer to the same label are nonblock DO constructs, and share the
statement identified by that label.

8.1.7.4 Range of the DO construct

The range of a block DO construct is the do-block, which shall satisfy the rules for blocks (8.1.2). In particular,
transfer of control to the interior of such a block from outside the block is prohibited. It is permitted to branch
to the end-do of a block DO construct only from within the range of that DO construct.

The range of a nonblock DO construct consists of the do-body and the following DO termination. The end of such a range is not
bounded by a particular statement as for the other executable constructs (e.g., END IF); nevertheless, the range satisfies the rules
for blocks (8.1.2). Transfer of control into the do-body or to the DO termination from outside the range is prohibited; in particular,

it is permitted to branch to a do-term-shared-stmt only from within the range of the corresponding inner-shared-do-construct.
8.1.7.5 Active and inactive DO constructs

A DO construct is either active or inactive. Initially inactive, a DO construct becomes active only when its
DO statement is executed.

Once active, the DO construct becomes inactive only when it terminates (8.1.7.6.4).

8.1.7.6 Execution of a DO construct

8.1.7.6.1 Loop initiation

When the DO statement is executed, the DO construct becomes active. If loop-control is
[,] do-variable = scalar-int-expry , scalar-int-exprs | , scalar-int-exprs]

the following steps are performed in sequence.

(1) The initial parameter mq, the terminal parameter ms, and the incrementation parameter mg are
of type integer with the same kind type parameter as the do-variable. Their values are established
by evaluating scalar-int-expry, scalar-int-exprs, and scalar-int-exprs, respectively, including, if nec-
essary, conversion to the kind type parameter of the do-variable according to the rules for numeric
conversion (Table 7.11). If scalar-int-ezprs does not appear, ms has the value 1. The value of mg
shall not be zero.

8.1.7.4 Execution control 177

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

(2) The DO variable becomes defined with the value of the initial parameter m;.

(3) The iteration count is established and is the value of the expression (mg —my +mg)/msg, unless that
value is negative, in which case the iteration count is 0.

NOTE 8.11
The iteration count is zero whenever:

my > meo and mg > 0, or
mq < mo and mg < 0.

If loop-control is omitted, no iteration count is calculated. The effect is as if a large positive iteration count,
impossible to decrement to zero, were established. If loop-control is [, | WHILE (scalar-logical-expr), the effect
is as if loop-control were omitted and the following statement inserted as the first statement of the do-block:

IF (.NOT. (scalar-logical-expr)) EXIT

For a DO CONCURRENT construct, the values of the index variables for the iterations of the construct are
determined by the rules for the index variables of the FORALL construct (7.2.4.2.2 and 7.2.4.2.3).

An indez-name in a DO CONCURRENT construct has a scope of the construct (16.4). It is a scalar variable
that has the type and type parameters that it would have if it were the name of a variable in the scoping unit
that includes the construct, and this type shall be integer type; it has no other attributes.

At the completion of the execution of the DO statement, the execution cycle begins.

8.1.7.6.2 The execution cycle

The execution cycle of a DO construct that is not a DO CONCURRENT construct consists of the following
steps performed in sequence repeatedly until termination.

(1) The iteration count, if any, is tested. If it is zero, the loop terminates and the DO construct becomes
inactive. If loop-control is | , | WHILE (scalar-logical-expr), the scalar-logical-expr is evaluated; if
the value of this expression is false, the loop terminates and the DO construct becomes inactive. If, as
a result, all of the DO constructs sharing the do-term-shared-stmt are inactive, the execution of all of these constructs
is complete. However, if some of the DO constructs sharing the do-term-shared-stmt are active, execution continues

with step (3) of the execution cycle of the active DO construct whose DO statement was most recently executed.
(2) The range of the loop is executed.

(3) The iteration count, if any, is decremented by one. The DO variable, if any, is incremented by the
value of the incrementation parameter ms.

Except for the incrementation of the DO variable that occurs in step (3), the DO variable shall neither be redefined
nor become undefined while the DO construct is active.

The range of a DO CONCURRENT construct is executed for all of the active combinations of the index-name
values. Each execution of the range is an iteration. The executions may occur in any order.

8.1.7.6.3 CYCLE statement

Execution of the range of the loop may be curtailed by executing a CYCLE statement from within the range of
the loop.

R839 cycle-stmt is CYCLE [do-construct-name |

C824 (R839) If a do-construct-name appears, the CYCLE statement shall be within the range of that do-
construct; otherwise, it shall be within the range of at least one do-construct.

C825 (R839) A cycle-stmt shall not appear within the range of a DO CONCURRENT construct if it belongs
to an outer construct.

178 Execution control 8.1.7.6

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

A CYCLE statement belongs to a particular DO construct. If the CYCLE statement contains a DO construct
name, it belongs to that DO construct; otherwise, it belongs to the innermost DO construct in which it appears.

Execution of a CYCLE statement that belongs to a DO construct that is not a DO CONCURRENT construct
causes immediate progression to step (3) of the current execution cycle of the DO construct to which it belongs.
If this construct is a nonblock DO construct, the do-term-action-stmt or do-term-shared-stmt is not executed.

Execution of a CYCLE statement that belongs to a DO CONCURRENT construct completes execution of that
iteration of the construct.

In a block DO construct, a transfer of control to the end-do has the same effect as execution of a CYCLE statement
belonging to that construct. In a nonblock DO construct, transfer of control to the do-term-action-stmt or do-term-shared-stmdt
causes that statement to be executed. Unless a further transfer of control results, step (3) of the current execution cycle of the DO
construct is then executed.

8.1.7.6.4 Loop termination

For a DO construct that is not a DO CONCURRENT construct, the loop terminates, and the DO construct
becomes inactive, when any of the following occurs.

e The iteration count is determined to be zero or the scalar-logical-expr is false, when tested during step (1)
of the above execution cycle.

e An EXIT statement that belongs to the DO construct is executed.

e An EXIT or CYCLE statement that belongs to an outer construct and is within the range of the DO
construct is executed.

e Control is transferred from a statement within the range of a DO construct to a statement that is neither
the end-do nor within the range of the same DO construct.

e A RETURN statement within the range of the DO construct is executed.

For a DO CONCURRENT construct, the loop terminates, and the DO construct becomes inactive when all of
the iterations have completed execution.

When a DO construct becomes inactive, the DO variable, if any, of the DO construct retains its last defined
value.

8.1.7.7 Restrictions on DO CONCURRENT constructs
C826 A RETURN statement shall not appear within a DO CONCURRENT construct.

C827 A branch (8.2) within a DO CONCURRENT construct shall not have a branch target that is outside
the construct.

C828 A reference to a nonpure procedure shall not appear within a DO CONCURRENT construct.

C829 A reference to the procedure IEEE_GET_FLAG, IEEE_SET HALTING_MODE, or IEEE_GET _HALT-
ING_MODE from the intrinsic module IEEE_EXCEPTIONS, shall not appear within a DO CONCUR-
RENT construct.

The following additional restrictions apply to DO CONCURRENT constructs.

e A variable that is referenced in an iteration shall either be previously defined during that iteration, or shall
not be defined or become undefined during any other iteration of the current execution of the construct. A
variable that is defined or becomes undefined by more than one iteration of the current execution of the
construct becomes undefined when the current execution of the construct terminates.

e A pointer that is referenced in an iteration either shall be previously pointer associated during that iteration,
or shall not have its pointer association changed during any iteration. A pointer that has its pointer
association changed in more than one iteration has an association status of undefined when the construct
terminates.

8.1.7.7 Execution control 179

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

e An allocatable object that is allocated in more than one iteration shall be subsequently deallocated during
the same iteration in which it was allocated. An object that is allocated or deallocated in only one iteration
shall not be deallocated, allocated, referenced, defined, or become undefined in a different iteration.

e An input/output statement shall not write data to a file record or position in one iteration and read from
the same record or position in a different iteration of the same execution of the construct.

e Records written by output statements in the loop range to a sequential access file appear in the file in an
indeterminate order.

NOTE 8.12

The restrictions on referencing variables defined in an iteration of a DO CONCURRENT construct apply
to any procedure invoked within the loop.

NOTE 8.13

The restrictions on the statements in the loop range of a DO CONCURRENT construct are designed to
ensure there are no data dependencies between iterations of the loop. This permits code optimizations that
might otherwise be difficult or impossible because they would depend on properties of the program not
visible to the compiler.

8.1.7.8 Examples of DO constructs

NOTE 8.14
The following program fragment computes a tensor product of two arrays:

= DOT_PRODUCT (A (I, J, :), B(:, I, J))

NOTE 8.15

The following program fragment contains a DO construct that uses the WHILE form of loop-control. The
loop will continue to execute until an end-of-file or input/output error is encountered, at which point the
DO statement terminates the loop. When a negative value of X is read, the program skips immediately to
the next READ statement, bypassing most of the range of the loop.

READ (IUN, °’(1X, G14.7)’, IOSTAT = I0S) X
DO WHILE (IO0S == 0)
IF (X >= 0.) THEN
CALL SUBA (X)
CALL SUBB (X)

CALL SUBZ (X)
ENDIF
READ (IUN, °’(1X, G14.7)°, IOSTAT = I0S) X
END DO

NOTE 8.16

The following example behaves exactly the same as the one in Note 8.15. However, the READ statement
has been moved to the interior of the range, so that only one READ statement is needed. Also, a CYCLE
statement has been used to avoid an extra level of IF nesting.

DO ! A "DO WHILE + 1/2" loop

180 Execution control 8.1.7.8

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 8.16 (cont.)

READ (IUN, ’(1X, G14.7)°, IOSTAT = IOS) X
IF (I0S /= 0) EXIT

IF (X < 0.) CYCLE

CALL SUBA (X)

CALL SUBB (X)

CALL SUBZ (X)
END DO

NOTE 8.17

The following example represents a case in which the user knows that there are no repeated values in the
index array IND. The DO CONCURRENT construct makes it easier for the processor to generate vector
gather /scatter code, unroll the loop, or parallelize the code for this loop, potentially improving performance.

INTEGER :: A(N),IND(N)

DO CONCURRENT (I=1:M)

ACIND(I)) =1

END DO

NOTE 8.18

’Additional examples of DO constructs are in C.5.3.

8.1.8

IF construct and statement

8.1.8.1 Purpose and form of the IF construct

The IF construct selects for execution at most one of its constituent blocks. The selection is based on a sequence
of logical expressions.

R840 if-construct is if-then-stmt
block
[else-if-stmt
block | ...
[else-stmt
block |
end-if-stmt

R841 if-then-stmt is [if-construct-name : | IF (scalar-logical-expr) THEN

R842 else-if-stmt is ELSE IF (scalar-logical-expr) THEN [if-construct-name |

R843 else-stmt is ELSE [if-construct-name]

R844 end-if-stmt is END IF [if-construct-name]

C830 (R840) If the if-then-stmt of an if-construct specifies an if-construct-name, the corresponding end-if-
stmt shall specify the same if-construct-name. If the if-then-stmt of an if-construct does not specify an
if-construct-name, the corresponding end-if-stmt shall not specify an if-construct-name. If an else-if-
stmt or else-stmt specifies an if-construct-name, the corresponding if-then-stmt shall specify the same
if-construct-name.

8.1.8 Execution control 181

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

8.1.8.2 Execution of an IF construct

At most one of the blocks in the IF construct is executed. If there is an ELSE statement in the construct,
exactly one of the blocks in the construct is executed. The scalar logical expressions are evaluated in the order
of their appearance in the construct until a true value is found or an ELSE statement or END IF statement is
encountered. If a true value or an ELSE statement is found, the block immediately following is executed and this
completes the execution of the construct. The scalar logical expressions in any remaining ELSE IF statements of
the IF construct are not evaluated. If none of the evaluated expressions is true and there is no ELSE statement,
the execution of the construct is completed without the execution of any block within the construct.

It is permissible to branch to an END IF statement only from within its IF construct. Execution of an END IF
statement has no effect.

8.1.8.3 Examples of IF constructs

NOTE 8.19

IF (CVAR == ’RESET’) THEN
I=0;J=0; K=0

END IF

PROOF_DONE: IF (PROP) THEN
WRITE (3, ’(°’QED’’)’)
STOP

ELSE
PROP = NEXTPROP

END IF PROOF_DONE

IF (A > 0) THEN

B = C/A
IF (B > 0) THEN
D=1.0
END IF
ELSE IF (C > 0) THEN
B = A/C
D=-1.0
ELSE
B = ABS (MAX (A, C))
D=0
END IF

8.1.8.4 IF statement
The IF statement controls the execution of a single action statement based on a single logical expression.
R845 if-stmt is IF (scalar-logical-expr) action-stmt

C831 (R845) The action-stmt in the if-stmt shall not be an end-function-stmt, end-mp-subprogram-stmt, end-
program-stmt, end-subroutine-stmt, or if-stmt.

Execution of an IF statement causes evaluation of the scalar logical expression. If the value of the expression is
true, the action statement is executed. If the value is false, the action statement is not executed and execution
continues.

The execution of a function reference in the scalar logical expression may affect entities in the action statement.

NOTE 8.20
’An example of an IF statement is: ‘

182 Execution control 8.1.8.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 8.20 (cont.)
[IF (A >0.0) A = LOG (&)

8.1.9 SELECT TYPE construct
8.1.9.1 Purpose and form of the SELECT TYPE construct

The SELECT TYPE construct selects for execution at most one of its constituent blocks. The selection is
based on the dynamic type of an expression. A name is associated with the expression or variable (16.4, 16.5.1.6),
in the same way as for the ASSOCIATE construct.

R846 select-type-construct is select-type-stmt
[type-guard-stmt
block | ...
end-select-type-stmt

R847 select-type-stmt is [select-construct-name : | SELECT TYPE B
W ([associate-name => | selector)

C832 (R847) If selector is not a named variable, associate-name => shall appear.

C833 (R847) If selector is not a variable or is a variable that has a vector subscript, associate-name shall not
appear in a variable definition context (16.6.7).

(834 (R847) The selector in a select-type-stmt shall be polymorphic.

R848 type-guard-stmt is TYPE IS (type-spec) [select-construct-name |
or CLASS IS (derived-type-spec) | select-construct-name |
or CLASS DEFAULT [select-construct-name |

C835 (R848) The type-spec or derived-type-spec shall specify that each length type parameter is assumed.

C836 (R848) The type-spec or derived-type-spec shall not specify a type with the BIND attribute or the SE-
QUENCE attribute.

C837 (R846) If selector is not unlimited polymorphic, each TYPE IS or CLASS IS type-guard-stmt shall specify
an extension of the declared type of selector.

(838 (R846) For a given select-type-construct, the same type and kind type parameter values shall not be
specified in more than one TYPE IS type-guard-stmt and shall not be specified in more than one CLASS
IS type-guard-stmt.

C839 (R846) For a given select-type-construct, there shall be at most one CLASS DEFAULT type-guard-stmt.
R849 end-select-type-stmt is END SELECT | select-construct-name]

C840 (R846) If the select-type-stmt of a select-type-construct specifies a select-construct-name, the correspond-
ing end-select-type-stmt shall specify the same select-construct-name. If the select-type-stmt of a select-
type-construct does not specify a select-construct-name, the corresponding end-select-type-stmt shall not
specify a select-construct-name. If a type-guard-stmt specifies a select-construct-name, the corresponding
select-type-stmt shall specify the same select-construct-name.

The associate name of a SELECT TYPE construct is the associate-name if specified; otherwise it is the name
that constitutes the selector.

8.1.9 Execution control 183

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

8.1.9.2 Execution of the SELECT TYPE construct

Execution of a SELECT TYPE construct causes evaluation of every expression within a selector that is a variable
designator, or evaluation of a selector that is not a variable designator.

A SELECT TYPE construct selects at most one block to be executed. During execution of that block, the
associate name identifies an entity which is associated (16.5.1.6) with the selector.

A TYPE IS type guard statement matches the selector if the dynamic type and kind type parameter values of
the selector are the same as those specified by the statement. A CLASS IS type guard statement matches the
selector if the dynamic type of the selector is an extension of the type specified by the statement and the kind
type parameter values specified by the statement are the same as the corresponding type parameter values of the
dynamic type of the selector.

The block to be executed is selected as follows.

(1) If a TYPE IS type guard statement matches the selector, the block following that statement is
executed.

(2) Otherwise, if exactly one CLASS IS type guard statement matches the selector, the block following
that statement is executed.

(3) Otherwise, if several CLASS IS type guard statements match the selector, one of these statements
must specify a type that is an extension of all the types specified in the others; the block following
that statement is executed.

(4) Otherwise, if there is a CLASS DEFAULT type guard statement, the block following that statement
is executed.

(5) Otherwise, no block is executed.

NOTE 8.21

This algorithm does not examine the type guard statements in source text order when it looks for a match;
it selects the most particular type guard when there are several potential matches.

Within the block following a TYPE IS type guard statement, the associating entity (16.5.5) is not polymorphic
(4.3.1.3), has the type named in the type guard statement, and has the type parameter values of the selector.

Within the block following a CLASS IS type guard statement, the associating entity is polymorphic and has the
declared type named in the type guard statement. The type parameter values of the associating entity are the
corresponding type parameter values of the selector.

Within the block following a CLASS DEFAULT type guard statement, the associating entity is polymorphic and
has the same declared type as the selector. The type parameter values of the associating entity are those of the
declared type of the selector.

NOTE 8.22

If the declared type of the selector is T, specifying CLASS DEFAULT has the same effect as specifying
CLASS IS (T).

The other attributes of the associating entity are described in 8.1.3.3.
It is permissible to branch to an end-select-type-stmt only from within its SELECT TYPE construct.
8.1.9.3 Examples of the SELECT TYPE construct

NOTE 8.23

TYPE POINT
REAL :: X, Y

184 Execution control 8.1.9.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 8.23 (cont.)

END TYPE POINT

TYPE, EXTENDS(POINT) :: POINT_3D
REAL :: Z

END TYPE POINT_3D

TYPE, EXTENDS(POINT) :: COLOR_POINT
INTEGER :: COLOR

END TYPE COLOR_POINT

TYPE(POINT), TARGET :: P
TYPE(POINT_3D), TARGET :: P3
TYPE (COLOR_POINT), TARGET :: C
CLASS(POINT), POINTER :: P_OR_C
P_OR_C => C
SELECT TYPE (A => P_OR_C)
CLASS IS (POINT)
! "CLASS (POINT) :: A" implied here
PRINT *, AYX, AJY ! This block gets executed
TYPE IS (POINT_3D)
! "TYPE (POINT_3D) :: A" implied here
PRINT =*, A%X, ALY, AJZ
END SELECT

NOTE 8.24
The following example illustrates the omission of associate-name. It uses the declarations from Note 8.23.

P_OR_C => P3
SELECT TYPE (P_OR_C)
CLASS IS (POINT)
! "CLASS (POINT) :: P_OR_C" implied here
PRINT *, P_OR_C%X, P_OR_C%Y
TYPE IS (POINT_3D)
! "TYPE (POINT_3D) :: P_OR_C" implied here
PRINT *, P_OR_C%X, P_OR_C%Y, P_OR_C%Z ! This block gets executed
END SELECT

8.1.10 EXIT statement
The EXIT statement provides one way of terminating a loop, or completing execution of another construct.
R850 ewit-stmt is EXIT [construct-name |

C841 If a construct-name appears, the EXIT statement shall be within that construct; otherwise, it shall be
within the range of at least one do-construct.

An EXIT statement belongs to a particular construct. If a construct name appears, the EXIT statement belongs
to that construct; otherwise, it belongs to the innermost DO construct in which it appears.

C842 An exit-stmt shall not belong to a DO CONCURRENT construct, nor shall it appear within the range
of a DO CONCURRENT construct if it belongs to a construct that contains that DO CONCURRENT
construct.

When an EXIT statement that belongs to a DO construct is executed, it terminates the loop (8.1.7.6.4) and
any active loops contained within the terminated loop. When an EXIT statement that belongs to a non-DO
construct is executed, it terminates any active loops contained within that construct, and completes execution of
that construct.

8.1.10 Execution control 185

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

8.2 Branching

8.2.1 Branch concepts

Branching is used to alter the normal execution sequence. A branch causes a transfer of control from one
statement in a scoping unit to a labeled branch target statement in the same scoping unit. Branching may
be caused by a GOTO statement, a computed GOTO statement, an arithmetic IF statement, a CALL statement
that has an alt-return-spec, or an input/output statement that has an END= or ERR= specifier. Although proce-
dure references and control constructs can cause transfer of control, they are not branches. A branch target
statement is an action-stmt, an associate-stmt, an end-associate-stmt, an if-then-stmt, an end-if-stmt, a select-
case-stmt, an end-select-stmt, a select-type-stmt, an end-select-type-stmt, a do-stmt, an end-do-stmt, block-stmt,
end-block-stmt, critical-stmt, end-critical-stmt, a forall-construct-stmt, a do-term-action-stmt, a do-term-shared-stmit,
or a where-construct-stmt.

8.2.2 GO TO statement
R851 goto-stmt is GO TO label

(C843 (R851) The label shall be the statement label of a branch target statement that appears in the same
scoping unit as the goto-stmt.

Execution of a GO TO statement causes a transfer of control so that the branch target statement identified
by the label is executed next.

8.2.3 Computed GO TO statement
R852 computed-goto-stmt is GO TO (label-list) [,]| scalar-int-expr

C844 (R852 Each label in label-list shall be the statement label of a branch target statement that appears in the same scoping
unit as the computed-goto-stmt.

NOTE 8.25

’ The same statement label may appear more than once in a label list.

Execution of a computed GO TO statement causes evaluation of the scalar integer expression. If this value is i such that 1 <i<n
where n is the number of labels in label-list, a transfer of control occurs so that the next statement executed is the one identified
by the ith label in the list of labels. If ¢ is less than 1 or greater than n, the execution sequence continues as though a CONTINUE

statement were executed.

8.2.4 Arithmetic IF statement

R853 arithmetic-if-stmt is IF (scalar-numeric-expr) label , label , label

C845 (R853) Each label shall be the label of a branch target statement that appears in the same scoping unit as the arithmetic-
if-stmt.

C846 (R853) The scalar-numeric-expr shall not be of type complex.

NOTE 8.26

’ The same label may appear more than once in one arithmetic IF statement.

Execution of an arithmetic IF statement causes evaluation of the numeric expression followed by a transfer of control. The branch
target statement identified by the first label, the second label, or the third label is executed next depending on whether the value of

the numeric expression is less than zero, equal to zero, or greater than zero, respectively.

8.3 CONTINUE statement

Execution of a CONTINUE statement has no effect.

186 Execution control 8.2

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

R854 continue-stmt is CONTINUE

8.4 STOP and ALL STOP statements

R855 stop-stmt is STOP [stop-code |
R856 allstop-stmt is ALL STOP [stop-code]
R857 stop-code is scalar-char-initialization-expr

or scalar-int-initialization-expr
C847 (R857) The scalar-char-initialization-expr shall be of default kind.
C848 (R857) The scalar-int-initialization-expr shall be of default kind.

Execution of a STOP statement initiates normal termination of execution. Execution of an ALL STOP
statement initiates error termination of execution.

When an image is terminated by a STOP or ALL STOP statement, its stop code, if any, is made available in a
processor-dependent manner. If any exception (14) is signaling on that image, the processor shall issue a warning
indicating which exceptions are signaling; this warning shall be on the unit identified by the named constant
ERROR_UNIT (13.8.2.6). It is recommended that the stop code is made available by formatted output to the
same unit.

NOTE 8.27

When normal termination occurs on more than one image, it is expected that a processor-dependent sum-
mary of any stop codes and signaling exceptions will be made available.

NOTE 8.28

If the stop-code is an integer, it is recommended that the value also be used as the process exit status, if the
processor supports that concept. If the integer stop-code is used as the process exit status, the processor
might be able to interpret only values within a limited range, or only a limited portion of the integer value
(for example, only the least-significant 8 bits).

If the stop-code is of type character or does not appear, or if an END PROGRAM statement is executed,
it is recommended that the value zero be supplied as the process exit status, if the processor supports that
concept.

8.5 Image execution control

8.5.1 Image control statements
The execution sequence on each image is as specified in 2.4.5.

An image control statement affects the execution ordering between images. Each of the following is an image
control statement:

e SYNC ALL statement;

e SYNC IMAGES statement;

SYNC MEMORY statement;

ALLOCATE or DEALLOCATE statement that allocates or deallocates a coarray;

CRITICAL or END CRITICAL statement (8.1.6);

END, END BLOCK, or RETURN statement that involves an implicit deallocation of a coarray;
e END PROGRAM or STOP statement.

8.4 Execution control 187

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

During an execution of a statement that invokes more than one procedure, at most one invocation shall cause
execution of an image control statement other than CRITICAL or END CRITICAL.

On each image, the sequence of statements executed before the first image control statement, between the exe-
cution of two image control statements, or after the last image control statement is a segment. The segment
executed immediately before the execution of an image control statement includes the evaluation of all expressions
within the statement.

By execution of image control statements or user-defined ordering (8.5.4), the program can ensure that the
execution of the i*" segment on image P, P;, either precedes or succeeds the execution of the j** segment on
another image Q, @;. If the program does not ensure this, segments P; and @); are unordered; depending on the
relative execution speeds of the images, some or all of the execution of the segment P; may take place at the same
time as some or all of the execution of the segment @Q;.

NOTE 8.29

The set of all segments on all images is partially ordered: the segment P; precedes segment @); if and only if
there is a sequence of segments starting with P; and ending with @); such that each segment of the sequence
precedes the next either because they are on the same image or because of the execution of image control
statements.

A coarray that is default integer, default logical, or default real, and which has the VOLATILE attribute may be
referenced during the execution of a segment that is unordered relative to the execution of a segment in which
the coarray is defined. Otherwise,

e if a variable is defined on an image in a segment, it shall not be referenced, defined, or become undefined
in a segment on another image unless the segments are ordered,

e if the allocation of an allocatable subobject of a coarray or the pointer association of a pointer subobject
of a coarray is changed on an image in a segment, that subobject shall not be referenced or defined in a
segment on another image unless the segments are ordered, and

e if a procedure invocation on image P is in execution in segments P;, P;;1, ..., P, and defines a noncoarray
dummy argument, the effective argument shall not be referenced, defined, or become undefined on another
image Q in a segment @); unless @); precedes P; or succeeds P.

NOTE 8.30

Apart from the effects of volatile variables, the processor may optimize the execution of a segment as if it
were the only image in execution.

NOTE 8.31

The model upon which the interpretation of a program is based is that there is a permanent memory
location for each coarray and that all images can access it. In practice, an image may make a copy of a
non-volatile coarray (in cache or a register, for example) and, as an optimization, defer copying a changed
value back to the permanent location while it is still being used. Since the variable is not volatile, it is safe
to defer this transfer until the end of the current segment and thereafter to reload from permanent memory
any coarray that was not defined within the segment. It would not be safe to defer these actions beyond
the end of the current segment since another image might reference the variable then.

NOTE 8.32
The incorrect sequencing of image control statements can suspend execution indefinitely. For example, one
image might be executing a SYNC ALL statement while another is executing an ALLOCATE statement
for a coarray.

8.5.2 SYNC ALL statement

R858 sync-all-stmt is SYNC ALL [([sync-stat-list])]

188 Execution control 8.5.2

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

R859 sync-stat is STAT = stat-variable
or ERRMSG = errmsg-variable

C849 No specifier shall appear more than once in a given sync-stat-list.
The STAT= and ERRMSG= specifiers for image execution control statements are described in 8.5.5.

Execution of a SYNC ALL statement performs a synchronization of all images. Execution on an image, M, of
the segment following the SYNC ALL statement is delayed until each other image has executed a SYNC ALL
statement as many times as has image M. The segments that executed before the SYNC ALL statement on an
image precede the segments that execute after the SYNC ALL statement on another image.

NOTE 8.33

The processor might have special hardware or employ an optimized algorithm to make the SYNC ALL
statement execute efficiently.

Here is a simple example of its use. Image 1 reads data and broadcasts it to other images:
REAL :: P[x]

SYNC ALL

IF (THIS_IMAGE()==1) THEN
READ (*,*) P
DO I = 2, NUM_IMAGES()

P[I] =P

END DO

END IF

SYNC ALL

8.5.3 SYNC IMAGES statement

R860 sync-images-stmt is SYNC IMAGES (image-set [, sync-stat-list])
R861 image-set is int-expr
or *

C850 An image-set that is an int-expr shall be scalar or of rank one.

If image-set is an array expression, the value of each element shall be positive and not greater than the number
of images, and there shall be no repeated values.

If image-set is a scalar expression, its value shall be positive and not greater than the number of images.
An image-set that is an asterisk specifies all images.

Execution of a SYNC IMAGES statement performs a synchronization of the image with each of the other images
in the image-set. Executions of SYNC IMAGES statements on images M and T correspond if the number of
times image M has executed a SYNC IMAGES statement with T in its image set is the same as the number of
times image T has executed a SYNC IMAGES statement with M in its image set. The segments that executed
before the SYNC IMAGES statement on either image precede the segments that execute after the corresponding
SYNC IMAGES statement on the other image.

NOTE 8.34

A SYNC IMAGES statement that specifies the single image value THIS IMAGE() in its image set is allowed.
This simplifies writing programs for an arbitrary number of images by allowing correct execution in the
limiting case of the number of images being equal to one.

8.5.3 Execution control 189

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

NOTE 8.35

Execution of SYNC IMAGES (*) on all images has the same effect as execution of SYNC ALL on all images,
but SYNC ALL might have better performance. SYNC IMAGES statements are not required to specify
the entire image set, or even the same image set, on all images participating in the synchronization.

In the following example, image 1 will wait for each of the other images to complete its use of the data.
The other images wait for image 1 to set up the data, but do not wait on any of the other images.

IF (THIS_IMAGE() == 1) then
! Set up coarray data needed by all other images
SYNC IMAGES (%)
ELSE
SYNC IMAGES(1)
! Use the data set up by image 1
END IF

NOTE 8.36
In the following example, each image synchronizes with its neighbor.

INTEGER :: ME, NE, STEP, NSTEPS
NE = NUM_IMAGES()
ME = THIS_IMAGE()
! Initial calculation

SYNC ALL
DO STEP = 1, NSTEPS

IF (ME > 1) SYNC IMAGES(ME-1)

! Perform calculation

IF (ME < NE) SYNC IMAGES(ME+1)
END DO
SYNC ALL

The calculation starts on image 1 since all the others will be waiting on SYNC IMAGES(ME-1). When
this is done, image 2 can start and image 1 can perform its second calculation. This continues until they
are all executing different steps at the same time. Eventually, image 1 will finish and then the others will
finish one by one.

8.5.4 SYNC MEMORY statement

The SYNC MEMORY statement provides a means of dividing a segment on an image into two segments, each of
which can be ordered by a user-defined way with respect to segments on other images.

R862 sync-memory-stmt is SYNC MEMORY [([sync-stat-list |)]

All of the other image control statements include the effect of executing a SYNC MEMORY statement. In
addition, the other image control statements cause some form of cooperation with other images for the purpose
of ordering execution between images.

NOTE 8.37

SYNC MEMORY usually suppresses compiler optimizations that might reorder memory operations across
the segment boundary defined by the SYNC MEMORY statement and ensures that all memory operations
initiated in the preceding segments in its image complete before any memory operations in the subsequent
segment in its image are initiated. It needs to do this unless it can establish that failure to do so could not
alter processing on another image.

190 Execution control 8.5.4

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 8.38

A common example of user-written code that can be used in conjunction with SYNC MEMORY to imple-
ment specialized schemes for segment ordering is the spin-wait loop. For example:

LOGICAL,VOLATILE :: LOCKED [*]
INTEGER :: IAM, P, Q

.TRUE.

IAM = THIS_IMAGEQ)
IF (IAM == P) THEN
! Preceding segment
SYNC MEMORY
LOCKED[Q] = .FALSE.
SYNC MEMORY
ELSE IF (IAM == Q) THEN
DO WHILE (LOCKED); END DO ! segment ();
SYNC MEMORY ' C
! Subsequent segment
END IF

A
segment P;
B

Here, image Q does not complete the segment (); until image P executes segment P;. This ensures that
executions of segments before P; on image P precede executions of segments on image Q after Q;.

The first SYNC MEMORY statement (A) ensures that the compiler does not reorder the following statement
(locking) with the previous statements, since the lock should be freed only after the work has been completed.

The definition of LOCKED[Q] might be deferred to the end of segment P;. The second SYNC MEMORY
statement (B) ends that segment immediately after the definition, minimizing any delay in releasing the
lock in segment @);.

The third SYNC MEMORY statement (C) marks the beginning of a new segment, informing the compiler
that the values of coarrays referenced in that segment might have been changed by other images in preceding
segments, so need to be loaded from memory.

NOTE 8.39

As a second example, the user might have access to an external procedure that performs synchronization
between images. That library procedure might not be aware of the mechanisms used by the processor to
manage remote data references and definitions, and therefore not, by itself, be able to ensure the correct
memory state before and after its reference. The SYNC MEMORY statement provides the needed memory
ordering that enables the safe use of the external synchronization routine. For example:

INTEGER :: IAM
REAL c X[x]

IAM = THIS_IMAGE()

IF (IAM == 1) X = 1.0

SYNC MEMORY

CALL EXTERNAL_SYNC()

SYNC MEMORY

IF (IAM == 2) WRITE(*,x*) X[1]

where executing the subroutine EXTERNAL_SYNC has an image synchronization effect similar to executing
a SYNC ALL statement.

8.5.5 Execution control 191

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

8.5.5 STAT= and ERRMSG= specifiers in image execution control statements

If the STAT= specifier appears, successful execution of the SYNC ALL, SYNC IMAGES, or SYNC MEMORY
statement causes the specified variable to become defined with the value zero. If execution of one of these
statements involves synchronization with an image that has initiated termination, the variable becomes defined
with the value of the constant STAT_STOPPED_IMAGE (13.8.2) in the intrinsic module ISO_.FORTRAN_ENV,
and the effect of executing the statement is otherwise the same as that of executing the SYNC MEMORY
statement. If any other error occurs during execution of one of these statements, the variable becomes defined
with a processor-dependent positive integer value that is different from the value of STAT_STOPPED_IMAGE.
If an error condition occurs during execution of a SYNC ALL, SYNC IMAGES, or SYNC MEMORY statement
that does not contain the STAT= specifier, error termination of execution is initiated.

If the ERRMSG= specifier appears and an error condition occurs during execution of the SYNC ALL, SYNC
IMAGES, or SYNC MEMORY statement, the processor shall assign an explanatory message to the specified
variable. If no such condition occurs, the processor shall not change the value of the variable.

NOTE 8.40

Except for detection of images that have initiated termination, which errors, if any, are diagnosed is processor
dependent. The processor might check that a valid set of images has been provided, with no out-of-range
or repeated values. It might test for network time-outs. While the overall program would probably not be
able to recover from a synchronization error, it could perhaps provide information on what failed and be
able to save some of the program state to a file.

192 Execution control 8.5.5

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

9 Input/output statements

9.1 Input/output concepts

Input statements provide the means of transferring data from external media to internal storage or from an
internal file to internal storage. This process is called reading. Output statements provide the means of
transferring data from internal storage to external media or from internal storage to an internal file. This process
is called writing. Some input/output statements specify that editing of the data is to be performed.

In addition to the statements that transfer data, there are auxiliary input/output statements to manipulate the
external medium, or to describe or inquire about the properties of the connection to the external medium.

The input/output statements are the OPEN, CLOSE, READ, WRITE, PRINT, BACKSPACE, ENDFILE,
REWIND, FLUSH, WAIT, and INQUIRE statements.

The READ statement is a data transfer input statement. The WRITE statement and the PRINT statement
are data transfer output statements. The OPEN statement and the CLOSE statement are file connection
statements. The INQUIRE statement is a file inquiry statement. The BACKSPACE, ENDFILE, and
REWIND statements are file positioning statements.

A file is composed of either a sequence of file storage units (9.3.5) or a sequence of records, which provide an extra
level of organization to the file. A file composed of records is called a record file. A file composed of file storage
units is called a stream file. A processor may allow a file to be viewed both as a record file and as a stream
file; in this case the relationship between the file storage units when viewed as a stream file and the records when
viewed as a record file is processor dependent.

A file is either an external file (9.3) or an internal file (9.4).

9.2 Records

9.2.1 General

A record is a sequence of values or a sequence of characters. For example, a line on a terminal is usually considered
to be a record. However, a record does not necessarily correspond to a physical entity. There are three kinds of
records:

(1) formatted;
(2) unformatted;
(3) endfile.

NOTE 9.1

What is called a “record” in Fortran is commonly called a “logical record”. There is no concept in Fortran
of a “physical record.”

9.2.2 Formatted record

A formatted record consists of a sequence of characters that are representable in the processor; however, a
processor may prohibit some control characters (3.1) from appearing in a formatted record. The length of a
formatted record is measured in characters and depends primarily on the number of characters put into the
record when it is written. However, it may depend on the processor and the external medium. The length may
be zero. Formatted records shall be read or written only by formatted input/output statements.

9 Input/output statements 193

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

9.2.3 Unformatted record

An unformatted record consists of a sequence of values in a processor-dependent form and may contain data
of any type or may contain no data. The length of an unformatted record is measured in file storage units
(9.3.5) and depends on the output list (9.6.3) used when it is written, as well as on the processor and the external
medium. The length may be zero. Unformatted records may be read or written only by unformatted input/output
statements.

9.2.4 Endfile record

An endfile record is written explicitly by the ENDFILE statement; the file shall be connected for sequential
access. An endfile record is written implicitly to a file connected for sequential access when the most recent
data transfer statement referring to the file is a data transfer output statement, no intervening file positioning
statement referring to the file has been executed, and

e a REWIND or BACKSPACE statement references the unit to which the file is connected, or

e the unit is closed, either explicitly by a CLOSE statement, implicitly by termination of image execution
not caused by an error condition, or implicitly by another OPEN statement for the same unit.

An endfile record may occur only as the last record of a file. An endfile record does not have a length property.

NOTE 9.2

An endfile record does not necessarily have any physical embodiment. The processor may use a record
count or other means to register the position of the file at the time an ENDFILE statement is executed,
so that it can take appropriate action when that position is reached again during a read operation. The
endfile record, however it is implemented, is considered to exist for the BACKSPACE statement (9.8.2).

0.3 External files

9.3.1 Basic concepts
An external file is any file that exists in a medium external to the program.

At any given time, there is a processor-dependent set of allowed access methods, a processor-dependent set of
allowed forms, a processor-dependent set of allowed actions, and a processor-dependent set of allowed record
lengths for a file.

NOTE 9.3

For example, the processor-dependent set of allowed actions for a printer would likely include the write
action, but not the read action.

A file may have a name; a file that has a name is called a named file. The name of a named file is represented
by a character string value. The set of allowable names for a file is processor dependent. Whether a named file
on one image is the same as a file with the same name on another image is processor dependent.

NOTE 9.4

For code portability, if different files are needed on each image, different file names should be used. One
technique is to incorporate the image index as part of the name.

An external file that is connected to a unit has a position property (9.3.4).

NOTE 9.5

‘ For more explanatory information on external files, see C.6.1. ‘

194 Input/output statements 9.2.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

9.3.2 File existence

At any given time, there is a processor-dependent set of external files that exist for a program. A file may be
known to the processor, yet not exist for a program at a particular time.

NOTE 9.6

Security reasons may prevent a file from existing for a program. A newly created file may exist but contain
no records.

To create a file means to cause a file to exist that did not exist previously. To delete a file means to terminate
the existence of the file.

All input/output statements may refer to files that exist. An INQUIRE, OPEN, CLOSE, WRITE, PRINT,
REWIND, FLUSH, or ENDFILE statement also may refer to a file that does not exist. Execution of a WRITE,
PRINT, or ENDFILE statement referring to a preconnected file that does not exist creates the file. This file is a
different file from one preconnected on any other image.

9.3.3 File access
9.3.3.1 File access methods

There are three methods of accessing the data of an external file: sequential, direct, and stream. Some files may
have more than one allowed access method; other files may be restricted to one access method.

NOTE 9.7

For example, a processor may allow only sequential access to a file on magnetic tape. Thus, the set of
allowed access methods depends on the file and the processor.

The method of accessing a file is determined when the file is connected to a unit (9.5.4) or when the file is created
if the file is preconnected (9.5.5).

9.3.3.2 Sequential access
Sequential access is a method of accessing the records of an external record file in order.

When connected for sequential access, an external file has the following properties.

e The order of the records is the order in which they were written if the direct access method is not a member
of the set of allowed access methods for the file. If the direct access method is also a member of the set of
allowed access methods for the file, the order of the records is the same as that specified for direct access.
In this case, the first record accessible by sequential access is the record whose record number is 1 for direct
access. The second record accessible by sequential access is the record whose record number is 2 for direct
access, etc. A record that has not been written since the file was created shall not be read.

e The records of the file are either all formatted or all unformatted, except that the last record of the file
may be an endfile record. Unless the previous reference to the file was a data transfer output statement,
the last record, if any, of the file shall be an endfile record.

e The records of the file shall be read or written only by sequential access input/output statements.
9.3.3.3 Direct access
Direct access is a method of accessing the records of an external record file in arbitrary order.

When connected for direct access, an external file has the following properties.

e Each record of the file is uniquely identified by a positive integer called the record number. The record
number of a record is specified when the record is written. Once established, the record number of a record
can never be changed. The order of the records is the order of their record numbers.

9.3.2 Input/output statements 195

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

The records of the file are either all formatted or all unformatted. If the sequential access method is also a
member of the set of allowed access methods for the file, its endfile record, if any, is not considered to be
part of the file while it is connected for direct access. If the sequential access method is not a member of
the set of allowed access methods for the file, the file shall not contain an endfile record.

The records of the file shall be read or written only by direct access input/output statements.

All records of the file have the same length.

Records need not be read or written in the order of their record numbers. Any record may be written
into the file while it is connected to a unit. For example, it is permissible to write record 3, even though
records 1 and 2 have not been written. Any record may be read from the file while it is connected to a
unit, provided that the record has been written since the file was created, and if a READ statement for this
connection is permitted.

The records of the file shall not be read or written using list-directed formatting (10.10), namelist formatting
(10.11), or a nonadvancing input/output statement (9.3.4.2).

NOTE 9.8

’ A record cannot be deleted; however, a record may be rewritten.

9.3.3.4 Stream access

1 Stream access is a method of accessing the file storage units (9.3.5) of an external stream file.

2 The properties of an external file connected for stream access depend on whether the connection is for unformatted
or formatted access.

3 When connected for unformatted stream access, an external file has the following properties.

The file storage units of the file shall be read or written only by stream access input/output statements.

Each file storage unit in the file is uniquely identified by a positive integer called the position. The first file
storage unit in the file is at position 1. The position of each subsequent file storage unit is one greater than
that of its preceding file storage unit.

If it is possible to position the file, the file storage units need not be read or written in order of their position.
For example, it might be permissible to write the file storage unit at position 3, even though the file storage
units at positions 1 and 2 have not been written. Any file storage unit may be read from the file while it is
connected to a unit, provided that the file storage unit has been written since the file was created, and if a
READ statement for this connection is permitted.

4 When connected for formatted stream access, an external file has the following properties.

196

Some file storage units of the file may contain record markers; this imposes a record structure on the file
in addition to its stream structure. There might or might not be a record marker at the end of the file. If
there is no record marker at the end of the file, the final record is incomplete.

No maximum length (9.5.6.15) is applicable to these records.
Writing an empty record with no record marker has no effect.

The file storage units of the file shall be read or written only by formatted stream access input/output
statements.

Each file storage unit in the file is uniquely identified by a positive integer called the position. The first file
storage unit in the file is at position 1. The relationship between positions of successive file storage units is
processor dependent; not all positive integers need correspond to valid positions.

If it is possible to position the file, the file position can be set to a position that was previously identified
by the POS= specifier in an INQUIRE statement.

A processor may prohibit some control characters (3.1) from appearing in a formatted stream file.

Input/output statements 9.3.34

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 9.9

Because the record structure is determined from the record markers that are stored in the file itself, an
incomplete record at the end of the file is necessarily not empty.

NOTE 9.10

There may be some character positions in the file that do not correspond to characters written; this is
because on some processors a record marker may be written to the file as a carriage-return/line-feed or
other sequence. The means of determining the position in a file connected for stream access is via the
POS= specifier in an INQUIRE statement (9.10.2.22).

9.3.4 File position
9.3.4.1 General

Execution of certain input/output statements affects the position of an external file. Certain circumstances can
cause the position of a file to become indeterminate.

The initial point of a file is the position just before the first record or file storage unit. The terminal point is
the position just after the last record or file storage unit. If there are no records or file storage units in the file,
the initial point and the terminal point are the same position.

If a record file is positioned within a record, that record is the current record; otherwise, there is no current
record.

Let n be the number of records in the file. If 1 < ¢ < n and a file is positioned within the ith record or between
the (¢ — 1)th record and the ith record, the (i — 1)th record is the preceding record. If n > 1 and the file is
positioned at its terminal point, the preceding record is the nth and last record. If n = 0 or if a file is positioned
at its initial point or within the first record, there is no preceding record.

If 1 <i < n and a file is positioned within the ith record or between the ith and (i + 1)th record, the (i 4+ 1)th
record is the next record. If n > 1 and the file is positioned at its initial point, the first record is the next
record. If n = 0 or if a file is positioned at its terminal point or within the nth (last) record, there is no next
record.

For a file connected for stream access, the file position is either between two file storage units, at the initial point
of the file, at the terminal point of the file, or undefined.

9.3.4.2 Advancing and nonadvancing input/output

An advancing input/output statement always positions a record file after the last record read or written,
unless there is an error condition.

A nonadvancing input/output statement may position a record file at a character position within the current
record, or a subsequent record (10.8.2). Using nonadvancing input/output, it is possible to read or write a record
of the file by a sequence of input/output statements, each accessing a portion of the record. It is also possible
to read variable-length records and be notified of their lengths. If a nonadvancing output statement leaves a file
positioned within a current record and no further output statement is executed for the file before it is closed or a
BACKSPACE, ENDFILE, or REWIND statement is executed for it, the effect is as if the output statement were
the corresponding advancing output statement.

9.3.4.3 File position prior to data transfer
The positioning of the file prior to data transfer depends on the method of access: sequential, direct, or stream.

For sequential access on input, if there is a current record, the file position is not changed. Otherwise, the file is
positioned at the beginning of the next record and this record becomes the current record. Input shall not occur

9.3.4 Input/output statements 197

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

if there is no next record or if there is a current record and the last data transfer statement accessing the file
performed output.

If the file contains an endfile record, the file shall not be positioned after the endfile record prior to data transfer.
However, a REWIND or BACKSPACE statement may be used to reposition the file.

For sequential access on output, if there is a current record, the file position is not changed and the current record
becomes the last record of the file. Otherwise, a new record is created as the next record of the file; this new
record becomes the last and current record of the file and the file is positioned at the beginning of this record.

For direct access, the file is positioned at the beginning of the record specified by the REC= specifier. This record
becomes the current record.

For stream access, the file is positioned immediately before the file storage unit specified by the POS= specifier;
if there is no POS= specifier, the file position is not changed.

File positioning for child data transfer statements is described in 9.6.4.7.

9.3.4.4 File position after data transfer

If an error condition (9.11) occurred, the position of the file is indeterminate. If no error condition occurred, but
an end-of-file condition (9.11) occurred as a result of reading an endfile record, the file is positioned after the
endfile record.

For unformatted stream input/output, if no error condition occurred, the file position is not changed. For
unformatted stream output, if the file position exceeds the previous terminal point of the file, the terminal point
is set to the file position.

NOTE 9.11

An unformatted stream output statement with a POS= specifier and an empty output list can have the
effect of extending the terminal point of a file without actually writing any data.

For formatted stream input, if an end-of-file condition occurred, the file position is not changed.

For nonadvancing input, if no error condition or end-of-file condition occurred, but an end-of-record condition
(9.11) occurred, the file is positioned after the record just read. If no error condition, end-of-file condition, or
end-of-record condition occurred in a nonadvancing input statement, the file position is not changed. If no error
condition occurred in a nonadvancing output statement, the file position is not changed.

In all other cases, the file is positioned after the record just read or written and that record becomes the preceding
record.

For a formatted stream output statement, if no error condition occurred, the terminal point of the file is set to
the highest-numbered position to which data was transferred by the statement.

NOTE 9.12

The highest-numbered position might not be the current one if the output involved T or TL edit descriptors
(10.8.1.1) and the statement is a nonadvancing output statement.

9.3.5 File storage units

A file storage unit is the basic unit of storage in a stream file or an unformatted record file. It is the unit of file
position for stream access, the unit of record length for unformatted files, and the unit of file size for all external
files.

Every value in a stream file or an unformatted record file shall occupy an integer number of file storage units; if
the stream or record file is unformatted, this number shall be the same for all scalar values of the same type and

198 Input/output statements 9.3.4.4

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

type

parameters. The number of file storage units required for an item of a given type and type parameters may

be determined using the IOLENGTH= specifier of the INQUIRE statement (9.10.3).

3 For a file connected for unformatted stream access, the processor shall not have alignment restrictions that prevent
a value of any type from being stored at any positive integer file position.

4 The number of bits in a file storage unit is given by the constant FILE_.STORAGE_SIZE (13.8.2.7) defined in the
intrinsic module ISO_FORTRAN_ENV. It is recommended that the file storage unit be an 8-bit octet where this
choice is practical.

NOTE 9.13

The requirement that every data value occupy an integer number of file storage units implies that data
items inherently smaller than a file storage unit will require padding. This suggests that the file storage
unit be small to avoid wasted space. Ideally, the file storage unit would be chosen such that padding is
never required. A file storage unit of one bit would always meet this goal, but would likely be impractical
because of the alignment requirements.

The prohibition on alignment restrictions prohibits the processor from requiring data alignments larger than
the file storage unit.

The 8-bit octet is recommended as a good compromise that is small enough to accommodate the require-
ments of many applications, yet not so small that the data alignment requirements are likely to cause
significant performance problems.

9.4

Internal files

1 Internal files provide a means of transferring and converting data from internal storage to internal storage.

2 An internal file is a record file with the following properties.

9.4

The file is a variable of default, ASCII, or ISO 10646 character that is not an array section with a vector
subscript.

A record of an internal file is a scalar character variable.

If the file is a scalar character variable, it consists of a single record whose length is the same as the length
of the scalar character variable. If the file is a character array, it is treated as a sequence of character array
elements. Each array element, if any, is a record of the file. The ordering of the records of the file is the
same as the ordering of the array elements in the array (6.5.3.2) or the array section (6.5.3.3). Every record
of the file has the same length, which is the length of an array element in the array.

A record of the internal file becomes defined by writing the record. If the number of characters written in
a record is less than the length of the record, the remaining portion of the record is filled with blanks. The
number of characters to be written shall not exceed the length of the record.

A record may be read only if the record is defined.

A record of an internal file may become defined (or undefined) by means other than an output statement.
For example, the character variable may become defined by a character assignment statement.

An internal file is always positioned at the beginning of the first record prior to data transfer, except for
child data transfer statements (9.6.4.7). This record becomes the current record.

The initial value of a connection mode (9.5.2) is the value that would be implied by an initial OPEN
statement without the corresponding keyword.

Reading and writing records shall be accomplished only by sequential access formatted input/output state-
ments.

An internal file shall not be specified as the unit in a file connection statement or a file positioning statement.

Input/output statements 199

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

9.5 File connection

9.5.1 Referring to a file
A unit, specified by an io-unit, provides a means for referring to a file.

R901 io-unit is file-unit-number
or *
or internal-file-variable

R902 file-unit-number is scalar-int-expr

R903 internal-file-variable is char-variable

C901 (R903) The char-variable shall not be an array section with a vector subscript.

C902 (R903) The char-variable shall be default character, ASCII character, or ISO 10646 character.

A unit is either an external unit or an internal unit. An external unit is used to refer to an external file and
is specified by an asterisk or a file-unit-number. The value of file-unit-number shall be nonnegative, equal to
one of the named constants INPUT_UNIT, OUTPUT_UNIT, or ERROR_UNIT of the intrinsic module ISO -
FORTRAN_ENV (13.8.2), or a NEWUNIT value (9.5.6.12). An internal unit is used to refer to an internal file
and is specified by an internal-file-variable or a file-unit-number whose value is equal to the unit argument of an
active defined input/output procedure (9.6.4.7). The value of a file-unit-number shall identify a valid unit.

The external unit identified by a particular value of a scalar-int-expr is the same external unit in all program
units of the program.

NOTE 9.14
In the example:

SUBROUTINE A
READ (6) X

SUBROUTINE B
N =26
REWIND N

the value 6 used in both program units identifies the same external unit.

In a READ statement, an io-unit that is an asterisk identifies an external unit that is preconnected for sequential
formatted input on image 1 only (9.6.4.2). This unit is also identified by the value of the named constant INPUT -
UNIT of the intrinsic module ISO_.FORTRAN_ENV (13.8.2.8). In a WRITE statement, an io-unit that is an
asterisk identifies an external unit that is preconnected for sequential formatted output to the same file on all
images. This unit is also identified by the value of the named constant OUTPUT_UNIT of the intrinsic module
ISO_.FORTRAN_ENV (13.8.2.16).

This part of ISO/IEC 1539 identifies a processor-dependent external unit for the purpose of error reporting. This
unit shall be preconnected for sequential formatted output to the same file on all images. The processor may
define this to be the same as the output unit identified by an asterisk. This unit is also identified by a unit
number defined by the named constant ERROR_UNIT of the intrinsic module ISO_FORTRAN_ENV.

9.5.2 Connection modes
A connection for formatted input/output has several changeable modes: the blank interpretation mode (10.8.6),

delimiter mode (10.10.4, 10.11.4.2), sign mode (10.8.4), decimal edit mode (10.8.8), I/O rounding mode (10.7.2.3.7),
pad mode (9.6.4.4.3), and scale factor (10.8.5). A connection for unformatted input/output has no changeable

200 Input/output statements 9.5

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

modes.

Values for the modes of a connection are established when the connection is initiated. If the connection is initiated
by an OPEN statement, the values are as specified, either explicitly or implicitly, by the OPEN statement. If the
connection is initiated other than by an OPEN statement (that is, if the file is an internal file or preconnected file)
the values established are those that would be implied by an initial OPEN statement without the corresponding
keywords.

The scale factor cannot be explicitly specified in an OPEN statement; it is implicitly 0.

The modes of a connection to an external file may be changed by a subsequent OPEN statement that modifies
the connection.

The modes of a connection may be temporarily changed by a corresponding keyword specifier in a data transfer
statement or by an edit descriptor. Keyword specifiers take effect at the beginning of execution of the data
transfer statement. Edit descriptors take effect when they are encountered in format processing. When a data
transfer statement terminates, the values for the modes are reset to the values in effect immediately before the
data transfer statement was executed.

9.5.3 Unit existence
At any given time, there is a processor-dependent set of external units that exist for a program.

All input/output statements may refer to units that exist. The CLOSE, INQUIRE, and WAIT statements also
may refer to units that do not exist.

9.5.4 Connection of a file to a unit

An external unit has a property of being connected or not connected. If connected, it refers to an external file. An
external unit may become connected by preconnection or by the execution of an OPEN statement. The property
of connection is symmetric; the unit is connected to a file if and only if the file is connected to the unit.

Every input/output statement except an OPEN, CLOSE, INQUIRE, or WAIT statement shall refer to a unit
that is connected to a file and thereby make use of or affect that file.

A file may be connected and not exist (9.3.2).

NOTE 9.15

An example is a preconnected external file that has not yet been written.

A unit shall not be connected to more than one file at the same time, and a file shall not be connected to more
than one unit at the same time. However, means are provided to change the status of an external unit and to
connect a unit to a different file.

This part of ISO/IEC 1539 defines means of portable interoperation with C. C streams are described in 7.19.2
of the C International Standard. Whether a unit can be connected to a file that is also connected to a C stream
is processor dependent. If a unit is connected to a file that is also connected to a C stream, the results of
performing input/output operations on such a file are processor dependent. It is processor dependent whether
the files connected to the units INPUT_UNIT, OUTPUT_UNIT, and ERROR_UNIT correspond to the predefined
C text streams standard input, standard output, and standard error. If a main program or procedure defined by
means of Fortran and a main program or procedure defined by means other than Fortran perform input/output
operations on the same external file, the results are processor dependent. A main program or procedure defined by
means of Fortran and a main program or procedure defined by means other than Fortran can perform input/output
operations on different external files without interference.

After an external unit has been disconnected by the execution of a CLOSE statement, it may be connected again
within the same program to the same file or to a different file. After an external file has been disconnected by

9.5.3 Input/output statements 201

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

the execution of a CLOSE statement, it may be connected again within the same program to the same unit or
to a different unit.

NOTE 9.16

The only means of referencing a file that has been disconnected is by the appearance of its name in an OPEN
or INQUIRE statement. There might be no means of reconnecting an unnamed file once it is disconnected.

An internal unit is always connected to the internal file designated by the variable that identifies the unit.

NOTE 9.17

’For more explanatory information on file connection properties, see C.6.4.

9.5.5 Preconnection

Preconnection means that the unit is connected to a file at the beginning of execution of the program and
therefore it may be specified in input/output statements without the prior execution of an OPEN statement.

9.5.6 OPEN statement
9.5.6.1 General

An OPEN statement initiates or modifies the connection between an external file and a specified unit. The
OPEN statement may be used to connect an existing file to a unit, create a file that is preconnected, create a file
and connect it to a unit, or change certain modes of a connection between a file and a unit.

An external unit may be connected by an OPEN statement in the main program or any subprogram and, once
connected, a reference to it may appear in any program unit of the program.

If the file to be connected to the unit does not exist but is the same as the file to which the unit is preconnected,
the modes specified by an OPEN statement become a part of the connection.

If the file to be connected to the unit is not the same as the file to which the unit is connected, the effect is as
if a CLOSE statement without a STATUS= specifier had been executed for the unit immediately prior to the
execution of an OPEN statement.

If a unit is connected to a file that exists, execution of an OPEN statement for that unit is permitted. If the
FILE= specifier is not included in such an OPEN statement, the file to be connected to the unit is the same as
the file to which the unit is already connected.

If the file to be connected to the unit is the same as the file to which the unit is connected, only the specifiers for
changeable modes (9.5.2) may have values different from those currently in effect. If the POSITION= specifier
appears in such an OPEN statement, the value specified shall not disagree with the current position of the file.
If the STATUS= specifier is included in such an OPEN statement, it shall be specified with the value OLD.
Execution of such an OPEN statement causes any new values of the specifiers for changeable modes to be in
effect, but does not cause any change in any of the unspecified specifiers and the position of the file is unaffected.
The ERR=, IOSTAT=, and IOMSG= specifiers from any previously executed OPEN statement have no effect
on any currently executed OPEN statement.

A STATUS= specifier with a value of OLD is always allowed when the file to be connected to the unit is the same
as the file to which the unit is connected. In this case, if the status of the file was SCRATCH before execution of
the OPEN statement, the file will still be deleted when the unit is closed, and the file is still considered to have
a status of SCRATCH.

If a file is already connected to a unit, an OPEN statement on that file with a different unit shall not be executed.

202 Input/output statements 9.5.5

08-007r2:2008,/03/11

9.5.6.2 Syntax

R904

R905

R906
R907
C903
C904

C905

C906

open-stmt is

connect-spec is
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or

file-name-expr is

iomsg-variable is

CD 1539-1 ISO/IEC SC22/WG5/N1723

OPEN (connect-spec-list)

[UNIT =] file-unit-number

ACCESS = scalar-default-char-expr
ACTION = scalar-default-char-expr
ASYNCHRONOUS = scalar-default-char-expr
BLANK = scalar-default-char-expr
DECIMAL = scalar-default-char-expr
DELIM = scalar-default-char-expr
ENCODING = scalar-default-char-expr
ERR = label

FILE = file-name-expr

FORM = scalar-default-char-expr
IOMSG = iomsg-variable

IOSTAT = scalar-int-variable
NEWUNIT = scalar-int-variable

PAD = scalar-default-char-expr
POSITION = scalar-default-char-expr
RECL = scalar-int-expr

ROUND = scalar-default-char-expr
SIGN = scalar-default-char-expr
STATUS = scalar-default-char-expr

scalar-default-char-expr

scalar-default-char-variable

No specifier shall appear more than once in a given connect-spec-list.

(R904) If the NEWUNIT= specifier does not appear, a file-unit-number shall be specified; if the optional

characters UNIT= are omitted, the file-unit-number shall be the first item in the connect-spec-list.

(R904) The label used in the ERR= specifier shall be the statement label of a branch target statement
that appears in the same scoping unit as the OPEN statement.

(R904) If a NEWUNIT= specifier appears, a file-unit-number shall not appear.

If the STATUS= specifier has the value NEW or REPLACE, the FILE= specifier shall appear. If the STATUS=
specifier has the value SCRATCH, the FILE= specifier shall not appear. If the STATUS= specifier has the value
OLD, the FILE= specifier shall appear unless the unit is connected and the file connected to the unit exists.

If the NEWUNIT= specifier appears in an OPEN statement, either the FILE= specifier shall appear, or the
STATUS= specifier shall appear with a value of SCRATCH. The unit identified by a NEWUNIT value shall not
be preconnected.

A specifier that requires a scalar-default-char-expr may have a limited list of character values. These values are
listed for each such specifier. Any trailing blanks are ignored. The value specified is without regard to case. Some
specifiers have a default value if the specifier is omitted.

The IOSTAT=, ERR=, and IOMSG= specifiers are described in 9.11.

NOTE 9.18

An example of an OPEN statement is:

OPEN (10, FILE = ’employee.names’, ACTION = ’READ’, PAD = ’YES’)

9.5.6.2

Input/output statements

203

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

NOTE 9.19
‘ For more explanatory information on the OPEN statement, see C.6.3. ‘

9.5.6.3 ACCESS= specifier in the OPEN statement

The scalar-default-char-expr shall evaluate to SEQUENTIAL, DIRECT, or STREAM. The ACCESS= specifier
specifies the access method for the connection of the file as being sequential, direct, or stream. If this specifier is
omitted, the default value is SEQUENTIAL. For an existing file, the specified access method shall be included in
the set of allowed access methods for the file. For a new file, the processor creates the file with a set of allowed
access methods that includes the specified method.

9.5.6.4 ACTION= specifier in the OPEN statement

The scalar-default-char-expr shall evaluate to READ, WRITE, or READWRITE. READ specifies that the
WRITE, PRINT, and ENDFILE statements shall not refer to this connection. WRITE specifies that READ
statements shall not refer to this connection. READWRITE permits any input/output statements to refer to this
connection. If this specifier is omitted, the default value is processor dependent. If READWRITE is included in
the set of allowable actions for a file, both READ and WRITE also shall be included in the set of allowed actions
for that file. For an existing file, the specified action shall be included in the set of allowed actions for the file.
For a new file, the processor creates the file with a set of allowed actions that includes the specified action.

9.5.6.5 ASYNCHRONOUS= specifier in the OPEN statement

The scalar-default-char-expr shall evaluate to YES or NO. If YES is specified, asynchronous input/output on
the unit is allowed. If NO is specified, asynchronous input/output on the unit is not allowed. If this specifier is
omitted, the default value is NO.

9.5.6.6 BLANK= specifier in the OPEN statement

The scalar-default-char-expr shall evaluate to NULL or ZERO. The BLANK= specifier is permitted only for a
connection for formatted input/output. It specifies the current value of the blank interpretation mode (10.8.6,
9.6.2.6) for input for this connection. This mode has no effect on output. It is a changeable mode (9.5.2). If this
specifier is omitted in an OPEN statement that initiates a connection, the default value is NULL.

9.5.6.7 DECIMAL= specifier in the OPEN statement

The scalar-default-char-expr shall evaluate to COMMA or POINT. The DECIMAL= specifier is permitted only
for a connection for formatted input/output. It specifies the current value of the decimal edit mode (10.6, 10.8.8,
9.6.2.7) for this connection. This is a changeable mode (9.5.2). If this specifier is omitted in an OPEN statement
that initiates a connection, the default value is POINT.

9.5.6.8 DELIM= specifier in the OPEN statement

The scalar-default-char-expr shall evaluate to APOSTROPHE, QUOTE, or NONE. The DELIM= specifier is
permitted only for a connection for formatted input/output. It specifies the current value of the delimiter mode
(9.6.2.8) for list-directed (10.10.4) and namelist (10.11.4.2) output for the connection. This mode has no effect
on input. It is a changeable mode (9.5.2). If this specifier is omitted in an OPEN statement that initiates a
connection, the default value is NONE.

9.5.6.9 ENCODING= specifier in the OPEN statement

The scalar-default-char-expr shall evaluate to UTF-8 or DEFAULT. The ENCODING= specifier is permitted
only for a connection for formatted input/output. The value UTF-8 specifies that the encoding form of the file is
UTEF-8 as specified by ISO/IEC 10646-1:2000. Such a file is called a Unicode file, and all characters therein are
of ISO 10646 character type. The value UTF-8 shall not be specified if the processor does not support the ISO

204 Input/output statements 9.5.6.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

10646 character type. The value DEFAULT specifies that the encoding form of the file is processor-dependent.
If this specifier is omitted in an OPEN statement that initiates a connection, the default value is DEFAULT.

9.5.6.10 FILE= specifier in the OPEN statement

The value of the FILE= specifier is the name of the file to be connected to the specified unit. Any trailing blanks
are ignored. The file-name-expr shall be a name that is allowed by the processor. If this specifier is omitted and
the unit is not connected to a file, the STATUS= specifier shall be specified with a value of SCRATCH; in this
case, the connection is made to a processor-dependent file. The interpretation of case is processor dependent.

9.5.6.11 FORM= specifier in the OPEN statement

The scalar-default-char-expr shall evaluate to FORMATTED or UNFORMATTED. The FORM= specifier deter-
mines whether the file is being connected for formatted or unformatted input/output. If this specifier is omitted,
the default value is UNFORMATTED if the file is being connected for direct access or stream access, and the
default value is FORMATTED if the file is being connected for sequential access. For an existing file, the specified
form shall be included in the set of allowed forms for the file. For a new file, the processor creates the file with a
set of allowed forms that includes the specified form.

9.5.6.12 NEWUNIT= specifier in the OPEN statement

The variable is defined with a processor determined NEWUNIT value if no error occurs during the execution of
the OPEN statement. If an error occurs, the processor shall not change the value of the variable.

A NEWUNIT value is a negative number, and shall not be equal to -1, any of the named constants ERROR -
UNIT, INPUT_UNIT, or OUTPUT_UNIT from the intrinsic module ISO_ FORTRAN_ENV (13.8.2), any value
used by the processor for the unit argument to a defined input/output procedure, nor any previous NEWUNIT
value that identifies a file that is currently connected.

9.5.6.13 PAD= specifier in the OPEN statement

The scalar-default-char-expr shall evaluate to YES or NO. The PAD= specifier is permitted only for a connection
for formatted input/output. It specifies the current value of the pad mode (9.6.4.4.3, 9.6.2.10) for input for this
connection. This mode has no effect on output. It is a changeable mode (9.5.2). If this specifier is omitted in an
OPEN statement that initiates a connection, the default value is YES.

9.5.6.14 POSITION= specifier in the OPEN statement

The scalar-default-char-expr shall evaluate to ASIS, REWIND, or APPEND. The connection shall be for sequen-
tial or stream access. A new file is positioned at its initial point. REWIND positions an existing file at its initial
point. APPEND positions an existing file such that the endfile record is the next record, if it has one. If an
existing file does not have an endfile record, APPEND positions the file at its terminal point. ASIS leaves the
position unchanged if the file exists and already is connected. ASIS leaves the position unspecified if the file exists
but is not connected. If this specifier is omitted, the default value is ASIS.

9.5.6.15 RECL= specifier in the OPEN statement

The value of the RECL= specifier shall be positive. It specifies the length of each record in a file being connected
for direct access, or specifies the maximum length of a record in a file being connected for sequential access. This
specifier shall not appear when a file is being connected for stream access. This specifier shall appear when a
file is being connected for direct access. If this specifier is omitted when a file is being connected for sequential
access, the default value is processor dependent. If the file is being connected for formatted input/output, the
length is the number of characters for all records that contain only characters of default kind. When a record
contains any nondefault characters, the effect of the RECL= specifier is processor dependent. If the file is being
connected for unformatted input/output, the length is measured in file storage units. For an existing file, the
value of the RECL= specifier shall be included in the set of allowed record lengths for the file. For a new file, the
processor creates the file with a set of allowed record lengths that includes the specified value.

9.5.6.10 Input/output statements 205

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

9.5.6.16 ROUND= specifier in the OPEN statement

The scalar-default-char-expr shall evaluate to one of UP, DOWN, ZERO, NEAREST, COMPATIBLE, or PRO-
CESSOR_DEFINED. The ROUND= specifier is permitted only for a connection for formatted input/output. It
specifies the current value of the I/O rounding mode (10.7.2.3.7, 9.6.2.13) for this connection. This is a changeable
mode (9.5.2). If this specifier is omitted in an OPEN statement that initiates a connection, the I/O rounding
mode is processor dependent; it shall be one of the above modes.

NOTE 9.20

A processor is free to select any I/O rounding mode for the default mode. The mode might correspond
to UP, DOWN, ZERO, NEAREST, or COMPATIBLE; or it might be a completely different I/O rounding
mode.

9.5.6.17 SIGN= specifier in the OPEN statement

The scalar-default-char-expr shall evaluate to one of PLUS, SUPPRESS, or PROCESSOR_DEFINED. The
SIGN= specifier is permitted only for a connection for formatted input/output. It specifies the current value of
the sign mode (10.8.4, 9.6.2.14) for this connection. This is a changeable mode (9.5.2). If this specifier is omitted
in an OPEN statement that initiates a connection, the default value is PROCESSOR_DEFINED.

9.5.6.18 STATUS= specifier in the OPEN statement

The scalar-default-char-expr shall evaluate to OLD, NEW, SCRATCH, REPLACE, or UNKNOWN. If OLD is
specified, the file shall exist. If NEW is specified, the file shall not exist.

Successful execution of an OPEN statement with NEW specified creates the file and changes the status to OLD.
If REPLACE is specified and the file does not already exist, the file is created and the status is changed to OLD.
If REPLACE is specified and the file does exist, the file is deleted, a new file is created with the same name, and
the status is changed to OLD. If SCRATCH is specified, the file is created and connected to the specified unit
for use by the program but is deleted at the execution of a CLOSE statement referring to the same unit or at
the normal termination of the program.

NOTE 9.21
SCRATCH shall not be specified with a named file.

If UNKNOWN is specified, the status is processor dependent. If this specifier is omitted, the default value is
UNKNOWN.

9.5.7 CLOSE statement
9.5.7.1 General

The CLOSE statement is used to terminate the connection of a specified unit to an external file.

Execution of a CLOSE statement for a unit may occur in any program unit of a program and need not occur in
the same program unit as the execution of an OPEN statement referring to that unit.

Execution of a CLOSE statement performs a wait operation for any pending asynchronous data transfer operations
for the specified unit.

Execution of a CLOSE statement specifying a unit that does not exist or has no file connected to it is permitted
and affects no file or unit.

After a unit has been disconnected by execution of a CLOSE statement, it may be connected again within the
same program, either to the same file or to a different file. After a named file has been disconnected by execution
of a CLOSE statement, it may be connected again within the same program, either to the same unit or to a
different unit, provided that the file still exists.

206 Input/output statements 9.5.6.16

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

During the completion step (2.4.5) of termination of execution of a program, all units that are connected are closed.
Each unit is closed with status KEEP unless the file status prior to termination of execution was SCRATCH, in
which case the unit is closed with status DELETE.

NOTE 9.22

The effect is as though a CLOSE statement without a STATUS= specifier were executed on each connected
unit.

9.5.7.2 Syntax
R908 close-stmt is CLOSE (close-spec-list)

R909 close-spec is [UNIT =] file-unit-number
or IOSTAT = scalar-int-variable
or IOMSG = iomsg-variable
or ERR = label
or STATUS = scalar-default-char-expr

C907 No specifier shall appear more than once in a given close-spec-list.

C908 A file-unit-number shall be specified in a close-spec-list; if the optional characters UNIT= are omitted,
the file-unit-number shall be the first item in the close-spec-list.

C909 (R909) The label used in the ERR= specifier shall be the statement label of a branch target statement
that appears in the same scoping unit as the CLOSE statement.

The scalar-default-char-expr has a limited list of character values. Any trailing blanks are ignored. The value
specified is without regard to case.

The IOSTAT=, ERR=, and IOMSG= specifiers are described in 9.11.

NOTE 9.23
An example of a CLOSE statement is:

CLOSE (10, STATUS = ’KEEP’)

NOTE 9.24

’For more explanatory information on the CLOSE statement, see C.6.5.

9.5.7.3 STATUS= specifier in the CLOSE statement

The scalar-default-char-expr shall evaluate to KEEP or DELETE. The STATUS= specifier determines the dispo-
sition of the file that is connected to the specified unit. KEEP shall not be specified for a file whose status prior
to execution of a CLOSE statement is SCRATCH. If KEEP is specified for a file that exists, the file continues
to exist after the execution of a CLOSE statement. If KEEP is specified for a file that does not exist, the file
will not exist after the execution of a CLOSE statement. If DELETE is specified, the file will not exist after the
execution of a CLOSE statement. If this specifier is omitted, the default value is KEEP, unless the file status
prior to execution of the CLOSE statement is SCRATCH, in which case the default value is DELETE.

0.6 Data transfer statements

9.6.1 General

The READ statement is the data transfer input statement. The WRITE statement and the PRINT
statement are the data transfer output statements.

9.5.7.2 Input/output statements 207

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

R910 read-stmt is READ (io-control-spec-list) | input-item-list]
or READ format [, input-item-list]
RI11 write-stmt is WRITE (io-control-spec-list) | output-item-list |
R912 print-stmt is PRINT format [, output-item-list |
NOTE 9.25

Examples of data transfer statements are:

READ (6, *) SIZE
READ 10, A, B
WRITE (6, 10) A, S, J
PRINT 10, A, S, J

10 FORMAT (2E16.3, I5)

9.6.2 Control information list
9.6.2.1 Syntax

A control information list is an io-control-spec-list. It governs data transfer.

R913 do-control-spec is [UNIT =] io-unit
or [FMT =] format
or [NML =] namelist-group-name

or ADVANCE = scalar-default-char-expr
or ASYNCHRONOUS = scalar-char-initialization-expr
or BLANK = scalar-default-char-expr
or DECIMAL = scalar-default-char-expr
or DELIM = scalar-default-char-expr

or END = label

or EOR = label

or ERR = label

or ID = scalar-int-variable

or IOMSG = iomsg-variable

or IOSTAT = scalar-int-variable

or PAD = scalar-default-char-expr

or POS = scalar-int-expr

or REC = scalar-int-expr

or ROUND = scalar-default-char-expr
or SIGN = scalar-default-char-expr

208 Input/output statements 9.6.2

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

C910
C911

C912
C913

C914

C915

C916

C917

C918

C919

€920

€921

C922

923

€924

C925

C926

927

928

€929

or SIZE = scalar-int-variable
No specifier shall appear more than once in a given io-control-spec-list.

An jo-unit shall be specified in an io-control-spec-list; if the optional characters UNIT= are omitted, the
i0-unit shall be the first item in the io-control-spec-list.

(R913) A DELIM= or SIGN= specifier shall not appear in a read-stmt.
(R913) A BLANK=, PAD=, END=, EOR=, or SIZE= specifier shall not appear in a write-stmt.

(R913) The label in the ERR=, EOR=, or END= specifier shall be the statement label of a branch target
statement that appears in the same scoping unit as the data transfer statement.

(R913) A namelist-group-name shall be the name of a namelist group.

(R913) A namelist-group-name shall not appear if a REC= specifier, format, input-item-list, or an
output-item-list appears in the data transfer statement.

(R913) An io-control-spec-list shall not contain both a format and a namelist-group-name.

(R913) If format appears without a preceding FMT=, it shall be the second item in the io-control-spec-list
and the first item shall be io-unit.

(R913) If namelist-group-name appears without a preceding NML=, it shall be the second item in the
10-control-spec-list and the first item shall be i0-unit.

(R913) If io-unit is not a file-unit-number, the io-control-spec-list shall not contain a REC= specifier or
a POS= specifier.

(R913) If the REC= specifier appears, an END= specifier shall not appear, and the format, if any, shall
not be an asterisk.

(R913) An ADVANCE= specifier may appear only in a formatted sequential or stream input/output
statement with explicit format specification (10.2) whose control information list does not contain an
internal-file-variable as the io-unit.

(R913) If an EOR= or SIZE= specifier appears, an ADVANCE= specifier also shall appear.

(R913) The scalar-char-initialization-expr in an ASYNCHRONOUS= specifier shall be default character
and shall have the value YES or NO.

(R913) An ASYNCHRONOUS= specifier with a value YES shall not appear unless io-unit is a file-unit-
number.

(R913) If an ID= specifier appears, an ASYNCHRONOUS= specifier with the value YES shall also
appear.

(R913) If a POS= specifier appears, the io-control-spec-list shall not contain a REC= specifier.

(R913) If a DECIMAL=, BLANK=, PAD=, SIGN=, or ROUND= specifier appears, a format or
namelist-group-name shall also appear.

(R913) If a DELIM= specifier appears, either format shall be an asterisk or namelist-group-name shall
appear.

If an EOR= or SIZE= specifier appears, an ADVANCE= specifier with the value NO shall also appear.

If the data transfer statement contains a format or namelist-group-name, the statement is a formatted in-
put/output statement; otherwise, it is an unformatted input/output statement.

9.6.2.1

Input/output statements 209

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

The ADVANCE=, ASYNCHRONOUS=, DECIMAL=, BLANK=, DELIM=, PAD=, SIGN=, and ROUND=
specifiers have a limited list of character values. Any trailing blanks are ignored. The values specified are without
regard to case.

The IOSTAT=, ERR=, EOR=, END=, and IOMSG= specifiers are described in 9.11.

NOTE 9.26
An example of a READ statement is:

READ (IOSTAT = I0OS, UNIT = 6, FMT = ’(10F8.2)°) A, B

9.6.2.2 Format specification in a data transfer statement

The format specifier supplies a format specification or specifies list-directed formatting for a formatted in-
put/output statement.

R914 format is default-char-expr
or label
or *

C930 (R914) The label shall be the label of a FORMAT statement that appears in the same scoping unit as
the statement containing the FMT= specifier.

The default-char-expr shall evaluate to a valid format specification (10.2.1 and 10.2.2).

If default-char-expr is an array, it is treated as if all of the elements of the array were specified in array element
order and were concatenated.

If format is *, the statement is a list-directed input/output statement.

NOTE 9.27
An example in which the format is a character expression is:

READ (6, FMT = "(" // CHAR_FMT // ")") X, Y, Z

where CHAR_FMT is a default character variable.

9.6.2.3 NML= specifier in a data transfer statement

The NML= specifier supplies the namelist-group-name (5.6). This name identifies a particular collection of data
objects on which transfer is to be performed.

If a namelist-group-name appears, the statement is a namelist input/output statement.

9.6.2.4 ADVANCE= specifier in a data transfer statement

The scalar-default-char-expr shall evaluate to YES or NO. The ADVANCE= specifier determines whether advanc-
ing input/output occurs for a nonchild input/output statement. If YES is specified for a nonchild input/output
statement, advancing input/output occurs. If NO is specified, nonadvancing input/output occurs (9.3.4.2). If this
specifier is omitted from a nonchild input/output statement that allows the specifier, the default value is YES.
A formatted child input/output statement is a nonadvancing input/output statement, and any ADVANCE=
specifier is ignored.

9.6.2.5 ASYNCHRONOUS= specifier in a data transfer statement
The ASYNCHRONOUS= specifier determines whether this input/output statement is synchronous or asyn-

chronous. If YES is specified, the statement and the input/output operation are asynchronous. If NO is
specified or if the specifier is omitted, the statement and the input/output operation are synchronous.

210 Input/output statements 9.6.2.2

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

2 Asynchronous input/output is permitted only for external files opened with an ASYNCHRONOQUS= specifier
with the value YES in the OPEN statement.

NOTE 9.28

Both synchronous and asynchronous input/output are allowed for files opened with an ASYNCHRONOUS=
specifier of YES. For other files, only synchronous input/output is allowed; this includes files opened with an
ASYNCHRONOQOUS= specifier of NO, files opened without an ASYNCHRONOUS= specifier, preconnected
files accessed without an OPEN statement, and internal files.

The ASYNCHRONOQOUS= specifier value in a data transfer statement is an initialization expression because
it effects compiler optimizations and, therefore, needs to be known at compile time.

3 The processor may perform an asynchronous data transfer operation asynchronously, but it is not required to do
so. For each external file, records and file storage units read or written by asynchronous data transfer statements
are read, written, and processed in the same order as they would have been if the data transfer statements were
synchronous.

4 If a variable is used in an asynchronous data transfer statement as

e an item in an input/output list,
e a group object in a namelist, or
e a SIZE= specifier

5 the base object of the data-ref is implicitly given the ASYNCHRONQOUS attribute in the scoping unit of the
data transfer statement. This attribute may be confirmed by explicit declaration.

6 When an asynchronous input/output statement is executed, the set of storage units specified by the item list or
NML= specifier, plus the storage units specified by the SIZE= specifier, is defined to be the pending input/output
storage sequence for the data transfer operation.

NOTE 9.29

A pending input/output storage sequence is not necessarily a contiguous set of storage units. ‘

7 A pending input/output storage sequence affector is a variable of which any part is associated with a storage
unit in a pending input/output storage sequence.

9.6.2.6 BLANK= specifier in a data transfer statement

1 The scalar-default-char-expr shall evaluate to NULL or ZERO. The BLANK= specifier temporarily changes
(9.5.2) the blank interpretation mode (10.8.6, 9.5.6.6) for the connection. If the specifier is omitted, the mode is
not changed.

9.6.2.7 DECIMAL= specifier in a data transfer statement

1 The scalar-default-char-expr shall evaluate to COMMA or POINT. The DECIMAL= specifier temporarily changes
(9.5.2) the decimal edit mode (10.6, 10.8.8, 9.5.6.7) for the connection. If the specifier is omitted, the mode is
not changed.

9.6.2.8 DELIM= specifier in a data transfer statement

1 The scalar-default-char-expr shall evaluate to APOSTROPHE, QUOTE, or NONE. The DELIM= specifier tem-
porarily changes (9.5.2) the delimiter mode (10.10.4, 10.11.4.2, 9.5.6.8) for the connection. If the specifier is
omitted, the mode is not changed.

9.6.2.6 Input/output statements 211

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

9.6.2.9 ID= specifier in a data transfer statement

Successful execution of an asynchronous data transfer statement containing an ID= specifier causes the variable
specified in the ID= specifier to become defined with a processor determined value. This value is referred to as
the identifier of the data transfer operation. It can be used in a subsequent WAIT or INQUIRE statement to
identify the particular data transfer operation.

If an error occurs during the execution of a data transfer statement containing an ID= specifier, the variable
specified in the ID= specifier becomes undefined.

A child data transfer statement shall not specify the ID= specifier.

9.6.2.10 PAD= specifier in a data transfer statement

The scalar-default-char-ezpr shall evaluate to YES or NO. The PAD= specifier temporarily changes (9.5.2) the
pad mode (9.6.4.4.3, 9.5.6.13) for the connection. If the specifier is omitted, the mode is not changed.

9.6.2.11 POS= specifier in a data transfer statement

The POS= specifier specifies the file position in file storage units. This specifier may appear in a data transfer
statement only if the statement specifies a unit connected for stream access. A child data transfer statement shall
not specify this specifier.

A processor may prohibit the use of POS= with particular files that do not have the properties necessary to
support random positioning. A processor may also prohibit positioning a particular file to any position prior to
its current file position if the file does not have the properties necessary to support such positioning.

NOTE 9.30
’A unit that is connected to a device or data stream might not be positionable.

If the file is connected for formatted stream access, the file position specified by POS= shall be equal to either 1
(the beginning of the file) or a value previously returned by a POS= specifier in an INQUIRE statement for the
file.

9.6.2.12 REC= specifier in a data transfer statement

The REC= specifier specifies the number of the record that is to be read or written. This specifier may appear
only in an input/output statement that specifies a unit connected for direct access; it shall not appear in a child
data transfer statement. If the control information list contains a REC= specifier, the statement is a direct
access input/output statement. A child data transfer statement is a direct access data transfer statement
if the parent is a direct access data transfer statement. Any other data transfer statement is a sequential
access input/output statement or a stream access input/output statement, depending on whether the
file connection is for sequential access or stream access.

9.6.2.13 ROUND= specifier in a data transfer statement

The scalar-default-char-expr shall evaluate to UP, DOWN, ZERO, NEAREST, COMPATIBLE or PROCESSOR -
DEFINED. The ROUND= specifier temporarily changes (9.5.2) the I/O rounding mode (10.7.2.3.7, 9.5.6.16) for
the connection. If the specifier is omitted, the mode is not changed.

9.6.2.14 SIGN= specifier in a data transfer statement

The scalar-default-char-expr shall evaluate to PLUS, SUPPRESS, or PROCESSOR_DEFINED. The SIGN=
specifier temporarily changes (9.5.2) the sign mode (10.8.4, 9.5.6.17) for the connection. If the specifier is omitted,
the mode is not changed.

212 Input/output statements 9.6.2.9

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

9.6.2.15 SIZE= specifier in a data transfer statement

When a synchronous nonadvancing input statement terminates, the variable specified in the SIZE= specifier
becomes defined with the count of the characters transferred by data edit descriptors during execution of the
current input statement. Blanks inserted as padding (9.6.4.4.3) are not counted.

For asynchronous nonadvancing input, the storage units specified in the SIZE= specifier become defined with the
count of the characters transferred when the corresponding wait operation is executed.

9.6.3 Data transfer input/output list
An input/output list specifies the entities whose values are transferred by a data transfer input/output statement.

RI915 input-item is wariable
or io-implied-do

R916 output-item is expr

or to-implied-do
RI17 io-implied-do is (to-implied-do-object-list , io-implied-do-control)
R918 io-implied-do-object is input-item

or output-item

R919 io-implied-do-control is do-variable = scalar-int-expr , A
B scalar-int-expr |, scalar-int-expr |

C931 (R915) A variable that is an input-item shall not be a whole assumed-size array.
€932 (R919) The do-variable shall be a named scalar variable of type integer.

C933 (RI18) In an inpul-item-list, an io-implied-do-object shall be an input-item. In an output-item-list, an
i0-implied-do-object shall be an output-item.

€934 (R916) An expression that is an output-item shall not have a value that is a procedure pointer.

An input-item shall not appear as, nor be associated with, the do-variable of any io-implied-do that contains the
mput-item.
NOTE 9.31

A constant, an expression involving operators or function references that does not have a pointer result, or
an expression enclosed in parentheses shall not appear as an input list item.

If an input item is a pointer, it shall be associated with a definable target and data are transferred from the file to
the associated target. If an output item is a pointer, it shall be associated with a target and data are transferred
from the target to the file.

NOTE 9.32

Data transfers always involve the movement of values between a file and internal storage. A pointer as such
cannot be read or written. Therefore, a pointer shall not appear as an item in an input/output list unless
it is associated with a target that can receive a value (input) or can deliver a value (output).

If an input item or an output item is allocatable, it shall be allocated.
A list item shall not be polymorphic unless it is processed by a defined input/output procedure (9.6.4.7).

The do-variable of an io-implied-do that is in another io-implied-do shall not appear as, nor be associated with,
the do-variable of the containing io-implied-do.

9.6.2.15 Input/output statements 213

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

7 The following rules describing whether to expand an input/output list item are re-applied to each expanded list
item until none of the rules apply.

e If an array appears as an input/output list item, it is treated as if the elements, if any, were specified in
array element order (6.5.3.2). However, no element of that array may affect the value of any expression in
the input-item, nor may any element appear more than once in an input-item.

NOTE 9.33

For example:

INTEGER A (100), J (100)

Not allowed
Allowed
Allowed if no two elements

READ *, A (A)
READ *, A (LBOUND (A, 1) : UBOUND (A, 1))
READ *, A (J)

of J have the same value
A(1) = 1; AC10) = 10
READ *, A (A (1) : A (10)) I Not allowed

e If a list item of derived type in an unformatted input/output statement is not processed by a defined
input/output procedure (9.6.4.7), and if any subobject of that list item would be processed by a defined
input/output procedure, the list item is treated as if all of the components of the object were specified in
the list in component order (4.5.4.7); those components shall be accessible in the scoping unit containing
the input/output statement and shall not be pointers or allocatable.

e An effective item of derived type in an unformatted input/output statement is treated as a single value in a
processor-dependent form unless the list item or a subobject thereof is processed by a defined input/output
procedure (9.6.4.7).

NOTE 9.34

The appearance of a derived-type object as an input/output list item in an unformatted input/output
statement is not equivalent to the list of its components.

Unformatted input/output involving derived-type list items forms the single exception to the rule that the
appearance of an aggregate list item (such as an array) is equivalent to the appearance of its expanded
list of component parts. This exception permits the processor greater latitude in improving efficiency or
in matching the processor-dependent sequence of values for a derived-type object to similar sequences for
aggregate objects used by means other than Fortran. However, formatted input/output of all list items and
unformatted input/output of list items other than those of derived types adhere to the above rule.

o If a list item of derived type in a formatted input/output statement is not processed by a defined in-
put/output procedure, that list item is treated as if all of the components of the list item were specified
in the list in component order; those components shall be accessible in the scoping unit containing the
input/output statement and shall not be pointers or allocatable.

e If a derived-type list item is not treated as a list of its individual components, that list item’s ultimate
components shall not have the POINTER or ALLOCATABLE attribute unless that list item is processed
by a defined input/output procedure.

e For an io-implied-do, the loop initialization and execution are the same as for a DO construct (8.1.7.6).

NOTE 9.35

An example of an output list with an implied DO is:

WRITE (LP, FMT = ’(10F8.2)°) (LOG (A (I)), I =1, N+ 9, K), G

8 The scalar objects resulting when a data transfer statement’s list items are expanded according to the rules in
this subclause for handling array and derived-type list items are called effective items. Zero-sized arrays and

214 Input/output statements 9.6.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

10-implied-dos with an iteration count of zero do not contribute to the list of effective items. A scalar character
item of zero length is an effective item.

NOTE 9.36

In a formatted input/output statement, edit descriptors are associated with effective items, which are always
scalar. The rules in 9.6.3 determine the set of effective items corresponding to each actual list item in the
statement. These rules might have to be applied repetitively until all of the effective items are scalar items.

9 An input/output list shall not contain an effective item of nondefault character type if the input/output statement
specifies an internal file of default character type. An input/output list shall not contain an effective item that is
nondefault character except for ISO 10646 or ASCII character if the input/output statement specifies an internal
file of ISO 10646 character type. An input/output list shall not contain an effective item of type character of any
kind other than ASCII if the input/output statement specifies an ASCII character internal file.

9.6.4 Execution of a data transfer input/output statement

1 Execution of a WRITE or PRINT statement for a file that does not exist creates the file unless an error condition
occurs.

2 The effect of executing a synchronous data transfer input/output statement shall be as if the following operations
were performed in the order specified.

(1) Determine the direction of data transfer.
(2) Identify the unit.

(3) Perform a wait operation for all pending input/output operations for the unit. If an error, end-of-file,
or end-of-record condition occurs during any of the wait operations, steps 4 through 8 are skipped
for the current data transfer statement.

(4) Establish the format if one is specified.
(5) If the statement is not a child data transfer statement (9.6.4.7),

(a) position the file prior to data transfer (9.3.4.3), and
(b) for formatted data transfer, set the left tab limit (10.8.1.1).

(6) Transfer data between the file and the entities specified by the input/output list (if any) or namelist.

(7) Determine whether an error, end-of-file, or end-of-record condition has occurred.

(8) Position the file after data transfer (9.3.4.4) unless the statement is a child data transfer statement
(9.6.4.7).

(9) Cause any variable specified in a SIZE= specifier to become defined.

(10) 1If an error, end-of-file, or end-of-record condition occurred, processing continues as specified in 9.11;
otherwise any variable specified in an IOSTAT= specifier is assigned the value zero.

3 The effect of executing an asynchronous data transfer input/output statement shall be as if the following opera-
tions were performed in the order specified.

(1) Determine the direction of data transfer.

(2) Identify the unit.

(3) Optionally, perform wait operations for one or more pending input/output operations for the unit.
If an error, end-of-file, or end-of-record condition occurs during any of the wait operations, steps 4
through 9 are skipped for the current data transfer statement.

(4) Establish the format if one is specified.

(5) Position the file prior to data transfer (9.3.4.3) and, for formatted data transfer, set the left tab limit
(10.8.1.1).

(6) Establish the set of storage units identified by the input/output list. For a READ statement, this
might require some or all of the data in the file to be read if an input variable is used as a scalar-
int-expr in an io-implied-do-control in the input/output list, as a subscript, substring-range, stride,
or is otherwise referenced.

9.6.4 Input/output statements 215

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

(7) Initiate an asynchronous data transfer between the file and the entities specified by the input/output
list (if any) or namelist. The asynchronous data transfer may complete (and an error, end-of-file, or
end-of-record condition may occur) during the execution of this data transfer statement or during a
later wait operation.

(8) Determine whether an error, end-of-file, or end-of-record condition has occurred. The conditions
may occur during the execution of this data transfer statement or during the corresponding wait
operation, but not both.

) Position the file as if the data transfer had finished (9.3.4.4).
(10) Cause any variable specified in a SIZE= specifier to become undefined.

(11) If an error, end-of-file, or end-of-record condition occurred, processing continues as specified in 9.11;
otherwise any variable specified in an IOSTAT= specifier is assigned the value zero.

For an asynchronous data transfer statement, the data transfers may occur during execution of the statement,
during execution of the corresponding wait operation, or anywhere between. The data transfer operation is
considered to be pending until a corresponding wait operation is performed.

For asynchronous output, a pending input/output storage sequence affector (9.6.2.5) shall not be redefined,
become undefined, or have its pointer association status changed.

For asynchronous input, a pending input/output storage sequence affector shall not be referenced, become defined,
become undefined, become associated with a dummy argument that has the VALUE attribute, or have its pointer
association status changed.

Error, end-of-file, and end-of-record conditions in an asynchronous data transfer operation may occur during
execution of either the data transfer statement or the corresponding wait operation. If an ID= specifier does not
appear in the initiating data transfer statement, the conditions may occur during the execution of any subsequent
data transfer or wait operation for the same unit. When a condition occurs for a previously executed asynchronous
data transfer statement, a wait operation is performed for all pending data transfer operations on that unit. When
a condition occurs during a subsequent statement, any actions specified by IOSTAT=, IOMSG=, ERR=, END=,
and EOR= specifiers for that statement are taken.

NOTE 9.37

Because end-of-file and error conditions for asynchronous data transfer statements without an ID= specifier
may be reported by the processor during the execution of a subsequent data transfer statement, it may be
impossible for the user to determine which input/output statement caused the condition. Reliably detecting
which READ statement caused an end-of-file condition requires that all asynchronous READ statements
for the unit include an ID= specifier.

9.6.4.1 Direction of data transfer

Execution of a READ statement causes values to be transferred from a file to the entities specified by the input
list, if any, or specified within the file itself for namelist input. Execution of a WRITE or PRINT statement
causes values to be transferred to a file from the entities specified by the output list and format specification, if
any, or by the namelist-group-name for namelist output.

9.6.4.2 Identifying a unit

A data transfer input/output statement that contains an input/output control list includes a UNIT= specifier
that identifies an external or internal unit. A READ statement that does not contain an input/output control list
specifies a particular processor-dependent unit, which is the same as the unit identified by * in a READ statement
that contains an input/output control list (9.5.1) and is the same as the unit identified by the value of the named
constant INPUT_UNIT of the intrinsic module ISO_ FORTRAN_ENV (13.8.2.8). The PRINT statement specifies
some other processor-dependent unit, which is the same as the unit identified by * in a WRITE statement and is
the same as the unit identified by the value of the named constant OUTPUT_UNIT of the intrinsic module ISO -
FORTRAN_ENV (13.8.2.16). Thus, each data transfer input/output statement identifies an external or internal
unit.

216 Input/output statements 9.6.4.1

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

The unit identified by an unformatted data transfer statement shall be an external unit.

The unit identified by a data transfer input/output statement shall be connected to a file when execution of the
statement begins.

NOTE 9.38

’ The unit may be preconnected.

9.6.4.3 Establishing a format

If the input/output control list contains * as a format, list-directed formatting is established. If namelist-group-
name appears, namelist formatting is established. If no format or namelist-group-name is specified, unformatted
data transfer is established. Otherwise, the format specified by format is established.

For output to an internal file, a format specification that is in the file or is associated with the file shall not be
specified.

An input list item, or an entity associated with it, shall not contain any portion of an established format specifi-
cation.

9.6.4.4 Data transfer
9.6.4.4.1 General

Data are transferred between the file and the entities specified by the input/output list or namelist. The list items
are processed in the order of the input/output list for all data transfer input/output statements except namelist
formatted data transfer statements. The list items for a namelist input statement are processed in the order of
the entities specified within the input records. The list items for a namelist output statement are processed in
the order in which the variables are specified in the namelist-group-object-list. Effective items are derived from
the input/output list items as described in 9.6.3.

All values needed to determine which entities are specified by an input/output list item are determined at the
beginning of the processing of that item.

All values are transmitted to or from the entities specified by a list item prior to the processing of any succeeding
list item for all data transfer input/output statements.

NOTE 9.39

In the example,

READ (N) N, X (N)

the old value of N identifies the unit, but the new value of N is the subscript of X.

All values following the name= part of the namelist entity (10.11) within the input records are transmitted to
the matching entity specified in the namelist-group-object-list prior to processing any succeeding entity within
the input record for namelist input statements. If an entity is specified more than once within the input record
during a namelist formatted data transfer input statement, the last occurrence of the entity specifies the value or
values to be used for that entity.

If the input/output item is a pointer, data are transferred between the file and the associated target.
If an internal file has been specified, an input/output list item shall not be in the file or associated with the file.

NOTE 9.40
‘ The file is a data object. ‘

9.6.4.3 Input/output statements 217

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

A DO variable becomes defined and its iteration count established at the beginning of processing of the items
that constitute the range of an io-implied-do.

On output, every entity whose value is to be transferred shall be defined.

9.6.4.4.2 Unformatted data transfer
If the file is not connected for unformatted input/output, unformatted data transfer is prohibited.

During unformatted data transfer, data are transferred without editing between the file and the entities specified
by the input/output list. If the file is connected for sequential or direct access, exactly one record is read or
written.

A value in the file is stored in a contiguous sequence of file storage units, beginning with the file storage unit
immediately following the current file position.

After each value is transferred, the current file position is moved to a point immediately after the last file storage
unit of the value.

On input from a file connected for sequential or direct access, the number of file storage units required by the
input list shall be less than or equal to the number of file storage units in the record.

On input, if the file storage units transferred do not contain a value with the same type and type parameters as
the input list entity, then the resulting value of the entity is processor-dependent except in the following cases.

e A complex entity may correspond to two real values with the same kind type parameter as the complex
entity.

e A default character list entity of length n may correspond to n default characters stored in the file, regardless
of the length parameters of the entities that were written to these storage units of the file. If the file is
connected for stream input, the characters may have been written by formatted stream output.

On output to a file connected for unformatted direct access, the output list shall not specify more values than
can fit into the record. If the file is connected for direct access and the values specified by the output list do not
fill the record, the remainder of the record is undefined.

If the file is connected for unformatted sequential access, the record is created with a length sufficient to hold
the values from the output list. This length shall be one of the set of allowed record lengths for the file and
shall not exceed the value specified in the RECL= specifier, if any, of the OPEN statement that established the
connection.

9.6.4.4.3 Formatted data transfer
If the file is not connected for formatted input/output, formatted data transfer is prohibited.

During formatted data transfer, data are transferred with editing between the file and the entities specified by
the input/output list or by the namelist-group-name. Format control is initiated and editing is performed as
described in Clause 10.

The current record and possibly additional records are read or written.

During advancing input when the pad mode has the value NO, the input list and format specification shall not
require more characters from the record than the record contains.

During advancing input when the pad mode has the value YES, blank characters are supplied by the processor
if the input list and format specification require more characters from the record than the record contains.

During nonadvancing input when the pad mode has the value NO, an end-of-record condition (9.11) occurs if
the input list and format specification require more characters from the record than the record contains, and the

218 Input/output statements 9.6.4.4

10

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

record is complete (9.3.3.4). If the record is incomplete, an end-of-file condition occurs instead of an end-of-record
condition.

During nonadvancing input when the pad mode has the value YES, blank characters are supplied by the processor
if an effective item and its corresponding data edit descriptors require more characters from the record than the
record contains. If the record is incomplete, an end-of-file condition occurs; otherwise an end-of-record condition
occurs.

If the file is connected for direct access, the record number is increased by one as each succeeding record is read
or written.

On output, if the file is connected for direct access or is an internal file and the characters specified by the output
list and format do not fill a record, blank characters are added to fill the record.

On output, the output list and format specification shall not specify more characters for a record than have been
specified by a RECL= specifier in the OPEN statement or the record length of an internal file.

9.6.4.5 List-directed formatting

If list-directed formatting has been established, editing is performed as described in 10.10.

9.6.4.6 Namelist formatting
If namelist formatting has been established, editing is performed as described in 10.11.

Every allocatable namelist-group-object in the namelist group shall be allocated and every namelist-group-object
that is a pointer shall be associated with a target. If a namelist-group-object is polymorphic or has an ultimate
component that is allocatable or a pointer, that object shall be processed by a defined input/output procedure
(9.6.4.7).

9.6.4.7 User-defined derived-type input/output
9.6.4.7.1 General

User-defined derived-type input/output allows a program to override the default handling of derived-type ob-
jects and values in data transfer input/output statements described in 9.6.3. This is referred to as defined
input/output.

A defined input/output procedure is a procedure accessible by a dtio-generic-spec (12.4.3.2). A particular defined
input/output procedure is selected as described in 9.6.4.7.4.

9.6.4.7.2 Executing defined input/output data transfers

If a defined input/output procedure is selected as specified in 9.6.4.7.4, the processor shall call the selected defined
input/output procedure for any appropriate data transfer input/output statements executed in that scoping unit.
The defined input/output procedure controls the actual data transfer operations for the derived-type list item.

A data transfer statement that includes a derived-type list item and that causes a defined input/output procedure
to be invoked is called a parent data transfer statement. A data transfer statement that is executed while a
parent data transfer statement is being processed and that specifies the unit passed into a defined input/output
procedure is called a child data transfer statement.

NOTE 9.41

A defined input/output procedure will usually contain child data transfer statements that read values
from or write values to the current record or at the current file position. The effect of executing the
defined input/output procedure is similar to that of substituting the list items from any child data transfer
statements into the parent data transfer statement’s list items, along with similar substitutions in the format
specification.

9.6.4.5 Input/output statements 219

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

NOTE 9.42

A particular execution of a READ, WRITE or PRINT statement can be both a parent and a child data
transfer statement. A defined input/output procedure can indirectly call itself or another defined in-
put/output procedure by executing a child data transfer statement containing a list item of derived type,
where a matching interface is accessible for that derived type. If a defined input/output procedure calls
itself indirectly in this manner, it shall be declared RECURSIVE.

3 A child data transfer statement is processed differently from a nonchild data transfer statement in the following
ways.

e Executing a child data transfer statement does not position the file prior to data transfer.
e An unformatted child data transfer statement does not position the file after data transfer is complete.
e Any ADVANCE= specifier in a child input/output statement is ignored.

9.6.4.7.3 Defined input/output procedures

1 For a particular derived type and a particular set of kind type parameter values, there are four possible sets of
characteristics for defined input/output procedures; one each for formatted input, formatted output, unformatted
input, and unformatted output. The user need not supply all four procedures. The procedures are specified to
be used for derived-type input/output by interface blocks (12.4.3.2) or by generic bindings (4.5.5), with a dtio-
generic-spec (R1208).

2 In the four interfaces, which specify the characteristics of defined input/output procedures, the following syntax
term is used:

R920 dtuv-type-spec is TYPE(derived-type-spec)
or CLASS(derived-type-spec)

C935 (R920) If derived-type-spec specifies an extensible type, the CLASS keyword shall be used; otherwise, the
TYPE keyword shall be used.

C936 (R920) All length type parameters of derived-type-spec shall be assumed.

3 If the dtio-generic-spec is READ (FORMATTED), the characteristics shall be the same as those specified by the
following interface:

4 SUBROUTINE my_read_routine_formatted
(dtv,
unit,
iotype, v_list,
iostat, iomsg)
! the derived-type variable
dtv-type-spec, INTENT(INOUT) :: dtv
INTEGER, INTENT(IN) :: unit ! unit number
! the edit descriptor string
CHARACTER (LEN=%), INTENT(IN) :: iotype
INTEGER, INTENT(IN) :: v_list(:)
INTEGER, INTENT(OUT) :: iostat
CHARACTER (LEN=%), INTENT(INOUT) :: iomsg
END

F

5 If the dtio-generic-spec is READ (UNFORMATTED), the characteristics shall be the same as those specified by
the following interface:

6 SUBROUTINE my_read_routine_unformatted &

220 Input/output statements 9.6.4.7

7

9

10

11

12

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

&

(dtv,
unit, &
iostat, iomsg)

! the derived-type variable

dtv-type-spec, INTENT(INOUT) :: dtv

INTEGER, INTENT(IN) :: unit

INTEGER, INTENT(QUT) :: iostat

CHARACTER (LEN=%), INTENT(INOUT) :: iomsg

END

If the dtio-generic-spec is WRITE (FORMATTED), the characteristics shall be the same as those specified by
the following interface:

SUBROUTINE my_write_routine_formatted
(dtv,
unit,
iotype, v_list,
iostat, iomsg)
! the derived-type value/variable
dtv-type-spec, INTENT(IN) :: dtv
INTEGER, INTENT(IN) :: unit
! the edit descriptor string
CHARACTER (LEN=%), INTENT(IN) :: iotype
INTEGER, INTENT(IN) :: v_list(:)
INTEGER, INTENT(OUT) :: iostat
CHARACTER (LEN=%), INTENT(INOUT) :: iomsg
END

F X

If the dtio-generic-spec is WRITE (UNFORMATTED), the characteristics shall be the same as those specified
by the following interface:

SUBROUTINE my_write_routine_unformatted &
(dtv, &
unit, &
iostat, iomsg)
! the derived-type value/variable
dtv-type-spec, INTENT(IN) :: dtv
INTEGER, INTENT(IN) :: unit
INTEGER, INTENT(OUT) :: iostat
CHARACTER (LEN=%), INTENT(INOUT) :: iomsg
END
The actual specific procedure names (the my_..._routine_... procedure names above) are not significant. In

the discussion here and elsewhere, the dummy arguments in these interfaces are referred to by the names given
above; the names are, however, arbitrary.

When a defined input/output procedure is invoked, the processor shall pass a unit argument that has a value as

follows.

e If the parent data transfer statement uses a file-unit-number, the value of the unit argument shall be that
of the file-unit-number.

e If the parent data transfer statement is a WRITE statement with an asterisk unit or a PRINT statement,
the unit argument shall have the same value as the named constant OUTPUT _UNIT of the intrinsic module
ISO_.FORTRAN_ENV (13.8.2).

e If the parent data transfer statement is a READ statement with an asterisk unit or a READ statement
without an ¢o-control-spec-list, the unit argument shall have the same value as the INPUT_UNIT named

9.6.4.7 Input/output statements 221

13

14

15

16

17

18

19

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

constant of the intrinsic module ISO_.FORTRAN_ENV (13.8.2).

e Otherwise the parent data transfer statement must access an internal file, in which case the unit argument
shall have a processor-dependent negative value.

NOTE 9.43

The unit argument passed to a defined input/output procedure will be negative when the parent in-
put/output statement specified an internal unit, or specified an external unit that is a NEWUNIT value.
When an internal unit is used with the INQUIRE statement, an error condition will occur, and any variable
specified in an IOSTAT= specifier will be assigned the value IOSTAT_INQUIRE_INTERNAL_UNIT from
the intrinsic module ISO_.FORTRAN_ENV (13.8.2).

For formatted data transfer, the processor shall pass an iotype argument that has the value

e “LISTDIRECTED?” if the parent data transfer statement specified list directed formatting,
o “NAMELIST” if the parent data transfer statement specified namelist formatting, or
e “DT” concatenated with the char-literal-constant, if any, of the DT edit descriptor in the format specification

of the parent data transfer statement. , if contained a and the list item’s corresponding edit descriptor was
a DT edit descriptor.

If the parent data transfer statement is a READ statement, the dtv dummy argument is argument associated
with the effective item that caused the defined input procedure to be invoked, as if the effective item were an
actual argument in this procedure reference (2.5.5).

If the parent data transfer statement is a WRITE or PRINT statement, the processor shall provide the value of
the effective item in the dtv dummy argument.

If the v-list of the edit descriptor appears in the parent data transfer statement, the processor shall provide the
values from it in the v_list dummy argument, with the same number of elements in the same order as v-list.
If there is no w-list in the edit descriptor or if the data transfer statement specifies list-directed or namelist
formatting, the processor shall provide v_list as a zero-sized array.

NOTE 9.44

The user’s procedure may choose to interpret an element of the v_list argument as a field width, but this
is not required. If it does, it would be appropriate to fill an output field with “*”s if the width is too small.

The iostat argument is used to report whether an error, end-of-record, or end-of-file condition (9.11) occurs.
If an error condition occurs, the defined input/output procedure shall assign a positive value to the iostat
argument. Otherwise, if an end-of-file condition occurs, the defined input procedure shall assign the value of
the named constant IOSTAT_END (13.8.2.11) to the iostat argument. Otherwise, if an end-of-record condition
occurs, the defined input procedure shall assign the value of the named constant IOSTAT _EOR (13.8.2.12) to
iostat. Otherwise, the defined input/output procedure shall assign the value zero to the iostat argument.

If the defined input/output procedure returns a nonzero value for the iostat argument, the procedure shall also
return an explanatory message in the iomsg argument. Otherwise, the procedure shall not change the value of
the iomsg argument.

NOTE 9.45

The values of the iostat and iomsg arguments set in a defined input/output procedure need not be passed
to all of the parent data transfer statements.

If the iostat argument of the defined input/output procedure has a nonzero value when that procedure returns,
and the processor therefore terminates execution of the program as described in 9.11, the processor shall make
the value of the iomsg argument available in a processor-dependent manner.

222 Input/output statements 9.6.4.7

20

21

22

23

24

25

26

27

28

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

When a parent READ statement is active, an input/output statement shall not read from any external unit other
than the one specified by the unit dummy argument and shall not perform output to any external unit.

When a parent WRITE or PRINT statement is active, an input/output statement shall not perform output to
any external unit other than the one specified by the unit dummy argument and shall not read from any external
unit.

When a parent data transfer statement is active, a data transfer statement that specifies an internal file is
permitted.

OPEN, CLOSE, BACKSPACE, ENDFILE, and REWIND statements shall not be executed while a parent data
transfer statement is active.

A defined input/output procedure may use a FORMAT with a DT edit descriptor for handling a component of
the derived type that is itself of a derived type. A child data transfer statement that is a list directed or namelist
input/output statement may contain a list item of derived type.

Because a child data transfer statement does not position the file prior to data transfer, the child data transfer
statement starts transferring data from where the file was positioned by the parent data transfer statement’s most
recently processed effective item or record positioning edit descriptor. This is not necessarily at the beginning of
a record.

A record positioning edit descriptor, such as TL and TR, used on unit by a child data transfer statement shall
not cause the record position to be positioned before the record position at the time the defined input/output
procedure was invoked.

NOTE 9.46

A robust defined input/output procedure may wish to use INQUIRE to determine the settings of BLANK=,
PAD=, ROUND=, DECIMAL=, and DELIM= for an external unit. The INQUIRE provides values as
specified in 9.10.

Neither a parent nor child data transfer statement shall be asynchronous.

A defined input/output procedure, and any procedures invoked therefrom, shall not define, nor cause to become
undefined, any storage unit referenced by any input/output list item, the corresponding format, or any specifier
in any active parent data transfer statement, except through the dtv argument.

NOTE 9.47

A child data transfer statement shall not specify the ID=, POS=, or REC= specifiers in an input/output
control list.

NOTE 9.48

A simple example of derived type formatted output follows. The derived type variable chairman has two
components. The type and an associated write formatted procedure are defined in a module so as to be
accessible from wherever they might be needed. It would also be possible to check that iotype indeed has
the value DT’ and to set iostat and iomsg accordingly.

MODULE p

TYPE :: person
CHARACTER (LEN=20) :: name
INTEGER :: age

CONTAINS
PROCEDURE,PRIVATE :: pwf
GENERIC :: WRITE(FORMATTED) => pwf

END TYPE person

9.6.4.7 Input/output statements 223

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

NOTE 9.48 (cont.)

CONTAINS

SUBROUTINE pwf (dtv,unit,iotype,vlist,iostat,iomsg)
! argument definitions
CLASS(person), INTENT(IN) :: dtv
INTEGER, INTENT(IN) :: unit
CHARACTER (LEN=%), INTENT(IN) :: iotype
INTEGER, INTENT(IN) :: vlist(:)
INTEGER, INTENT(OUT) :: iostat
CHARACTER (LEN=+), INTENT(INOUT) :: iomsg
! local variable
CHARACTER (LEN=9) :: pfmt

I vlist(l) and (2) are to be used as the field widths of the two
! components of the derived type variable. First set up the format to
! be used for output.

WRITE(pfmt,’ (A,I2,A,I2,A)’) °(A’, wvlist(1), ’,I°, wvlist(2), ’)°

! now the basic output statement
WRITE(unit, FMT=pfmt, IOSTAT=iostat) dtviname, dtviage

END SUBROUTINE pwf

END MODULE p

PROGRAM
USE p
INTEGER id, members
TYPE (person) :: chairman

WRITE(6, FMT="(I2, DT (15,6), I5)") id, chairman, members
! this writes a record with four fields, with lengths 2, 15, 6, 5
! respectively

END PROGRAM

NOTE 9.49

In the following example, the variables of the derived type node form a linked list, with a single value at
each node. The subroutine pwf is used to write the values in the list, one per line.

MODULE p

TYPE node
INTEGER :: value = O
TYPE (NODE), POINTER :: next_node => NULL ()

CONTAINS
PROCEDURE,PRIVATE :: pwf
GENERIC :: WRITE(FORMATTED) => pwf

END TYPE node

CONTAINS

RECURSIVE SUBROUTINE pwf (dtv,unit,iotype,vlist,iostat,iomsg)

224

Input/output statements 9.6.4.7

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 9.49 (cont.)

! Write the chain of values, each on a separate line in I9 format.
CLASS(node), INTENT(IN) :: dtv
INTEGER, INTENT(IN) :: unit
CHARACTER (LEN=%), INTENT(IN) :: iotype
INTEGER, INTENT(IN) :: vlist(:)
INTEGER, INTENT(OUT) :: iostat
CHARACTER (LEN=%), INTENT(INOUT) :: iomsg

WRITE(unit,’ (i9 /)’, IOSTAT = iostat) dtv’value

IF(iostat/=0) RETURN

IF (ASSOCIATED (dtv¥%next_node)) WRITE(unit,’(dt)’, IOSTAT=iostat) dtv%next_node
END SUBROUTINE pwf

END MODULE p

9.6.4.7.4 Resolving defined input/output procedure references

A suitable generic interface for defined input/output of an effective item is one that has a dtio-generic-spec that is
appropriate to the direction (read or write) and form (formatted or unformatted) of the data transfer as specified
in 9.6.4.7, and has a specific interface whose dtv argument is compatible with the effective item according to the
rules for argument association in 12.5.2.4.

When an effective item (9.6.3) that is of derived-type is encountered during a data transfer, defined input/output
occurs if both of the following conditions are true.

e circumstances o e input/output are suc at defined input/output is permitted; that is,
1 The ci t f the i t/output h that defined i t/output i itted; that i
either

(a) the transfer was initiated by a list-directed, namelist, or unformatted input/output statement,
or

(b) a format specification is supplied for the input/output statement, and the edit descriptor
corresponding to the effective item is a DT edit descriptor.

(2) A suitable defined input/output procedure is available; that is, either

(a) the declared type of the effective item has a suitable generic type-bound procedure, or
(b) a suitable generic interface is accessible.

If (2a) is true, the procedure referenced is determined as for explicit type-bound procedure references (12.5); that
is, the binding with the appropriate specific interface is located in the declared type of the effective item, and the
corresponding binding in the dynamic type of the effective item is selected.

If (2a) is false and (2b) is true, the reference is to the procedure identified by the appropriate specific interface in
the interface block. This reference shall not be to a dummy procedure that is not present, or to a disassociated
procedure pointer.

9.6.5 Termination of data transfer statements

Termination of an input/output data transfer statement occurs when

e format processing encounters a colon or data edit descriptor and there are no remaining elements in the
input-item-list or output-item-list,

e unformatted or list-directed data transfer exhausts the input-item-list or output-item-list,

e namelist output exhausts the namelist-group-object-list,

e an error condition occurs,

e an end-of-file condition occurs,

9.6.5 Input/output statements 225

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

e a slash (/) is encountered as a value separator (10.10, 10.11) in the record being read during list-directed
or namelist input, or

e an end-of-record condition occurs during execution of a nonadvancing input statement (9.11).

9.7 Waiting on pending data transfer

9.7.1 Wait operation

Execution of an asynchronous data transfer statement in which neither an error, end-of-record, nor end-of-file
condition occurs initiates a pending data transfer operation. There may be multiple pending data transfer
operations for the same or multiple units simultaneously. A pending data transfer operation remains pending
until a corresponding wait operation is performed. A wait operation may be performed by a WAIT, INQUIRE,
FLUSH, CLOSE, data transfer, or file positioning statement.

A wait operation completes the processing of a pending data transfer operation. Each wait operation completes
only a single data transfer operation, although a single statement may perform multiple wait operations.

If the actual data transfer is not yet complete, the wait operation first waits for its completion. If the data
transfer operation is an input operation that completed without error, the storage units of the input/output
storage sequence then become defined with the values as described in 9.6.2.15 and 9.6.4.4.

If any error, end-of-file, or end-of-record conditions occur, the applicable actions specified by the IOSTAT=,
IOMSG=, ERR=, END=, and EOR= specifiers of the statement that performs the wait operation are taken.

If an error or end-of-file condition occurs during a wait operation for a unit, the processor performs a wait
operation for all pending data transfer operations for that unit.

NOTE 9.50

Error, end-of-file, and end-of-record conditions may be raised either during the data transfer statement that
initiates asynchronous input/output, a subsequent asynchronous data transfer statement for the same unit,
or during the wait operation. If such conditions are raised during a data transfer statement, they trigger
actions according to the IOSTAT=, ERR=, END=, and EOR= specifiers of that statement; if they are
raised during the wait operation, the actions are in accordance with the specifiers of the statement that
performs the wait operation.

After completion of the wait operation, the data transfer operation and its input/output storage sequence are no
longer considered to be pending.

9.7.2 WAIT statement
A WAIT statement performs a wait operation for specified pending asynchronous data transfer operations.

NOTE 9.51
The CLOSE, INQUIRE, and file positioning statements may also perform wait operations.

R921 wait-stmt is WAIT (wait-spec-list)

R922 wait-spec is [UNIT =] file-unit-number
or END = label
or EOR = label
or ERR = label
or ID = scalar-int-expr
or IOMSG = iomsg-variable

226 Input/output statements 9.7

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

or IOSTAT = scalar-int-variable
C937 No specifier shall appear more than once in a given wait-spec-list.

C938 A file-unit-number shall be specified in a wait-spec-list; if the optional characters UNIT= are omitted,
the file-unit-number shall be the first item in the wait-spec-list.

C939 (R922) The label in the ERR=, EOR=, or END= specifier shall be the statement label of a branch target
statement that appears in the same scoping unit as the WAIT statement.

The IOSTAT=, ERR=, EOR=, END=, and IOMSG= specifiers are described in 9.11.

The value of the expression specified in the ID= specifier shall be the identifier of a pending data transfer operation
for the specified unit. If the ID= specifier appears, a wait operation for the specified data transfer operation is
performed. If the ID= specifier is omitted, wait operations for all pending data transfers for the specified unit
are performed.

Execution of a WAIT statement specifying a unit that does not exist, has no file connected to it, or is not open
for asynchronous input/output is permitted, provided that the WAIT statement has no ID= specifier; such a
WAIT statement does not cause an error or end-of-file condition to occur.

NOTE 9.52

An EOR= specifier has no effect if the pending data transfer operation is not a nonadvancing read. An
END= specifier has no effect if the pending data transfer operation is not a READ.

9.8 File positioning statements

9.8.1 Syntax

R923 backspace-stmt is BACKSPACE file-unit-number
or BACKSPACE (position-spec-list)

R924 endfile-stmt is ENDFILE file-unit-number
or ENDFILE (position-spec-list)

R925 rewind-stmit is REWIND file-unit-number
or REWIND (position-spec-list)

A unit that is connected for direct access shall not be referred to by a BACKSPACE, ENDFILE, or REWIND
statement. A unit that is connected for unformatted stream access shall not be referred to by a BACKSPACE
statement. A unit that is connected with an ACTION= specifier having the value READ shall not be referred
to by an ENDFILE statement.

R926 position-spec is [UNIT =] file-unit-number
or IOMSG = iomsg-variable
or IOSTAT = scalar-int-variable
or ERR = label

C940 No specifier shall appear more than once in a given position-spec-list.

C941 A file-unit-number shall be specified in a position-spec-list; if the optional characters UNIT= are omitted,
the file-unit-number shall be the first item in the position-spec-list.

C942 (R926) The label in the ERR= specifier shall be the statement label of a branch target statement that
appears in the same scoping unit as the file positioning statement.

The IOSTAT=, ERR=, and IOMSG= specifiers are described in 9.11.

9.8 Input/output statements 227

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

Execution of a file positioning statement performs a wait operation for all pending asynchronous data transfer
operations for the specified unit.

9.8.2 BACKSPACE statement

Execution of a BACKSPACE statement causes the file connected to the specified unit to be positioned before
the current record if there is a current record, or before the preceding record if there is no current record. If the
file is at its initial point, the position of the file is not changed.

NOTE 9.53
If the preceding record is an endfile record, the file is positioned before the endfile record.

If a BACKSPACE statement causes the implicit writing of an endfile record, the file is positioned before the
record that precedes the endfile record.

Backspacing a file that is connected but does not exist is prohibited.

Backspacing over records written using list-directed or namelist formatting is prohibited.

NOTE 9.54
An example of a BACKSPACE statement is:

BACKSPACE (10, IOSTAT = N)

9.8.3 ENDFILE statement

Execution of an ENDFILE statement for a file connected for sequential access writes an endfile record as the
next record of the file. The file is then positioned after the endfile record, which becomes the last record of the
file. If the file also may be connected for direct access, only those records before the endfile record are considered
to have been written. Thus, only those records may be read during subsequent direct access connections to the
file.

After execution of an ENDFILE statement for a file connected for sequential access, a BACKSPACE or REWIND
statement shall be used to reposition the file prior to execution of any data transfer input/output statement or
ENDFILE statement.

Execution of an ENDFILE statement for a file connected for stream access causes the terminal point of the file
to become equal to the current file position. Only file storage units before the current position are considered
to have been written; thus only those file storage units may be subsequently read. Subsequent stream output
statements may be used to write further data to the file.

Execution of an ENDFILE statement for a file that is connected but does not exist creates the file; if the file is
connected for sequential access, it is created prior to writing the endfile record.

NOTE 9.55
An example of an ENDFILE statement is:

ENDFILE K

9.8.4 REWIND statement

Execution of a REWIND statement causes the specified file to be positioned at its initial point.

NOTE 9.56

If the file is already positioned at its initial point, execution of this statement has no effect on the position
of the file.

228 Input/output statements 9.8.2

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

Execution of a REWIND statement for a file that is connected but does not exist is permitted and has no effect
on any file.

NOTE 9.57

An example of a REWIND statement is:

REWIND 10

9.9

R927

R928

C943

C944

C945

FLUSH statement

flush-stmt is FLUSH file-unit-number
or FLUSH (flush-spec-list)

flush-spec is [UNIT =] file-unit-number
or IOSTAT = scalar-int-variable
or IOMSG = iomsg-variable
or ERR = label

No specifier shall appear more than once in a given flush-spec-list.

A file-unit-number shall be specified in a flush-spec-list; if the optional characters UNIT= are omitted
from the unit specifier, the file-unit-number shall be the first item in the flush-spec-list.

(R928) The label in the ERR= specifier shall be the statement label of a branch target statement that
appears in the same scoping unit as the FLUSH statement.

The IOSTAT=, IOMSG= and ERR= specifiers are described in 9.11. The IOSTAT= variable shall be set to
a processor-dependent positive value if an error occurs, to zero if the processor-dependent flush operation was
successful, or to a processor-dependent negative value if the flush operation is not supported for the unit specified.

Execution of a FLUSH statement causes data written to an external file to be available to other processes, or
causes data placed in an external file by means other than Fortran to be available to a READ statement. These
actions are processor dependent.

Execution of a FLUSH statement for a file that is connected but does not exist is permitted and has no effect on
any file. A FLUSH statement has no effect on file position.

Execution of a FLUSH statement performs a wait operation for all pending asynchronous data transfer operations
for the specified unit.

NOTE 9.58

Because this standard does not specify the mechanism of file storage, the exact meaning of the flush
operation is not precisely defined. The intention is that the flush operation should make all data written
to a file available to other processes or devices, or make data recently added to a file by other processes or
devices available to the program via a subsequent read operation. This is commonly called “flushing I/O
buffers”.

NOTE 9.59

An example of a FLUSH statement is:

FLUSH (10, IOSTAT = N)

9.9

Input/output statements 229

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

9.10 File inquiry statement

9.10.1 Forms of the INQUIRE statement

The INQUIRE statement may be used to inquire about properties of a particular named file or of the connection
to a particular unit. There are three forms of the INQUIRE statement: inquire by file, which uses the FILE=
specifier, inquire by unit, which uses the UNIT= specifier, and inquire by output list, which uses only
the IOLENGTH= specifier. All specifier value assignments are performed according to the rules for assignment
statements.

For inquiry by unit, the unit specified need not exist or be connected to a file. If it is connected to a file, the
inquiry is being made about the connection and about the file connected.

An INQUIRE statement may be executed before, while, or after a file is connected to a unit. All values assigned
by an INQUIRE statement are those that are current at the time the statement is executed.

R929 inquire-stmt is INQUIRE (inquire-spec-list)
or INQUIRE (IOLENGTH = scalar-int-variable)
B output-item-list

NOTE 9.60
Examples of INQUIRE statements are:

INQUIRE (IOLENGTH = IOL) A (1:N)
INQUIRE (UNIT = JOAN, OPENED = LOG_O1, NAMED = L0OG_02, &
FORM = CHAR_VAR, IOSTAT = I0S)

9.10.2 Inquiry specifiers
9.10.2.1 Syntax

Unless constrained, the following inquiry specifiers may be used in either of the inquire by file or inquire by unit
forms of the INQUIRE statement.

R930 inquire-spec is [UNIT =] file-unit-number
or FILE = file-name-expr
or ACCESS = scalar-default-char-variable
or ACTION = scalar-default-char-variable
or ASYNCHRONOUS = scalar-default-char-variable
or BLANK = scalar-default-char-variable
or DECIMAL = scalar-default-char-variable
or DELIM = scalar-default-char-variable
or DIRECT = scalar-default-char-variable
or ENCODING = scalar-default-char-variable
or ERR = label
or EXIST = scalar-logical-variable
or FORM = scalar-default-char-variable
or FORMATTED = scalar-default-char-variable
or ID = scalar-int-expr
or IOMSG = iomsg-variable
or IOSTAT = scalar-int-variable
or NAME = scalar-default-char-variable
or NAMED = scalar-logical-variable
or NEXTREC = scalar-int-variable
or NUMBER = scalar-int-variable
or OPENED = scalar-logical-variable

230 Input/output statements 9.10

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

or PAD = scalar-default-char-variable

or PENDING = scalar-logical-variable

or POS = scalar-int-variable

or POSITION = scalar-default-char-variable

or READ = scalar-default-char-variable

or READWRITE = scalar-default-char-variable
or RECL = scalar-int-variable

or ROUND = scalar-default-char-variable

or SEQUENTIAL = scalar-default-char-variable
or SIGN = scalar-default-char-variable

or SIZE = scalar-int-variable

or STREAM = scalar-default-char-variable

or UNFORMATTED = scalar-default-char-variable
or WRITE = scalar-default-char-variable

C946 No specifier shall appear more than once in a given inquire-spec-list.
C947 An inquire-spec-list shall contain one FILE= specifier or one UNIT= specifier, but not both.

C948 In the inquire by unit form of the INQUIRE statement, if the optional characters UNIT= are omitted,
the file-unit-number shall be the first item in the inquire-spec-list.

C949 If an ID= specifier appears in an inquire-spec-list, a PENDING= specifier shall also appear.

C950 (R928) The label in the ERR= specifier shall be the statement label of a branch target statement that
appears in the same scoping unit as the INQUIRE statement.

If file-unit-number identifies an internal unit (9.6.4.7.3), an error condition occurs.

When a returned value of a specifier other than the NAME= specifier is of type character, the value returned is
in upper case.

If an error condition occurs during execution of an INQUIRE statement, all of the inquiry specifier variables
become undefined, except for variables in the IOSTAT= and IOMSG= specifiers (if any).

The IOSTAT=, ERR=, and IOMSG= specifiers are described in 9.11.
9.10.2.2 FILE= specifier in the INQUIRE statement

The value of the file-name-expr in the FILE= specifier specifies the name of the file being inquired about. The
named file need not exist or be connected to a unit. The value of the file-name-expr shall be of a form acceptable
to the processor as a file name. Any trailing blanks are ignored. The interpretation of case is processor dependent.

9.10.2.3 ACCESS= specifier in the INQUIRE statement

The scalar-default-char-variable in the ACCESS= specifier is assigned the value SEQUENTTAL if the connection
is for sequential access, DIRECT if the connection is for direct access, or STREAM if the connection is for stream
access. If there is no connection, it is assigned the value UNDEFINED.

9.10.2.4 ACTION= specifier in the INQUIRE statement

The scalar-default-char-variable in the ACTION= specifier is assigned the value READ if the connection is for
input only, WRITE if the connection is for output only, and READWRITE if the connection is for both input
and output. If there is no connection, the scalar-default-char-variable is assigned the value UNDEFINED.

9.10.2.5 ASYNCHRONOUS= specifier in the INQUIRE statement

The scalar-default-char-variable in the ASYNCHRONOQOUS= specifier is assigned the value YES if the connection
allows asynchronous input/output; it is assigned the value NO if the connection does not allow asynchronous

9.10.2.2 Input/output statements 231

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

input/output. If there is no connection, the scalar-default-char-variable is assigned the value UNDEFINED.

9.10.2.6 BLANK= specifier in the INQUIRE statement

The scalar-default-char-variable in the BLANK= specifier is assigned the value ZERO or NULL, corresponding
to the blank interpretation mode in effect for a connection for formatted input/output. If there is no connection,

or if the connection is not for formatted input/output, the scalar-default-char-variable is assigned the value
UNDEFINED.

9.10.2.7 DECIMAL= specifier in the INQUIRE statement

The scalar-default-char-variable in the DECIMAL= specifier is assigned the value COMMA or POINT, corre-
sponding to the decimal edit mode in effect for a connection for formatted input/output. If there is no connection,
or if the connection is not for formatted input/output, the scalar-default-char-variable is assigned the value UN-
DEFINED.

9.10.2.8 DELIM= specifier in the INQUIRE statement

The scalar-default-char-variable in the DELIM= specifier is assigned the value APOSTROPHE, QUOTE, or
NONE, corresponding to the delimiter mode in effect for a connection for formatted input/output. If there is no
connection or if the connection is not for formatted input/output, the scalar-default-char-variable is assigned the
value UNDEFINED.

9.10.2.9 DIRECT= specifier in the INQUIRE statement

The scalar-default-char-variable in the DIRECT= specifier is assigned the value YES if DIRECT is included in
the set of allowed access methods for the file, NO if DIRECT is not included in the set of allowed access methods
for the file, and UNKNOWN if the processor is unable to determine whether DIRECT is included in the set of
allowed access methods for the file.

9.10.2.10 ENCODING= specifier in the INQUIRE statement

The scalar-default-char-variable in the ENCODING= specifier is assigned the value UTF-8 if the connection is
for formatted input/output with an encoding form of UTF-8, and is assigned the value UNDEFINED if the
connection is for unformatted input/output. If there is no connection, it is assigned the value UTF-8 if the
processor is able to determine that the encoding form of the file is UTF-8; if the processor is unable to determine
the encoding form of the file, the variable is assigned the value UNKNOWN.

NOTE 9.61

The value assigned may be something other than UTF-8, UNDEFINED, or UNKNOWN if the processor
supports other specific encoding forms (e.g. UTF-16BE).

9.10.2.11 EXIST= specifier in the INQUIRE statement

Execution of an INQUIRE by file statement causes the scalar-logical-variable in the EXIST= specifier to be
assigned the value true if there exists a file with the specified name; otherwise, false is assigned. Execution of an
INQUIRE by unit statement causes true to be assigned if the specified unit exists; otherwise, false is assigned.

9.10.2.12 FORM= specifier in the INQUIRE statement

The scalar-default-char-variable in the FORM= specifier is assigned the value FORMATTED if the connection
is for formatted input/output, and is assigned the value UNFORMATTED if the connection is for unformatted
input/output. If there is no connection, it is assigned the value UNDEFINED.

232 Input/output statements 9.10.2.6

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

9.10.2.13 FORMATTED= specifier in the INQUIRE statement

The scalar-default-char-variable in the FORMATTED= specifier is assigned the value YES if FORMATTED is
included in the set of allowed forms for the file, NO if FORMATTED is not included in the set of allowed forms
for the file, and UNKNOWN if the processor is unable to determine whether FORMATTED is included in the
set of allowed forms for the file.

9.10.2.14 ID= specifier in the INQUIRE statement

The value of the expression specified in the ID= specifier shall be the identifier of a pending data transfer operation
for the specified unit. This specifier interacts with the PENDING= specifier (9.10.2.21).

9.10.2.15 NAME= specifier in the INQUIRE statement

The scalar-default-char-variable in the NAME= specifier is assigned the value of the name of the file if the file
has a name; otherwise, it becomes undefined.

NOTE 9.62

If this specifier appears in an INQUIRE by file statement, its value is not necessarily the same as the name
given in the FILE= specifier. However, the value returned shall be suitable for use as the value of the
file-name-expr in the FILE= specifier in an OPEN statement.

The processor may return a file name qualified by a user identification, device, directory, or other relevant
information.

The case of the characters assigned to scalar-default-char-variable is processor dependent.

9.10.2.16 NAMED= specifier in the INQUIRE statement

The scalar-logical-variable in the NAMED= specifier is assigned the value true if the file has a name; otherwise,
it is assigned the value false.

9.10.2.17 NEXTREC= specifier in the INQUIRE statement

The scalar-int-variable in the NEXTREC= specifier is assigned the value n + 1, where n is the record number of
the last record read from or written to the connection for direct access. If there is a connection but no records have
been read or written since the connection, the scalar-int-variable is assigned the value 1. If there is no connection,
the connection is not for direct access, or the position is indeterminate because of a previous error condition, the
scalar-int-variable becomes undefined. If there are pending data transfer operations for the specified unit, the
value assigned is computed as if all the pending data transfers had already completed.

9.10.2.18 NUMBER= specifier in the INQUIRE statement

The scalar-int-variable in the NUMBER= specifier is assigned the value of the external unit number of the unit
that is connected to the file. If there is no unit connected to the file, the value —1 is assigned.

9.10.2.19 OPENED= specifier in the INQUIRE statement

Execution of an INQUIRE by file statement causes the scalar-logical-variable in the OPENED= specifier to be
assigned the value true if the file specified is connected to a unit; otherwise, false is assigned. Execution of an
INQUIRE by unit statement causes the scalar-logical-variable to be assigned the value true if the specified unit
is connected to a file; otherwise, false is assigned.

9.10.2.20 PAD= specifier in the INQUIRE statement

The scalar-default-char-variable in the PAD= specifier is assigned the value YES or NO, corresponding to the
pad mode in effect for a connection for formatted input/output. If there is no connection or if the connection is

9.10.2.13 Input/output statements 233

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

not for formatted input/output, the scalar-default-char-variable is assigned the value UNDEFINED.

9.10.2.21 PENDING= specifier in the INQUIRE statement

The PENDING= specifier is used to determine whether previously pending asynchronous data transfers are
complete. A data transfer operation is previously pending if it is pending at the beginning of execution of the
INQUIRE statement.

If an ID= specifier appears and the specified data transfer operation is complete, then the variable specified in
the PENDING= specifier is assigned the value false and the INQUIRE statement performs the wait operation
for the specified data transfer.

If the ID= specifier is omitted and all previously pending data transfer operations for the specified unit are
complete, then the variable specified in the PENDING= specifier is assigned the value false and the INQUIRE
statement performs wait operations for all previously pending data transfers for the specified unit.

In all other cases, the variable specified in the PENDING= specifier is assigned the value true and no wait
operations are performed; in this case the previously pending data transfers remain pending after the execution
of the INQUIRE statement.

NOTE 9.63

The processor has considerable flexibility in defining when it considers a transfer to be complete. Any of
the following approaches could be used:

e The INQUIRE statement could consider an asynchronous data transfer to be incomplete until after
the corresponding wait operation. In this case PENDING= would always return true unless there
were no previously pending data transfers for the unit.

e The INQUIRE statement could wait for all specified data transfers to complete and then always return
false for PENDING=.

e The INQUIRE statement could actually test the state of the specified data transfer operations.

9.10.2.22 POS= specifier in the INQUIRE statement

The scalar-int-variable in the POS= specifier is assigned the number of the file storage unit immediately following
the current position of a file connected for stream access. If the file is positioned at its terminal position, the
variable is assigned a value one greater than the number of the highest-numbered file storage unit in the file. If
the file is not connected for stream access or if the position of the file is indeterminate because of previous error
conditions, the variable becomes undefined.

9.10.2.23 POSITION= specifier in the INQUIRE statement

The scalar-default-char-variable in the POSITION= specifier is assigned the value REWIND if the connection
was opened for positioning at its initial point, APPEND if the connection was opened for positioning before its
endfile record or at its terminal point, and ASIS if the connection was opened without changing its position.
If there is no connection or if the file is connected for direct access, the scalar-default-char-variable is assigned
the value UNDEFINED. If the file has been repositioned since the connection, the scalar-default-char-variable
is assigned a processor-dependent value, which shall not be REWIND unless the file is positioned at its initial
point and shall not be APPEND unless the file is positioned so that its endfile record is the next record or at its
terminal point if it has no endfile record.

9.10.2.24 READ= specifier in the INQUIRE statement

The scalar-default-char-variable in the READ= specifier is assigned the value YES if READ is included in the
set of allowed actions for the file, NO if READ is not included in the set of allowed actions for the file, and
UNKNOWN if the processor is unable to determine whether READ is included in the set of allowed actions for
the file.

234 Input/output statements 9.10.2.21

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

9.10.2.25 READWRITE= specifier in the INQUIRE statement

The scalar-default-char-variable in the READWRITE= specifier is assigned the value YES if READWRITE is
included in the set of allowed actions for the file, NO if READWRITE is not included in the set of allowed actions
for the file, and UNKNOWN if the processor is unable to determine whether READWRITE is included in the
set of allowed actions for the file.

9.10.2.26 RECL= specifier in the INQUIRE statement

The scalar-int-variable in the RECL= specifier is assigned the value of the record length of a connection for direct
access, or the value of the maximum record length of a connection for sequential access. If the connection is for
formatted input/output, the length is the number of characters for all records that contain only characters of
default kind. If the connection is for unformatted input/output, the length is measured in file storage units. If
there is no connection, or if the connection is for stream access, the scalar-int-variable becomes undefined.

9.10.2.27 ROUND= specifier in the INQUIRE statement

The scalar-default-char-variable in the ROUND= specifier is assigned the value UP, DOWN, ZERO, NEAREST,
COMPATIBLE, or PROCESSOR_DEFINED, corresponding to the I/O rounding mode in effect for a connection
for formatted input/output. If there is no connection or if the connection is not for formatted input/output, the
scalar-default-char-variable is assigned the value UNDEFINED. The processor shall return the value PROCES-
SOR_DEFINED only if the behavior of the current I/O rounding mode is different from that of the UP, DOWN;,
ZERO, NEAREST, and COMPATIBLE modes.

9.10.2.28 SEQUENTIAL= specifier in the INQUIRE statement

The scalar-default-char-variable in the SEQUENTIAL= specifier is assigned the value YES if SEQUENTIAL is
included in the set of allowed access methods for the file, NO if SEQUENTIAL is not included in the set of allowed
access methods for the file, and UNKNOWN if the processor is unable to determine whether SEQUENTIAL is
included in the set of allowed access methods for the file.

9.10.2.29 SIGN= specifier in the INQUIRE statement

The scalar-default-char-variable in the SIGN= specifier is assigned the value PLUS, SUPPRESS, or PROCES-
SOR_DEFINED, corresponding to the sign mode in effect for a connection for formatted input/output. If there is
no connection, or if the connection is not for formatted input/output, the scalar-default-char-variable is assigned
the value UNDEFINED.

9.10.2.30 SIZE= specifier in the INQUIRE statement

The scalar-int-variable in the SIZE= specifier is assigned the size of the file in file storage units. If the file size
cannot be determined, the variable is assigned the value -1.

For a file that may be connected for stream access, the file size is the number of the highest-numbered file storage
unit in the file.

For a file that may be connected for sequential or direct access, the file size may be different from the number of
storage units implied by the data in the records; the exact relationship is processor-dependent.

9.10.2.31 STREAM= specifier in the INQUIRE statement

The scalar-default-char-variable in the STREAM= specifier is assigned the value YES if STREAM is included in
the set of allowed access methods for the file, NO if STREAM is not included in the set of allowed access methods
for the file, and UNKNOWN if the processor is unable to determine whether STREAM is included in the set of
allowed access methods for the file.

9.10.2.25 Input/output statements 235

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

9.10.2.32 UNFORMATTED= specifier in the INQUIRE statement

The scalar-default-char-variable in the UNFORMATTED= specifier is assigned the value YES if UNFORMAT-
TED is included in the set of allowed forms for the file, NO if UNFORMATTED is not included in the set of
allowed forms for the file, and UNKNOWN if the processor is unable to determine whether UNFORMATTED is
included in the set of allowed forms for the file.

9.10.2.33 WRITE= specifier in the INQUIRE statement

The scalar-default-char-variable in the WRITE= specifier is assigned the value YES if WRITE is included in the
set of allowed actions for the file, NO if WRITE is not included in the set of allowed actions for the file, and
UNKNOWN if the processor is unable to determine whether WRITE is included in the set of allowed actions for
the file.

9.10.3 Inquire by output list

The scalar-int-variable in the IOLENGTH= specifier is assigned the processor-dependent number of file storage
units that would be required to store the data of the output list in an unformatted file. The value shall be suitable
as a RECL= specifier in an OPEN statement that connects a file for unformatted direct access when there are
input/output statements with the same input/output list.

The output list in an INQUIRE statement shall not contain any derived-type list items that require a defined
input/output procedure as described in subclause 9.6.3. If a derived-type list item appears in the output list, the
value returned for the IOLENGTH= specifier assumes that no defined input/output procedure will be invoked.

9.11 Error, end-of-record, and end-of-file conditions

9.11.1 General

The set of input/output error conditions is processor dependent.

An end-of-record condition occurs when a nonadvancing input statement attempts to transfer data from a
position beyond the end of the current record, unless the file is a stream file and the current record is at the end
of the file (an end-of-file condition occurs instead).

An end-of-file condition occurs when

e an endfile record is encountered during the reading of a file connected for sequential access,
e an attempt is made to read a record beyond the end of an internal file, or
e an attempt is made to read beyond the end of a stream file.

An end-of-file condition may occur at the beginning of execution of an input statement. An end-of-file condition
also may occur during execution of a formatted input statement when more than one record is required by the
interaction of the input list and the format. An end-of-file condition also may occur during execution of a stream
input statement.

9.11.2 Error conditions and the ERR= specifier

If an error condition occurs during execution of an input/output statement, the position of the file becomes
indeterminate.

If an error condition occurs during execution of an input/output statement that contains neither an ERR= nor
IOSTAT= specifier, error termination of the program is initiated. If an error condition occurs during execution
of an input/output statement that contains either an ERR= specifier or an IOSTAT= specifier then:

(1) processing of the input/output list, if any, terminates;

236 Input/output statements 9.10.2.32

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

if the statement is a data transfer statement or the error occurs during a wait operation, all do-
variables in the statement that initiated the transfer become undefined;

if an IOSTAT= specifier appears, the scalar-int-variable in the IOSTAT= specifier becomes defined
as specified in 9.11.5;

if an IOMSG= specifier appears, the iomsg-variable becomes defined as specified in 9.11.6;

if the statement is a READ statement and it contains a SIZE= specifier, the scalar-int-variable in
the SIZE= specifier becomes defined as specified in 9.6.2.15;

if the statement is a READ statement or the error condition occurs in a wait operation for a transfer
initiated by a READ statement, all input items or namelist group objects in the statement that
initiated the transfer become undefined;

if an ERR= specifier appears, a branch to the statement labeled by the label in the ERR= specifier
occurs.

9.11.3 End-of-file condition and the END= specifier

If an end-of-file condition occurs during execution of an input/output statement that contains neither an END=
specifier nor an IOSTAT= specifier, error termination of the program is initiated. If an end-of-file condition
occurs during execution of an input/output statement that contains either an END= specifier or an IOSTAT=
specifier, and an error condition does not occur then:

processing of the input list, if any, terminates;

if the statement is a data transfer statement or the end-of-file condition occurs during a wait operation,
all do-variables in the statement that initiated the transfer become undefined;

if the statement is a READ statement or the end-of-file condition occurs during a wait operation
for a transfer initiated by a READ statement, all input list items or namelist group objects in the
statement that initiated the transfer become undefined;

if the file specified in the input statement is an external record file, it is positioned after the endfile
record;

if an IOSTAT= specifier appears, the scalar-int-variable in the IOSTAT= specifier becomes defined
as specified in 9.11.5;

if an IOMSG= specifier appears, the iomsg-variable becomes defined as specified in 9.11.6;

if an END= specifier appears, a branch to the statement labeled by the label in the END= specifier
occurs.

9.11.4 End-of-record condition and the EOR= specifier

If an end-of-record condition occurs during execution of an input/output statement that contains neither an
EOR= specifier nor an IOSTAT= specifier, error termination of the program is initiated. If an end-of-record
condition occurs during execution of an input/output statement that contains either an EOR= specifier or an
IOSTAT= specifier, and an error condition does not occur then:

(1)

9.11.3

if the pad mode has the value

(a) YES, the record is padded with blanks to satisfy the effective item (9.6.4.4.3) and corresponding
data edit descriptors that require more characters than the record contains,

(b) NO, the input list item becomes undefined;

processing of the input list, if any, terminates;

if the statement is a data transfer statement or the end-of-record condition occurs during a wait
operation, all do-variables in the statement that initiated the transfer become undefined;

the file specified in the input statement is positioned after the current record;

if an IOSTAT= specifier appears, the scalar-int-variable in the IOSTAT= specifier becomes defined
as specified in 9.11.5;

if an IOMSG= specifier appears, the iomsg-variable becomes defined as specified in 9.11.6;

Input/output statements 237

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

(7) if a SIZE= specifier appears, the scalar-int-variable in the SIZE= specifier becomes defined as spec-
ified in (9.6.2.15);

(8) if an EOR= specifier appears, a branch to the statement labeled by the label in the EOR= specifier
occurs.

9.11.5 I0STAT= specifier

1 Execution of an input/output statement containing the IOSTAT= specifier causes the scalar-int-variable in the
TIOSTAT= specifier to become defined with

e a zero value if neither an error condition, an end-of-file condition, nor an end-of-record condition occurs,

e the processor-dependent positive integer value of the constant IOSTAT_INQUIRE_INTERNAL_UNIT from
the intrinsic module ISO_FORTRAN_ENV(13.8.2) if a unit number in an INQUIRE statement identifies an
internal file,

e a processor-dependent positive integer value different from IOSTAT_INQUIRE_INTERNAL_UNIT if any
other error condition occurs,

e the processor-dependent negative integer value of the constant IOSTAT_END (13.8.2.11) if an end-of-file
condition occurs and no error condition occurs, or

e the processor-dependent negative integer value of the constant IOSTAT_EOR (13.8.2.12) if an end-of-record
condition occurs and no error condition or end-of-file condition occurs.

NOTE 9.64

An end-of-file condition may occur only for sequential or stream input and an end-of-record condition may
occur only for nonadvancing input.

For example,

READ (FMT = "(E8.3)", UNIT = 3, IOSTAT = I0SS) X
IF (I0SS < 0) THEN
! Perform end-of-file processing on the file connected to unit 3.
CALL END_PROCESSING
ELSE IF (I0OSS > 0) THEN
! Perform error processing
CALL ERROR_PROCESSING
END IF

9.11.6 10MSG= specifier

1 If an error, end-of-file, or end-of-record condition occurs during execution of an input/output statement, the
processor shall assign an explanatory message to iomsg-variable. If no such condition occurs, the processor shall
not change the value of iomsg-variable.

9.12 Restrictions on input/output statements

1 If a unit, or a file connected to a unit, does not have all of the properties required for the execution of certain
input/output statements, those statements shall not refer to the unit.

2 An input/output statement that is executed while another input/output statement is being executed is called a
recursive input/output statement.

3 A recursive input/output statement shall not identify an external unit that is identified by another input/output
statement being executed except that a child data transfer statement may identify its parent data transfer
statement external unit.

4 An input/output statement shall not cause the value of any established format specification to be modified.

238 Input/output statements 9.11.5

10

11

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

A recursive input/output statement shall not modify the value of any internal unit except that a recursive WRITE
statement may modify the internal unit identified by that recursive WRITE statement.

The value of a specifier in an input/output statement shall not depend on any input-item, io-implied-do do-
variable, or on the definition or evaluation of any other specifier in the io-control-spec-list or inquire-spec-list in
that statement.

The value of any subscript or substring bound of a variable that appears in a specifier in an input/output
statement shall not depend on any input-item, io-implied-do do-variable, or on the definition or evaluation of any
other specifier in the io-control-spec-list or inquire-spec-list in that statement.

In a data transfer statement, the variable specified in an IOSTAT=, IOMSG=, or SIZE= specifier, if any, shall
not be associated with any entity in the data transfer input/output list (9.6.3) or namelist-group-object-list, nor
with a do-variable of an io-implied-do in the data transfer input/output list.

In a data transfer statement, if a variable specified in an IOSTAT=, IOMSG=, or SIZE= specifier is an array
element reference, its subscript values shall not be affected by the data transfer, the io-implied-do processing, or
the definition or evaluation of any other specifier in the i0-control-spec-list.

A variable that may become defined or undefined as a result of its use in a specifier in an INQUIRE statement,
or any associated entity, shall not appear in another specifier in the same INQUIRE statement.

A STOP statement or ALL STOP statement shall not be executed during execution of an input/output statement.

NOTE 9.65
Restrictions on the evaluation of expressions (7.1.4) prohibit certain side effects.

9.12 Input/output statements 239

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

240 Input/output statements 9.12

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

10 Input/output editing

10.1 Format specifications

A format used in conjunction with an input/output statement provides information that directs the editing
between the internal representation of data and the characters of a sequence of formatted records.

A format (9.6.2.2) in an input/output statement may refer to a FORMAT statement or to a character expression
that contains a format specification. A format specification provides explicit editing information. The format
alternatively may be an asterisk (*), which indicates list-directed formatting (10.10). Namelist formatting (10.11)
may be indicated by specifying a namelist-group-name instead of a format.

10.2 Explicit format specification methods

10.2.1 FORMAT statement
R1001 format-stmt is FORMAT format-specification

R1002 format-specification is ([format-item-list |)
or ([format-item-list, | unlimited-format-item)

C1001 (R1001) The format-stmt shall be labeled.

C1002 (R1002) The comma used to separate format-items in a format-item-list may be omitted
e between a P edit descriptor and an immediately following F, E; EN, ES| D, or G edit descriptor (10.8.5),
possibly preceded by a repeat specifier,
e before a slash edit descriptor when the optional repeat specification does not appear (10.8.2),
e after a slash edit descriptor, or
e before or after a colon edit descriptor (10.8.3)

Blank characters may precede the initial left parenthesis of the format specification. Additional blank characters
may appear at any point within the format specification, with no effect on the interpretation of the format
specification, except within a character string edit descriptor (10.9).

NOTE 10.1
Examples of FORMAT statements are:

5 FORMAT (1PE12.4, I10)
9 FORMAT (I12, /, ’ Dates: ’, 2 (2I3, I5))

10.2.2 Character format specification

A character expression used as a format in a formatted input/output statement shall evaluate to a character
string whose leading part is a valid format specification.

NOTE 10.2
The format specification begins with a left parenthesis and ends with a right parenthesis.

All character positions up to and including the final right parenthesis of the format specification shall be defined
at the time the input/output statement is executed, and shall not become redefined or undefined during the

10 Input/output editing 241

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

execution of the statement. Character positions, if any, following the right parenthesis that ends the format
specification need not be defined and may contain any character data with no effect on the interpretation of the
format specification.

If the format is a character array, it is treated as if all of the elements of the array were specified in array element
order and were concatenated. However, if a format is a character array element, the format specification shall be
entirely within that array element.

NOTE 10.3

If a character constant is used as a format in an input/output statement, care shall be taken that the value
of the character constant is a valid format specification. In particular, if a format specification delimited
by apostrophes contains a character constant edit descriptor delimited with apostrophes, two apostrophes
shall be written to delimit the edit descriptor and four apostrophes shall be written for each apostrophe
that occurs within the edit descriptor. For example, the text:

2 ISN’T 3

may be written by various combinations of output statements and format specifications:

WRITE (6, 100) 2, 3

100 FORMAT (1X, I1, 1X, ’ISN’’T’, 1X, I1)
WRITE (6, ’(1X, I1, 1X, ’’ISN’’’’T’’, 1X, I1)’) 2, 3
WRITE (6, >(A)’) > 2 ISN’’T 3’

Doubling of internal apostrophes usually can be avoided by using quotation marks to delimit the format
specification and doubling of internal quotation marks usually can be avoided by using apostrophes as
delimiters.

10.3 Form of a format item list

10.3.1 Syntax

R1003 format-item is [r] data-edit-desc

or control-edit-desc
or char-string-edit-desc
or [r](format-item-list)

R1004 unlimited-format-item is * (format-item-list)

R1005 r is int-literal-constant

C1003 (R1005) r shall be positive.

C1004 (R1005) A kind parameter shall not be specified for 7.

The integer literal constant r is called a repeat specification.

10.3.2 Edit descriptors

An edit descriptor is a data edit descriptor, a control edit descriptor, or a character string edit

descriptor.
R1006 data-edit-desc is Tw[.m]
or Bwl[.m]
or Owl.m]
or Zw/[.m]
or Fw.d
242 Input/output editing 10.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

or Ew.d[Ee¢e]

or ENw. d[Ee]
or ESw.d[Ee]
or Gw[.d[Ee]]

or Lw
or Aw)]
or Dw. d
or DT [char-literal-constant | [(v-list)]
R1007 w is int-literal-constant
R1008 m is int-literal-constant
R1009 d is int-literal-constant
R1010 e is int-literal-constant
R1011 w is signed-int-literal-constant

C1005 (R1010) e shall be positive.

C1006 (R1007) w shall be zero or positive for the I, B, O, Z, F, and G edit descriptors. w shall be positive for
all other edit descriptors.

C1007 (R1006) For the G edit descriptor, d shall be specified if and only if w is not zero.

C1008 (R1006) A kind parameter shall not be specified for the char-literal-constant in the DT edit descriptor,
or for w, m, d, e, and v.

I,B, O, Z F, E, EN, ES, G, L, A, D, and DT indicate the manner of editing.

R1012 control-edit-desc is position-edit-desc
or [r]/

or :

or sign-edit-desc

or kP

or blank-interp-edit-desc
or round-edit-desc

or decimal-edit-desc

R1013 % is signed-int-literal-constant
C1009 (R1013) A kind parameter shall not be specified for k.

In k£ P, k is called the scale factor.

R1014 position-edit-desc is Tn
or TL n
or TR n
or nX
R1015 n is int-literal-constant

C1010 (R1015) n shall be positive.
C1011 (R1015) A kind parameter shall not be specified for n.

R1016 sign-edit-desc is SS
or SP
or S

10.3.2 Input/output editing 243

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

R1017 blank-interp-edit-desc is BN
or BZ

R1018 round-edit-desc is RU
or RD
or RZ
or RN
or RC
or RP

R1019 decimal-edit-desc is DC
or DP

T, TL, TR, X, slash, colon, SS, SP, S, P, BN, BZ, RU, RD, RZ, RN, RC, RP, DC, and DP indicate the manner
of editing.

R1020 char-string-edit-desc is char-literal-constant
C1012 (R1020) A kind parameter shall not be specified for the char-literal-constant.

Each rep-char in a character string edit descriptor shall be one of the characters capable of representation by the
processor.

The character string edit descriptors provide constant data to be output, and are not valid for input.

The edit descriptors are without regard to case except for the characters in the character constants.

10.3.3 Fields

A field is a part of a record that is read on input or written on output when format control encounters a data
edit descriptor or a character string edit descriptor. The field width is the size in characters of the field.

10.4 Interaction between input/output list and format

The start of formatted data transfer using a format specification initiates format control (9.6.4.4.3). Each action
of format control depends on information jointly provided by the next edit descriptor in the format specification
and the next effective item in the input/output list, if one exists.

If an input/output list specifies at least one effective item, at least one data edit descriptor shall exist in the
format specification.

NOTE 10.4

An empty format specification of the form () may be used only if the input/output list has no effective
item (9.6.4.4). A zero length character item is an effective item, but a zero sized array and an implied DO
list with an iteration count of zero is not.

A format specification is interpreted from left to right. The exceptions are format items preceded by a repeat
specification r, and format reversion (described below).

A format item preceded by a repeat specification is processed as a list of r items, each identical to the format
item but without the repeat specification and separated by commas.

NOTE 10.5
’ An omitted repeat specification is treated in the same way as a repeat specification whose value is one.

To each data edit descriptor interpreted in a format specification, there corresponds one effective item specified by
the input/output list (9.6.3), except that an input/output list item of type complex requires the interpretation of

244 Input/output editing 10.3.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

two F, E, EN, ES, D, or G edit descriptors. For each control edit descriptor or character edit descriptor, there is
no corresponding item specified by the input/output list, and format control communicates information directly
with the record.

6 Whenever format control encounters a data edit descriptor in a format specification, it determines whether
there is a corresponding effective item specified by the input/output list. If there is such an item, it transmits
appropriately edited information between the item and the record, and then format control proceeds. If there is
no such item, format control terminates.

7 If format control encounters a colon edit descriptor in a format specification and another effective item is not
specified, format control terminates.

8 If format control encounters the rightmost parenthesis of a complete format specification and another effective
item is not specified, format control terminates. However, if another effective item is specified, format control
then reverts to the beginning of the format item terminated by the last preceding right parenthesis that is not
part of a DT edit descriptor. If there is no such preceding right parenthesis, format control reverts to the first
left parenthesis of the format specification. If any reversion occurs, the reused portion of the format specification
shall contain at least one data edit descriptor. If format control reverts to a parenthesis that is preceded by a
repeat specification, the repeat specification is reused. Reversion of format control, of itself, has no effect on the
changeable modes (9.5.2). If format control reverts to a parenthesis that is not the beginning of an wunlimited-
format-item, the file is positioned in a manner identical to the way it is positioned when a slash edit descriptor
is processed (10.8.2).

NOTE 10.6
Example: The format specification:

10 FORMAT (1X, 2(F10.3, I5))
with an output list of
WRITE (10,10) 10.1, 3, 4.7, 1, 12.4, 5, 5.2, 6

produces the same output as the format specification:

10 FORMAT (1X, F10.3, I5, F10.3, I5/F10.3, I5, F10.3, Ib)

NOTE 10.7

The effect of an unlimited-format-item is as if its enclosed list were preceded by a very large repeat count.
There is no file positioning implied by unlimited-format-item reversion. This may be used to write what is
commonly called a comma separated value record.

For example,

WRITE(10, °>("IARRAY =", *(IO, :, ","))’) IARRAY

produces a single record with a header and a comma separated list of integer values.

10.5 Positioning by format control

1 After each data edit descriptor or character string edit descriptor is processed, the file is positioned after the last
character read or written in the current record.

2 After each T, TL, TR, or X edit descriptor is processed, the file is positioned as described in 10.8.1. After each
slash edit descriptor is processed, the file is positioned as described in 10.8.2.

3 During formatted stream output, processing of an A edit descriptor can cause file positioning to occur (10.7.4).

10.5 Input/output editing 245

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

If format control reverts as described in 10.4, the file is positioned in a manner identical to the way it is positioned
when a slash edit descriptor is processed (10.8.2).

During a read operation, any unprocessed characters of the current record are skipped whenever the next record
is read.

10.6 Decimal symbol

The decimal symbol is the character that separates the whole and fractional parts in the decimal representation
of a real number in an internal or external file. When the decimal edit mode is POINT, the decimal symbol is a
decimal point. When the decimal edit mode is COMMA, the decimal symbol is a comma.

If the decimal edit mode is COMMA during list-directed input/output, the character used as a value separator
is a semicolon in place of a comma.

10.7 Data edit descriptors

10.7.1 General

Data edit descriptors cause the conversion of data to or from its internal representation; during formatted stream
output, the A data edit descriptor may also cause file positioning. On input, the specified variable becomes
defined unless an error condition, an end-of-file condition, or an end-of-record condition occurs. On output, the
specified expression is evaluated.

During input from a Unicode file,

e characters in the record that correspond to an ASCII character variable shall have a position in the ISO
10646 character collating sequence of 127 or less, and

e characters in the record that correspond to a default character variable shall be representable as default
characters.

During input from a non-Unicode file,

e characters in the record that correspond to a character variable shall have the kind of the character variable,
and

e characters in the record that correspond to a numericor logical variable shall be default characters.

During output to a Unicode file, all characters transmitted to the record are of ISO 10646 character kind. If a
character input/output list item or character string edit descriptor contains a character that is not representable
as an ISO 10646 character, the result is processor-dependent.

During output to a non-Unicode file, characters transmitted to the record as a result of processing a character
string edit descriptor or as a result of evaluating a numeric, logical, or default character data entity, are of default
kind.

10.7.2 Numeric editing
10.7.2.1 General rules

Thel, B, O, Z, F, E, EN, ES, D, and G edit descriptors may be used to specify the input/output of integer, real,
and complex data. The following general rules apply.

(1) On input, leading blanks are not significant. When the input field is not an IEEE exceptional
specification (10.7.2.3.2), the interpretation of blanks, other than leading blanks, is determined by
the blank interpretation mode (10.8.6). Plus signs may be omitted. A field containing only blanks
is considered to be zero.

246 Input/output editing 10.6

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

(2) On input, with F, E; EN, ES, D, and G editing, a decimal symbol appearing in the input field
overrides the portion of an edit descriptor that specifies the decimal symbol location. The input field
may have more digits than the processor uses to approximate the value of the datum.

(3) On output with I, F, E, EN, ES, D, and G editing, the representation of a positive or zero internal
value in the field may be prefixed with a plus sign, as controlled by the S, SP, and SS edit descriptors
or the processor. The representation of a negative internal value in the field shall be prefixed with a
minus sign.

(4) On output, the representation is right justified in the field. If the number of characters produced by
the editing is smaller than the field width, leading blanks are inserted in the field.

(5) On output, if an exponent exceeds its specified or implied width using the E, EN, ES; D, or G edit
descriptor, the number of characters produced exceeds the field width, the processor shall fill the
entire field of width w with asterisks. However, the processor shall not produce asterisks if the field
width is not exceeded when optional characters are omitted.

NOTE 10.8
‘ When the sign mode is PLUS, a plus sign is not optional.

(6) On output, with I, B, O, Z, F, and G editing, the specified value of the field width w may be zero.
In such cases, the processor selects the smallest positive actual field width that does not result in a
field filled with asterisks. The specified value of w shall not be zero on input.

10.7.2.2 Integer editing

The Iw and Iw.m edit descriptors indicate that the field to be edited occupies w positions, except when w is zero.
When w is zero, the processor selects the field width. On input, w shall not be zero. The specified input/output
list item shall be of type integer. The G, B, O, and Z edit descriptor also may be used to edit integer data
(10.7.5.2.1, 10.7.2.4).

On input, m has no effect.

In the input field for the I edit descriptor, the character string shall be a signed-digit-string (R409), except for
the interpretation of blanks.

The output field for the Tw edit descriptor consists of zero or more leading blanks followed by a minus sign if the
internal value is negative, or an optional plus sign otherwise, followed by the magnitude of the internal value as
a digit-string without leading zeros.

NOTE 10.9
A digit-string always consists of at least one digit.

The output field for the Iw.m edit descriptor is the same as for the Iw edit descriptor, except that the digit-string
consists of at least m digits. If necessary, sufficient leading zeros are included to achieve the minimum of m digits.
The value of m shall not exceed the value of w, except when w is zero. If m is zero and the internal value is
zero, the output field consists of only blank characters, regardless of the sign control in effect. When m and w
are both zero, and the internal value is zero, one blank character is produced.

10.7.2.3 Real and complex editing
10.7.2.3.1 General
The F, E, EN, ES, and D edit descriptors specify the editing of real and complex data. An input/output list

item corresponding to an F, E, EN, ES, or D edit descriptor shall be real or complex. The G, B, O, and Z edit
descriptors also may be used to edit real and complex data (10.7.5.2.2, 10.7.2.4).

10.7.2.2 Input/output editing 247

10

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

10.7.2.3.2 F editing

The Fw.d edit descriptor indicates that the field occupies w positions, the fractional part of which consists of d
digits. When w is zero, the processor selects the field width. On input, w shall not be zero.

A lower-case letter is equivalent to the corresponding upper-case letter in an IEEE exceptional specification or
the exponent in a numeric input field.

The input field is either an IEEE exceptional specification or consists of an optional sign, followed by a string of
one or more digits optionally containing a decimal symbol, including any blanks interpreted as zeros. The d has
no effect on input if the input field contains a decimal symbol. If the decimal symbol is omitted, the rightmost
d digits of the string, with leading zeros assumed if necessary, are interpreted as the fractional part of the value
represented. The string of digits may contain more digits than a processor uses to approximate the value. The
basic form may be followed by an exponent of one of the following forms:

e a sign followed by a digit-string;
e the letter E followed by zero or more blanks, followed by a signed-digit-string;
e the letter D followed by zero or more blanks, followed by a signed-digit-string.

An exponent containing a D is processed identically to an exponent containing an E.

NOTE 10.10

If the input field does not contain an exponent, the effect is as if the basic form were followed by an exponent
with a value of —k, where k is the established scale factor (10.8.5).

An input field that is an IEEE exceptional specification consists of optional blanks, followed by either

e an optional sign, followed by the string 'INF’ or the string INFINITY’, or

e an optional sign, followed by the string 'NAN’, optionally followed by zero or more alphanumeric characters
enclosed in parentheses,

optionally followed by blanks.

The value specified by form (1) is an IEEE infinity; this form shall not be used if the processor does not support
IEEE infinities for the input variable. The value specified by form (2) is an IEEE NaN; this form shall not be
used if the processor does not support IEEE NaNs for the input variable. The NaN value is a quiet NaN if the
only nonblank characters in the field are 'NAN’ or 'NAN()’; otherwise, the NaN value is processor-dependent.
The interpretation of a sign in a NaN input field is processor dependent.

For an internal value that is an IEEE infinity, the output field consists of blanks, if necessary, followed by a
minus sign for negative infinity or an optional plus sign otherwise, followed by the letters 'Inf’ or ’Infinity’, right
justified within the field. If w is less than 3, the field is filled with asterisks; otherwise, if w is less than 8, ’Inf’ is
produced.

For an internal value that is an IEEE NaN, the output field consists of blanks, if necessary, followed by the
letters 'NaN’ and optionally followed by one to w—>5 alphanumeric processor-dependent characters enclosed in
parentheses, right justified within the field. If w is less than 3, the field is filled with asterisks.

NOTE 10.11

The processor-dependent characters following ’NaN’ may convey additional information about that partic-
ular NaN.

For an internal value that is neither an IEEE infinity nor a NaN, the output field consists of blanks, if necessary,
followed by a minus sign if the internal value is negative, or an optional plus sign otherwise, followed by a string
of digits that contains a decimal symbol and represents the magnitude of the internal value, as modified by the
established scale factor and rounded (10.7.2.3.7) to d fractional digits. Leading zeros are not permitted except

248 Input/output editing 10.7.2.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

for an optional zero immediately to the left of the decimal symbol if the magnitude of the value in the output
field is less than one. The optional zero shall appear if there would otherwise be no digits in the output field.

10.7.2.3.3 E and D editing

The Ew.d, Dw.d, and Ew.d Ee edit descriptors indicate that the external field occupies w positions, the fractional
part of which consists of d digits, unless a scale factor greater than one is in effect, and the exponent part consists
of e digits. The e has no effect on input.

The form and interpretation of the input field is the same as for Fw.d editing (10.7.2.3.2).
For an internal value that is an IEEE infinity or NaN, the form of the output field is the same as for Fw.d.

For an internal value that is neither an IEEE infinity nor a NaN, the form of the output field for a scale factor
of zero is

[£][0].z122 ... zqexp
where:

e + signifies a plus sign or a minus sign;
e . signifies a decimal symbol (10.6);
® X1x5...x4 are the d most significant digits of the internal value after rounding (10.7.2.3.7);

ezp is a decimal exponent having one of the forms specified in table 10.1.

Table 10.1: E and D exponent forms

Edit Absolute Value Form of
Descriptor of Exponent Exponent!
Ew.d lexp| < 99 E£z129 or 2021 29
99 < ‘€I'p| <999 +z12923
Ew.d Ee lexp| < 10° —1 Edtzi2zo... 2
Dw.d lexp| < 99 D=z129 or Exzy 29
or £0z129
99 < |exp| < 999 +212023
(1) where each z is a digit.

The sign in the exponent is produced. A plus sign is produced if the exponent value is zero.

The scale factor k controls the decimal normalization (10.3.2, 10.8.5). If —d < k < 0, the output field contains
exactly |k| leading zeros and d — |k| significant digits after the decimal symbol. If 0 < k < d + 2, the output field
contains exactly k significant digits to the left of the decimal symbol and d — k + 1 significant digits to the right
of the decimal symbol. Other values of k£ are not permitted.

10.7.2.3.4 EN editing

The EN edit descriptor produces an output field in the form of a real number in engineering notation such that
the decimal exponent is divisible by three and the absolute value of the significand (R414) is greater than or
equal to 1 and less than 1000, except when the output value is zero. The scale factor has no effect on output.

The forms of the edit descriptor are ENw.d and ENw.d Ee indicating that the external field occupies w positions,
the fractional part of which consists of d digits and the exponent part consists of e digits.

The form and interpretation of the input field is the same as for Fw.d editing (10.7.2.3.2).

For an internal value that is an IEEE infinity or NaN, the form of the output field is the same as for Fw.d.

10.7.2.3 Input/output editing 249

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

5 For an internal value that is neither an IEEE infinity nor a NaN, the form of the output field is
6 [+£] yyy . z122...24€xD
7 where:

e =+ signifies a plus sign or a minus sign;

e yyy are the 1 to 3 decimal digits representative of the most significant digits of the internal value after
rounding (10.7.2.3.7);

e yyy is an integer such that 1 < yyy < 1000 or, if the output value is zero, yyy = 0;

e . signifies a decimal symbol (10.6);

® r1x5...x4 are the d next most significant digits of the internal value after rounding;

e exp is a decimal exponent, divisible by three, having one of the forms specified in table 10.2.

Table 10.2: EN exponent forms

Edit Absolute Value Form of
Descriptor of Exponent Exponent!
ENw.d lexp| < 99 E#£z129 or 202129
99 < |exp| < 999 +212023
ENw.d Ee | |exp| <10°—1 Efziza... 2
(1) where each z is a digit.

8 The sign in the exponent is produced. A plus sign is produced if the exponent value is zero.

NOTE 10.12
Examples:
Internal Value Output field Using SS, EN12.3
6.421 6.421E+00
=58 -500.000E-03
.00217 2.170E-03
4721.3 4.721E+03

10.7.2.3.5 ES editing

1 The ES edit descriptor produces an output field in the form of a real number in scientific notation such that the
absolute value of the significand (R414) is greater than or equal to 1 and less than 10, except when the output
value is zero. The scale factor has no effect on output.

2 The forms of the edit descriptor are ESw.d and ESw.d Ee indicating that the external field occupies w positions,
the fractional part of which consists of d digits and the exponent part consists of e digits.

3 The form and interpretation of the input field is the same as for Fw.d editing (10.7.2.3.2).

4 For an internal value that is an IEEE infinity or NaN, the form of the output field is the same as for Fw.d.
5 For an internal value that is neither an IEEE infinity nor a NaN, the form of the output field is

6 [£]y. z122...29e2D

7 where:

e + signifies a plus sign or a minus sign;
e y is a decimal digit representative of the most significant digit of the internal value after rounding (10.7.2.3.7);
e . signifies a decimal symbol (10.6);

250 Input/output editing 10.7.2.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

® 11x5...x4 are the d next most significant digits of the internal value after rounding;
e exp is a decimal exponent having one of the forms specified in table 10.3.

Table 10.3: ES exponent forms

Edit Absolute Value Form of
Descriptor of Exponent Exponent?
ESw.d lexp| < 99 E#£z129 or £021 29
99 < |exp| < 999 +212923
ESw.d Ee lexp] < 10° —1 Efziza... 2
(1) where each z is a digit.

8 The sign in the exponent is produced. A plus sign is produced if the exponent value is zero.

NOTE 10.13
Examples:
Internal Value Output field Using SS, ES12.3
6.421 6.421E+00
=5 -5.000E-01
.00217 2.170E-03
4721.3 4.721E+03

10.7.2.3.6 Complex editing

1 A complex datum consists of a pair of separate real data. The editing of a scalar datum of complex type is
specified by two edit descriptors each of which specifies the editing of real data. The first of the edit descriptors
specifies the real part; the second specifies the imaginary part. The two edit descriptors may be different. Control
and character string edit descriptors may be processed between the edit descriptor for the real part and the edit
descriptor for the imaginary part.

10.7.2.3.7 Rounding mode

1 The rounding mode can be specified by an OPEN statement (9.5.2), a data transfer input/output statement
(9.6.2.13), or an edit descriptor (10.8.7).

2 In what follows, the term “decimal value” means the exact decimal number as given by the character string, while
the term “internal value” means the number actually stored in the processor. For example, in dealing with the
decimal constant 0.1, the decimal value is the mathematical quantity 1/10, which has no exact representation
in binary form. Formatted output of real data involves conversion from an internal value to a decimal value;
formatted input involves conversion from a decimal value to an internal value.

3 When the I/O rounding mode is UP, the value resulting from conversion shall be the smallest representable value
that is greater than or equal to the original value. When the I/O rounding mode is DOWN;, the value resulting
from conversion shall be the largest representable value that is less than or equal to the original value. When the
I/0 rounding mode is ZERQO, the value resulting from conversion shall be the value closest to the original value
and no greater in magnitude than the original value. When the I/O rounding mode is NEAREST, the value
resulting from conversion shall be the closer of the two nearest representable values if one is closer than the other.
If the two nearest representable values are equidistant from the original value, it is processor dependent which
one of them is chosen. When the I/O rounding mode is COMPATIBLE, the value resulting from conversion shall
be the closer of the two nearest representable values or the value away from zero if halfway between them. When
the I/O rounding mode is PROCESSOR_DEFINED, rounding during conversion shall be a processor-dependent
default mode, which may correspond to one of the other modes.

4 On processors that support IEEE rounding on conversions, NEAREST shall correspond to round to nearest, as

10.7.2.3 Input/output editing 251

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

specified in the IEEE International Standard.

NOTE 10.14

On processors that support IEEE rounding on conversions, the I/O rounding modes COMPATIBLE and
NEAREST will produce the same results except when the datum is halfway between the two representable
values. In that case, NEAREST will pick the even value, but COMPATIBLE will pick the value away from
zero. The I/0 rounding modes UP, DOWN, and ZERO have the same effect as those specified in the IEEE
International Standard for round toward +oo, round toward —oo, and round toward 0, respectively.

10.7.2.4 B, O, and Z editing

The Bw, Bw.m, Ow, Ow.m, Zw, and Zw.m edit descriptors indicate that the field to be edited occupies w
positions, except when w is zero. When w is zero, the processor selects the field width. On input, w shall not be
zero. The corresponding input/output list item shall be of type integer, real, or complex.

On input, m has no effect.

In the input field for the B, O, and Z edit descriptors the character string shall consist of binary, octal, or
hexadecimal digits (as in R463, R464, R465) in the respective input field. The lower-case hexadecimal digits a
through f in a hexadecimal input field are equivalent to the corresponding upper-case hexadecimal digits.

The value is INT (X) if the input list item is of type integer and REAL (X) if the input list item is of type real
or complex, where X is a boz-literal-constant that specifies the same bit sequence as the digits of the input field.

The output field for the Bw, Ow, and Zw descriptors consists of zero or more leading blanks followed by the
internal value in a form identical to the digits of a binary, octal, or hexadecimal constant, respectively, that
specifies the same bit sequence but without leading zero bits.

NOTE 10.15
A binary, octal, or hexadecimal constant always consists of at least one digit or hexadecimal digit.

R1021 hex-digit-string is hex-digit | hex-digit | ...

The output field for the Bw.m, Ow.m, and Zw.m edit descriptor is the same as for the Bw, Ow, and Zw edit
descriptor, except that the digit-string or hex-digit-string consists of at least m digits. If necessary, sufficient
leading zeros are included to achieve the minimum of m digits. The value of m shall not exceed the value of w,
except when w is zero. If m is zero and the internal value consists of all zero bits, the output field consists of
only blank characters. When m and w are both zero, and the internal value consists of all zero bits, one blank
character is produced.

10.7.3 Logical editing

The Lw edit descriptor indicates that the field occupies w positions. The specified input/output list item shall
be of type logical. The G edit descriptor also may be used to edit logical data (10.7.5.3).

The input field consists of optional blanks, optionally followed by a period, followed by a T for true or F for false.
The T or F may be followed by additional characters in the field, which are ignored.

A lower-case letter is equivalent to the corresponding upper-case letter in a logical input field.

NOTE 10.16
The logical constants .TRUE. and .FALSE. are acceptable input forms.

The output field consists of w—1 blanks followed by a T or F, depending on whether the internal value is true or
false, respectively.

252 Input/output editing 10.7.2.4

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

10.7.4 Character editing

The A[w] edit descriptor is used with an input/output list item of type character. The G edit descriptor also may
be used to edit character data (10.7.5.4). The kind type parameter of all characters transferred and converted
under control of one A or G edit descriptor is implied by the kind of the corresponding list item.

If a field width w is specified with the A edit descriptor, the field consists of w characters. If a field width w is
not specified with the A edit descriptor, the number of characters in the field is the length of the corresponding
list item, regardless of the value of the kind type parameter.

Let len be the length of the input/output list item. If the specified field width w for an A edit descriptor
corresponding to an input item is greater than or equal to len, the rightmost len characters will be taken from the
input field. If the specified field width w is less than len, the w characters will appear left justified with len—w
trailing blanks in the internal value.

If the specified field width w for an A edit descriptor corresponding to an output item is greater than len, the
output field will consist of w—Ilen blanks followed by the len characters from the internal value. If the specified
field width w is less than or equal to len, the output field will consist of the leftmost w characters from the
internal value.

NOTE 10.17

For nondefault character types, the blank padding character is processor dependent.

If the file is connected for stream access, the output may be split across more than one record if it contains
newline characters. A newline character is a nonblank character returned by the intrinsic function NEW _LINE.
Beginning with the first character of the output field, each character that is not a newline is written to the current
record in successive positions; each newline character causes file positioning at that point as if by slash editing
(the current record is terminated at that point, a new empty record is created following the current record, this
new record becomes the last and current record of the file, and the file is positioned at the beginning of this new
record).

NOTE 10.18

If the intrinsic function NEW _LINE returns a blank character for a particular character kind, then the
processor does not support using a character of that kind to cause record termination in a formatted stream
file.

10.7.5 Generalized editing
10.7.5.1 Overview

The Gw, Gw.d and Gw.d Ee edit descriptors are used with an input/output list item of any intrinsic type. When
w 18 nonzero, these edit descriptors indicate that the external field occupies w positions; for real or complex data
the fractional part consists of a maximum of d digits and the exponent part consists of e digits. When these
edit descriptors are used to specify the input/output of integer, logical, or character data, d and e have no effect.
When w is zero the processor selects the field width. On input, w shall not be zero.

10.7.5.2 Generalized numeric editing

When used to specify the input/output of integer, real, and complex data, the Gw, Gw.d and Gw.d Ee edit
descriptors follow the general rules for numeric editing (10.7.2).

NOTE 10.19
The Gw.d Ee edit descriptor follows any additional rules for the Ew.d Ee edit descriptor.

10.7.4 Input/output editing 253

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

10.7.5.2.1 Generalized integer editing

1 When used to specify the input/output of integer data, the Gw.d and Gw.d Ee edit descriptors follow the rules
for the Iw edit descriptor (10.7.2.2), except that w shall not be zero. When used to specify the output of integer
data, the GO edit descriptor follows the rules for the 10 edit descriptor.

10.7.5.2.2 Generalized real and complex editing
1 The form and interpretation of the input field is the same as for Fw.d editing (10.7.2.3.2).

2 When used to specify the output of real or complex data, the GO edit descriptor follows the rules for the ESw.d
Ee edit descriptor. Reasonable processor-dependent values of w, d, and e are used with each output value.

3 For an internal value that is an IEEE infinity or NaN, the form of the output field for the Gw.d and Gw.d Ee
edit descriptors is the same as for Fw.d.

4 Otherwise, the method of representation in the output field depends on the magnitude of the internal value being
edited. Let N be the magnitude of the internal value and r be the rounding mode value defined in the table
below. If 0 < N < 0.1 —r x 10791 or N > 10 — r, or N is identically 0 and d is 0, Gw.d output editing is the
same as k PEw.d output editing and Gw.d Ee output editing is the same as £k PEw.d Ee output editing, where
k is the scale factor (10.8.5) currently in effect. If 0.1 —r x 107971 < N < 10¢ — 7 or N is identically 0 and d is
not zero, the scale factor has no effect, and the value of N determines the editing as follows:

Magnitude of Internal Value Equivalent Conversion
N=0 F(w—n).(d — 1), n(’b’)
01-rx107 1< N<1—-rx107¢ F(w—n).d, n(’b’)
1—rx1079 < N <10 —r x 10791 F(w—n).(d — 1), n(’b)
10 —7 x 1074 < N < 100 — r x 1074+2 F(w—n).(d —2), n(’b’)
10972 — 7 x 1072 < N < 10971 —r x 1071 F(w—n).1, n(’b")
10971 —r x 107V < N <107 —r F(w—n).0, n(’b’)

5 where b is a blank, n is 4 for Gw.d and e + 2 for Gw.d Ee, and r is defined for each rounding mode as follows:

I/0O Rounding Mode r
COMPATIBLE 0.5

0.5 if the higher value is even
NEAREST —0.5 if the lower value is even
UP 1
DOWN 0

1 if internal value is negative
0 if internal value is positive

ZERO

6 The value of w—n shall be positive

NOTE 10.20

The scale factor has no effect on output unless the magnitude of the datum to be edited is outside the range
that permits effective use of F editing.

10.7.5.3 Generalized logical editing

1 When used to specify the input/output of logical data, the Gw.d and Gw.d Ee edit descriptors follow the rules
for the Lw edit descriptor (10.7.3). When used to specify the output of logical data, the GO edit descriptor follows

254 Input/output editing 10.7.5.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

the rules for the L1 edit descriptor.

10.7.5.4 Generalized character editing

When used to specify the input/output of character data, the Gw.d and Gw.d Ee edit descriptors follow the rules
for the Aw edit descriptor (10.7.4). When used to specify the output of character data, the GO edit descriptor
follows the rules for the A edit descriptor with no field width.

10.7.6 User-defined derived-type editing

The DT edit descriptor allows a user-provided procedure to be used instead of the processor’s default input /output
formatting for processing a list item of derived type.

The DT edit descriptor may include a character literal constant. The character value “DT” concatenated with the
character literal constant is passed to the defined input/output procedure as the iotype argument (9.6.4.7). The
v values of the edit descriptor are passed to the defined input/output procedure as the v_list array argument.

NOTE 10.21
For the edit descriptor DT’Link List’(10, 4, 2), iotype is "DTLink List" and v_list is [10, 4, 2]. ‘

If a derived-type variable or value corresponds to a DT edit descriptor, there shall be an accessible interface to
a corresponding defined input/output procedure for that derived type (9.6.4.7). A DT edit descriptor shall not
correspond to a list item that is not of a derived type.

10.8 Control edit descriptors

10.8.1 Position editing

The T, TL, TR, and X edit descriptors specify the position at which the next character will be transmitted to or
from the record. If any character skipped by a T, TL, TR, or X edit descriptor is of type nondefault character,
and the unit is a default character internal file or an external non-Unicode file, the result of that position editing
is processor dependent.

The position specified by a T edit descriptor may be in either direction from the current position. On input, this
allows portions of a record to be processed more than once, possibly with different editing.

The position specified by an X edit descriptor is forward from the current position. On input, a position beyond
the last character of the record may be specified if no characters are transmitted from such positions.

NOTE 10.22
An nX edit descriptor has the same effect as a TRn edit descriptor.

On output, a T, TL, TR, or X edit descriptor does not by itself cause characters to be transmitted and therefore
does not by itself affect the length of the record. If characters are transmitted to positions at or after the position
specified by a T, TL, TR, or X edit descriptor, positions skipped and not previously filled are filled with blanks.
The result is as if the entire record were initially filled with blanks.

On output, a character in the record may be replaced. However, a T, TL, TR, or X edit descriptor never directly
causes a character already placed in the record to be replaced. Such edit descriptors may result in positioning
such that subsequent editing causes a replacement.

10.8.1.1 T, TL, and TR editing

The left tab limit affects file positioning by the T and TL edit descriptors. Immediately prior to nonchild data
transfer, the left tab limit becomes defined as the character position of the current record or the current position

10.7.5.4 Input/output editing 255

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

of the stream file. If, during data transfer, the file is positioned to another record, the left tab limit becomes
defined as character position one of that record.

The Tn edit descriptor indicates that the transmission of the next character to or from a record is to occur at
the nth character position of the record, relative to the left tab limit.

The TLn edit descriptor indicates that the transmission of the next character to or from the record is to occur at
the character position n characters backward from the current position. However, if n is greater than the difference
between the current position and the left tab limit, the TLn edit descriptor indicates that the transmission of
the next character to or from the record is to occur at the left tab limit.

The TRn edit descriptor indicates that the transmission of the next character to or from the record is to occur
at the character position n characters forward from the current position.

NOTE 10.23
The n in a Tn, TLn, or TRn edit descriptor shall be specified and shall be greater than zero.

10.8.1.2 X editing
The nX edit descriptor indicates that the transmission of the next character to or from a record is to occur at

the character position n characters forward from the current position.

NOTE 10.24
’ The n in an nX edit descriptor shall be specified and shall be greater than zero.

10.8.2 Slash editing

The slash edit descriptor indicates the end of data transfer to or from the current record.

On input from a file connected for sequential or stream access, the remaining portion of the current record is
skipped and the file is positioned at the beginning of the next record. This record becomes the current record.
On output to a file connected for sequential or stream access, a new empty record is created following the current
record; this new record then becomes the last and current record of the file and the file is positioned at the
beginning of this new record.

For a file connected for direct access, the record number is increased by one and the file is positioned at the
beginning of the record that has that record number, if there is such a record, and this record becomes the
current record.

NOTE 10.25

A record that contains no characters may be written on output. If the file is an internal file or a file
connected for direct access, the record is filled with blank characters.

An entire record may be skipped on input.

The repeat specification is optional in the slash edit descriptor. If it is not specified, the default value is one.

10.8.3 Colon editing

The colon edit descriptor terminates format control if there are no more effective items in the input/output list
(9.6.3). The colon edit descriptor has no effect if there are more effective items in the input/output list.

10.8.4 SS, SP, and S editing
The SS, SP, and S edit descriptors temporarily change (9.5.2) the sign mode (9.5.6.17, 9.6.2.14) for the connection.

The edit descriptors SS, SP, and S set the sign mode corresponding to the SIGN= specifier values SUPPRESS,
PLUS, and PROCESSOR_DEFINED, respectively.

256 Input/output editing 10.8.1.2

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

The sign mode controls optional plus characters in numeric output fields. When the sign mode is PLUS, the
processor shall produce a plus sign in any position that normally contains an optional plus sign. When the
sign mode is SUPPRESS, the processor shall not produce a plus sign in such positions. When the sign mode is
PROCESSOR_DEFINED, the processor has the option of producing a plus sign or not in such positions, subject
to 10.7.2(5).

The SS, SP, and S edit descriptors affect only I, F, E, EN, ES, D, and G editing during the execution of an output
statement. The SS, SP, and S edit descriptors have no effect during the execution of an input statement.

10.8.5 P editing

The kP edit descriptor temporarily changes (9.5.2) the scale factor for the connection to k. The scale factor
affects the editing of F, E, EN, ES, D, and G edit descriptors for numeric quantities.

The scale factor k affects the appropriate editing in the following manner.

e On input, with F, E; EN, ES, D, and G editing (provided that no exponent exists in the field) and F output
editing, the scale factor effect is that the externally represented number equals the internally represented
number multiplied by 10*.

e On input, with F, E, EN, ES, D, and G editing, the scale factor has no effect if there is an exponent in the
field.

e On output, with E and D editing, the significand (R414) part of the quantity to be produced is multiplied
by 10* and the exponent is reduced by k.

e On output, with G editing, the effect of the scale factor is suspended unless the magnitude of the datum
to be edited is outside the range that permits the use of F editing. If the use of E editing is required, the
scale factor has the same effect as with E output editing.

e On output, with EN and ES editing, the scale factor has no effect.

If UP, DOWN, ZERO, or NEAREST I/0O rounding mode is in effect,

e on input, the scale factor is applied to the external decimal value and then this is converted using the
current I/O rounding mode, and

e on output, the internal value is converted using the current I/O rounding mode and then the scale factor is
applied to the converted decimal value.

10.8.6 BN and BZ editing

The BN and BZ edit descriptors temporarily change (9.5.2) the blank interpretation mode (9.5.6.6, 9.6.2.6) for the
connection. The edit descriptors BN and BZ set the blank interpretation mode corresponding to the BLANK=
specifier values NULL and ZERO, respectively.

The blank interpretation mode controls the interpretation of nonleading blanks in numeric input fields. Such
blank characters are interpreted as zeros when the blank interpretation mode has the value ZERO; they are
ignored when the blank interpretation mode has the value NULL. The effect of ignoring blanks is to treat the
input field as if blanks had been removed, the remaining portion of the field right justified, and the blanks replaced
as leading blanks. However, a field containing only blanks has the value zero.

The blank interpretation mode affects only numeric editing (10.7.2) and generalized numeric editing (10.7.5.2)
on input. It has no effect on output.

10.8.7 RU, RD, RZ, RN, RC, and RP editing

The round edit descriptors temporarily change (9.5.2) the connection’s I/O rounding mode (9.5.6.16, 9.6.2.13,
10.7.2.3.7). The round edit descriptors RU, RD, RZ, RN, RC, and RP set the I/O rounding mode corresponding to
the ROUND= specifier values UP, DOWN, ZERO, NEAREST, COMPATIBLE, and PROCESSOR_DEFINED,
respectively. The I/O rounding mode affects the conversion of real and complex values in formatted input/output.
It affects only D, E, EN, ES, F, and G editing.

10.8.5 Input/output editing 257

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

10.8.8 DC and DP editing

The decimal edit descriptors temporarily change (9.5.2) the decimal edit mode (9.5.6.7, 9.6.2.7, 10.6) for the
connection. The edit descriptors DC and DP set the decimal edit mode corresponding to the DECIMAL=
specifier values COMMA and POINT, respectively.

The decimal edit mode controls the representation of the decimal symbol (10.6) during conversion of real and
complex values in formatted input/output. The decimal edit mode affects only D, E; EN, ES, F, and G editing.

10.9 Character string edit descriptors

A character string edit descriptor shall not be used on input.

The character string edit descriptor causes characters to be written from the enclosed characters of the edit
descriptor itself, including blanks. For a character string edit descriptor, the width of the field is the number of
characters between the delimiting characters. Within the field, two consecutive delimiting characters are counted
as a single character.

NOTE 10.26
’A delimiter for a character string edit descriptor is either an apostrophe or quote.

10.10 List-directed formatting
10.10.1 General

List-directed input/output allows data editing according to the type of the list item instead of by a format
specification. It also allows data to be free-field, that is, separated by commas (or semicolons) or blanks.

10.10.2 Values and value separators

The characters in one or more list-directed records constitute a sequence of values and value separators. The end
of a record has the same effect as a blank character, unless it is within a character constant. Any sequence of two
or more consecutive blanks is treated as a single blank, unless it is within a character constant.

Each value is either a null value, ¢, r*c, or r*, where c is a literal constant, optionally signed if integer or real,
or an undelimited character constant and r is an unsigned, nonzero, integer literal constant. Neither ¢ nor r
shall have kind type parameters specified. The constant ¢ is interpreted as though it had the same kind type
parameter as the corresponding list item. The r*¢ form is equivalent to r successive appearances of the constant
¢, and the r* form is equivalent to r successive appearances of the null value. Neither of these forms may contain
embedded blanks, except where permitted within the constant c.

A value separator is

e a comma optionally preceded by one or more contiguous blanks and optionally followed by one or more
contiguous blanks, unless the decimal edit mode is COMMA, in which case a semicolon is used in place of
the comma,

e a slash optionally preceded by one or more contiguous blanks and optionally followed by one or more
contiguous blanks, or

e one or more contiguous blanks between two nonblank values or following the last nonblank value, where a
nonblank value is a constant, an r*¢ form, or an r* form.

NOTE 10.27

Although a slash encountered in an input record is referred to as a separator, it actually causes termination
of list-directed and namelist input statements; it does not actually separate two values.

258 Input/output editing 10.8.8

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 10.28

If no list items are specified in a list-directed input/output statement, one input record is skipped or one
empty output record is written.

10.10.3 List-directed input

Input forms acceptable to edit descriptors for a given type are acceptable for list-directed formatting, except as
noted below. The form of the input value shall be acceptable for the type of the next effective item in the list.
Blanks are never used as zeros, and embedded blanks are not permitted in constants, except within character
constants and complex constants as specified below.

For the r*c¢ form of an input value, the constant c is interpreted as an undelimited character constant if the first
list item corresponding to this value is default, ASCII, or ISO 10646 character, there is a nonblank character
immediately after r*, and that character is not an apostrophe or a quotation mark; otherwise, ¢ is interpreted
as a literal constant.

NOTE 10.29

The end of a record has the effect of a blank, except when it appears within a character constant.

When the next effective item is of type integer, the value in the input record is interpreted as if an Iw edit
descriptor with a suitable value of w were used.

When the next effective item is of type real, the input form is that of a numeric input field. A numeric input field
is a field suitable for F editing (10.7.2.3.2) that is assumed to have no fractional digits unless a decimal symbol
appears within the field.

When the next effective item is of type complex, the input form consists of a left parenthesis followed by an
ordered pair of numeric input fields separated by a comma (if the decimal edit mode is POINT) or semicolon
(if the decimal edit mode is COMMA), and followed by a right parenthesis. The first numeric input field is the
real part of the complex constant and the second is the imaginary part. Each of the numeric input fields may be
preceded or followed by any number of blanks and ends of records. The end of a record may occur after the real
part or before the imaginary part.

When the next effective item is of type logical, the input form shall not include value separators among the
optional characters permitted for L editing.

When the next effective item is of type character, the input form consists of a possibly delimited sequence of zero
or more rep-chars whose kind type parameter is implied by the kind of the effective item. Character sequences
may be continued from the end of one record to the beginning of the next record, but the end of record shall
not occur between a doubled apostrophe in an apostrophe-delimited character sequence, nor between a doubled
quote in a quote-delimited character sequence. The end of the record does not cause a blank or any other
character to become part of the character sequence. The character sequence may be continued on as many
records as needed. The characters blank, comma, semicolon, and slash may appear in default, ASCII, or ISO
10646 character sequences.

If the next effective item is default, ASCII, or ISO 10646 character and

e the character sequence does not contain value separators,
e the character sequence does not cross a record boundary,

the first nonblank character is not a quotation mark or an apostrophe,

the leading characters are not digits followed by an asterisk, and

the character sequence contains at least one character,

the delimiting apostrophes or quotation marks are not required. If the delimiters are omitted, the character
sequence is terminated by the first blank, comma (if the decimal edit mode is POINT), semicolon (if the decimal

10.10.3 Input/output editing 259

10

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

edit mode is COMMA), slash, or end of record; in this case apostrophes and quotation marks within the datum
are not to be doubled.

Let len be the length of the next effective item, and let w be the length of the character sequence. If len is less
than or equal to w, the leftmost len characters of the sequence are transmitted to the next effective item. If len
is greater than w, the sequence is transmitted to the leftmost w characters of the next effective item and the
remaining len—w characters of the next effective item are filled with blanks. The effect is as though the sequence
were assigned to the next effective item in an intrinsic assignment statement (7.2.1.3).

10.10.3.1 Null values

A null value is specified by

e the r* form,
e no characters between consecutive value separators, or

e no characters before the first value separator in the first record read by each execution of a list-directed
input statement.

NOTE 10.30

The end of a record following any other value separator, with or without separating blanks, does not specify
a null value in list-directed input.

A null value has no effect on the definition status of the next effective item. A null value shall not be used for
either the real or imaginary part of a complex constant, but a single null value may represent an entire complex
constant.

A slash encountered as a value separator during execution of a list-directed input statement causes termination
of execution of that input statement after the transference of the previous value. Any characters remaining in the
current record are ignored. If there are additional items in the input list, the effect is as if null values had been
supplied for them. Any do-variable in the input list becomes defined as if enough null values had been supplied
for any remaining input list items.

NOTE 10.31
All blanks in a list-directed input record are considered to be part of some value separator except for

e blanks embedded in a character sequence,
e embedded blanks surrounding the real or imaginary part of a complex constant, and

e leading blanks in the first record read by each execution of a list-directed input statement, unless
immediately followed by a slash or comma.

NOTE 10.32
List-directed input example:

INTEGER I; REAL X (8); CHARACTER (11) P;
COMPLEX Z; LOGICAL G

READ *, I, X, P, Z, G

The input data records are:

12345,12345, ,2x1.5,4%*
ISN’T_BOB’S, (123,0), . TEXAS$

The results are:

260 Input/output editing 10.10.3.1

10

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 10.32 (cont.)

Variable Value
12345
12345.0
unchanged

(1)
(2)
(3) 1.5
(4)
(5)

1.5

- X (8) unchanged
ISN'T_BOB’S
(123.0,0.0)
true

QN T < <

10.10.4 List-directed output

The form of the values produced is the same as that required for input, except as noted otherwise. With the
exception of adjacent undelimited character sequences, the values are separated by one or more blanks or by
a comma, or a semicolon if the decimal edit mode is comma, optionally preceded by one or more blanks and
optionally followed by one or more blanks.

The processor may begin new records as necessary, but the end of record shall not occur within a constant except
as specified for complex constants and character sequences. The processor shall not insert blanks within character
sequences or within constants, except as specified for complex constants.

Logical output values are T for the value true and F for the value false.
Integer output constants are produced with the effect of an Iw edit descriptor.

Real constants are produced with the effect of either an F edit descriptor or an E edit descriptor, depending on
the magnitude z of the value and a range 10% < z < 109, where d; and d are processor-dependent integers. If
the magnitude z is within this range or is zero, the constant is produced using 0PFw.d; otherwise, 1IPEw.d Ee
is used.

For numeric output, reasonable processor-dependent values of w, d, and e are used for each of the numeric
constants output.

Complex constants are enclosed in parentheses with a separator between the real and imaginary parts, each
produced as defined above for real constants. The separator is a comma if the decimal edit mode is POINT; it
is a semicolon if the decimal edit mode is COMMA. The end of a record may occur between the separator and
the imaginary part only if the entire constant is as long as, or longer than, an entire record. The only embedded
blanks permitted within a complex constant are between the separator and the end of a record and one blank at
the beginning of the next record.

Character sequences produced when the delimiter mode has a value of NONE

e are not delimited by apostrophes or quotation marks,
e are not separated from each other by value separators,

e have each internal apostrophe or quotation mark represented externally by one apostrophe or quotation
mark, and

e have a blank character inserted by the processor at the beginning of any record that begins with the
continuation of a character sequence from the preceding record.

Character sequences produced when the delimiter mode has a value of QUOTE are delimited by quotes, are
preceded and followed by a value separator, and have each internal quote represented on the external medium by
two contiguous quotes.

Character sequences produced when the delimiter mode has a value of APOSTROPHE are delimited by apos-

10.10.4 Input/output editing 261

11

12

13

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

trophes, are preceded and followed by a value separator, and have each internal apostrophe represented on the
external medium by two contiguous apostrophes.

If two or more successive values in an output record have identical values, the processor has the option of producing
a repeated constant of the form r*c instead of the sequence of identical values.

Slashes, as value separators, and null values are not produced as output by list-directed formatting.
Except for continuation of delimited character sequences, each output record begins with a blank character.

NOTE 10.33

‘ The length of the output records is not specified and may be processor dependent.

10.11 Namelist formatting

10.11.1 General

Namelist input/output allows data editing with NAME=value subsequences. This facilitates documentation of
input and output files and more flexibility on input.

10.11.2 Name-value subsequences

The characters in one or more namelist records constitute a sequence of name-value subsequences, each of
which consists of an object designator followed by an equals and followed by one or more values and value
separators. The equals may optionally be preceded or followed by one or more contiguous blanks. The end of a
record has the same effect as a blank character, unless it is within a character constant. Any sequence of two or
more consecutive blanks is treated as a single blank, unless it is within a character constant.

The name may be any name in the namelist-group-object-list (5.6).

A value separator for namelist formatting is the same as for list-directed formatting (10.10).

10.11.3 Namelist input
10.11.3.1 Overall syntax

Input for a namelist input statement consists of

(1) optional blanks and namelist comments,

(2) the character & followed immediately by the namelist-group-name as specified in the NAMELIST
statement,

(3) one or more blanks,
(4) a sequence of zero or more name-value subsequences separated by value separators, and
(5) aslash to terminate the namelist input.

NOTE 10.34

A slash encountered in a namelist input record causes the input statement to terminate. A slash cannot be
used to separate two values in a namelist input statement.

In each name-value subsequence, the name shall be the name of a namelist group object list item with an optional
qualification and the name with the optional qualification shall not be a zero-sized array, a zero-sized array section,
or a zero-length character string. The optional qualification, if any, shall not contain a vector subscript.

A group name or object name is without regard to case.

262 Input/output editing 10.11

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

10.11.3.2 Namelist group object names

Within the input data, each name shall correspond to a particular namelist group object name. Subscripts,
strides, and substring range expressions used to qualify group object names shall be optionally signed integer
literal constants with no kind type parameters specified. If a namelist group object is an array, the input record
corresponding to it may contain either the array name or the designator of a subobject of that array, using the
syntax of object designators (R601). If the namelist group object name is the name of a variable of derived type,
the name in the input record may be either the name of the variable or the designator of one of its components,
indicated by qualifying the variable name with the appropriate component name. Successive qualifications may
be applied as appropriate to the shape and type of the variable represented.

The order of names in the input records need not match the order of the namelist group object items. The input
records need not contain all the names of the namelist group object items. The definition status of any names
from the namelist-group-object-list that do not occur in the input record remains unchanged. In the input record,
each object name or subobject designator may be preceded and followed by one or more optional blanks but shall
not contain embedded blanks.

10.11.3.3 Namelist group object list items

The name-value subsequences are evaluated serially, in left-to-right order. A namelist group object designator
may appear in more than one name-value sequence.

When the name in the input record represents an array variable or a variable of derived type, the effect is as
if the variable represented were expanded into a sequence of scalar list items, in the same way that formatted
input/output list items are expanded (9.6.3). Each input value following the equals shall then be acceptable to
format specifications for the type of the list item in the corresponding position in the expanded sequence, except
as noted in this subclause. The number of values following the equals shall not exceed the number of list items
in the expanded sequence, but may be less; in the latter case, the effect is as if sufficient null values had been
appended to match any remaining list items in the expanded sequence.

NOTE 10.35

For example, if the name in the input record is the name of an integer array of size 100, at most 100 values,
each of which is either a digit string or a null value, may follow the equals; these values would then be
assigned to the elements of the array in array element order.

A slash encountered as a value separator during the execution of a namelist input statement causes termination
of execution of that input statement after transference of the previous value. If there are additional items in the
namelist group object being transferred, the effect is as if null values had been supplied for them.

A namelist comment may appear after any value separator except a slash. A namelist comment is also permitted
to start in the first nonblank position of an input record except within a character literal constant.

Successive namelist records are read by namelist input until a slash is encountered; the remainder of the record
is ignored and need not follow the rules for namelist input values.

10.11.3.4 Namelist input values

Each value is either a null value (10.11.3.5), ¢, r*¢, or r*, where ¢ is a literal constant, optionally signed if integer
or real, and r is an unsigned, nonzero, integer literal constant. A kind type parameter shall not be specified for ¢
or 7. The constant c is interpreted as though it had the same kind type parameter as the corresponding effective
item. The r*c form is equivalent to r successive appearances of the constant ¢, and the r* form is equivalent to
r successive null values. Neither of these forms may contain embedded blanks, except where permitted within
the constant c.

The datum ¢ (10.11) is any input value acceptable to format specifications for a given type, except for a restriction
on the form of input values corresponding to list items of types logical, integer, and character as specified in this
subclause. The form of a real or complex value is dependent on the decimal edit mode in effect (10.6). The form

10.11.3.2 Input/output editing 263

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

of an input value shall be acceptable for the type of the namelist group object list item. The number and forms
of the input values that may follow the equals in a name-value subsequence depend on the shape and type of
the object represented by the name in the input record. When the name in the input record is that of a scalar
variable of an intrinsic type, the equals shall not be followed by more than one value. Blanks are never used
as zeros, and embedded blanks are not permitted in constants except within character constants and complex
constants as specified in this subclause.

When the next effective item is of type real, the input form of the input value is that of a numeric input field. A
numeric input field is a field suitable for F editing (10.7.2.3.2) that is assumed to have no fractional digits unless
a decimal symbol appears within the field.

When the next effective item is of type complex, the input form of the input value consists of a left parenthesis
followed by an ordered pair of numeric input fields separated by a comma (if the decimal edit mode is POINT) or
a semicolon (if the decimal edit mode is COMMA), and followed by a right parenthesis. The first numeric input
field is the real part of the complex constant and the second part is the imaginary part. Each of the numeric
input fields may be preceded or followed by any number of blanks and ends of records. The end of a record may
occur between the real part and the comma or semicolon, or between the comma or semicolon and the imaginary
part.

When the next effective item is of type logical, the input form of the input value shall not include equals or value
separators among the optional characters permitted for L editing (10.7.3).

When the next effective item is of type integer, the value in the input record is interpreted as if an Iw edit
descriptor with a suitable value of w were used.

When the next effective item is of type character, the input form consists of a delimited sequence of zero or more
rep-chars whose kind type parameter is implied by the kind of the corresponding list item. Such a sequence
may be continued from the end of one record to the beginning of the next record, but the end of record shall
not occur between a doubled apostrophe in an apostrophe-delimited sequence, nor between a doubled quote in a
quote-delimited sequence. The end of the record does not cause a blank or any other character to become part
of the sequence. The sequence may be continued on as many records as needed. The characters blank, comma,
semicolon, and slash may appear in such character sequences.

NOTE 10.36

A character sequence corresponding to a namelist input item of character type shall be delimited either with
apostrophes or with quotes. The delimiter is required to avoid ambiguity between undelimited character
sequences and object names. The value of the DELIM= specifier, if any, in the OPEN statement for an
external file is ignored during namelist input (9.5.6.8).

Let len be the length of the next effective item, and let w be the length of the character sequence. If len is less
than or equal to w, the leftmost len characters of the sequence are transmitted to the next effective item. If len
is greater than w, the constant is transmitted to the leftmost w characters of the next effective item and the
remaining len—w characters of the next effective item are filled with blanks. The effect is as though the sequence
were assigned to the next effective item in an intrinsic assignment statement (7.2.1.3).

10.11.3.5 Null values

A null value is specified by

e the r* form,
e blanks between two consecutive nonblank value separators following an equals,
e zero or more blanks preceding the first value separator and following an equals, or

e two consecutive nonblank value separators.

A null value has no effect on the definition status of the corresponding input list item. If the namelist group
object list item is defined, it retains its previous value; if it is undefined, it remains undefined. A null value shall

264 Input/output editing 10.11.3.5

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

not be used as either the real or imaginary part of a complex constant, but a single null value may represent an
entire complex constant.

NOTE 10.37

The end of a record following a value separator, with or without intervening blanks, does not specify a null
value in namelist input.

10.11.3.6 Blanks

All blanks in a namelist input record are considered to be part of some value separator except for

e blanks embedded in a character constant,
e embedded blanks surrounding the real or imaginary part of a complex constant,

e leading blanks following the equals unless followed immediately by a slash or comma, or a semicolon if the
decimal edit mode is comma, and

e blanks between a name and the following equals.

10.11.3.7 Namelist Comments

Except within a character literal constant, a “!” character after a value separator or in the first nonblank position
of a namelist input record initiates a comment. The comment extends to the end of the current input record and
may contain any graphic character in the processor-dependent character set. The comment is ignored. A slash
within the namelist comment does not terminate execution of the namelist input statement. Namelist comments
are not allowed in stream input because comments depend on record structure.

NOTE 10.38

Namelist input example:

INTEGER I; REAL X (8); CHARACTER (11) P; COMPLEX Z;
LOGICAL G

NAMELIST / TODAY / G, I, P, Z, X

READ (*, NML = TODAY)

The input data records are:

&TODAY I = 12345, X(1) 12345, X(3:4) = 2*1.5, I=6, ! This is a comment.

P = *’ISN’T_BOB’S’’, Z = (123,0)/

The results stored are:
Variable Value
I 6
X (1) 12345.0
X (2) unchanged
X (3) 1.5
X (4) 1.5
X (5) -X(8) unchanged
P ISN'T_BOB’S
7 (123.0,0.0)
G unchanged

10.11.3.6 Input/output editing 265

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

10.11.4 Namelist output
10.11.4.1 Form of namelist output

The form of the output produced is the same as that required for input, except for the forms of real, character,
and logical values. The name in the output is in upper case. With the exception of adjacent undelimited character
values, the values are separated by one or more blanks or by a comma, or a semicolon if the decimal edit mode
is COMMA, optionally preceded by one or more blanks and optionally followed by one or more blanks.

Namelist output shall not include namelist comments.

The processor may begin new records as necessary. However, except for complex constants and character values,
the end of a record shall not occur within a constant, character value, or name, and blanks shall not appear
within a constant, character value, or name.

NOTE 10.39
The length of the output records is not specified exactly and may be processor dependent.

10.11.4.2 Namelist output editing
Values in namelist output records are edited as for list-directed output (10.10.4).

NOTE 10.40

Namelist output records produced with a DELIM= specifier with a value of NONE and which contain a
character sequence might not be acceptable as namelist input records.

10.11.4.3 Namelist output records

If two or more successive values for the same namelist group item in an output record produced have identical
values, the processor has the option of producing a repeated constant of the form r*c instead of the sequence of
identical values.

The name of each namelist group object list item is placed in the output record followed by an equals and a list
of values of the namelist group object list item.

An ampersand character followed immediately by a namelist-group-name will be produced by namelist formatting
at the start of the first output record to indicate which particular group of data objects is being output. A slash
is produced by namelist formatting to indicate the end of the namelist formatting.

A null value is not produced by namelist formatting.

Except for new records created by explicit formatting within a defined output procedure or by continuation of
delimited character sequences, each output record begins with a blank character.

266 Input/output editing 10.11.4.1

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

11 Program units

11.1 Main program

A Fortran main program is a program unit that does not contain a SUBROUTINE, FUNCTION, MODULE,
SUBMODULE, or BLOCK DATA statement as its first statement.

R1101 main-program is [program-stmt]
[specification-part |
[execution-part |
[internal-subprogram-part |
end-program-stmt

R1102 program-stmt is PROGRAM program-name
R1103 end-program-stmt is END [PROGRAM [program-name | |

C1101 (R1101) The program-name may be included in the end-program-stmt only if the optional program-stmt
is used and, if included, shall be identical to the program-name specified in the program-stmdt.

NOTE 11.1

The program name is global to the program (16.2). For explanatory information about uses for the program
name, see subclause C.8.1.

NOTE 11.2

An example of a main program is:

PROGRAM ANALYZE

REAL A, B, C (10,10) ! Specification part

CALL FIND ! Execution part
CONTAINS

SUBROUTINE FIND ! Internal subprogram

END SUBROUTINE FIND
END PROGRAM ANALYZE

The main program may be defined by means other than Fortran; in that case, the program shall not contain a
main-program program unit.

A reference to a Fortran main-program shall not appear in any program unit in the program, including itself.

11.2 Modules

11.2.1 General

A module contains specifications and definitions that are to be accessible to other program units by use associ-
ation. A module that is provided as an inherent part of the processor is an intrinsic module. A nonintrinsic
module is defined by a module program unit or a means other than Fortran.

Procedures and types defined in an intrinsic module are not themselves intrinsic.

11 Program units 267

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

R1104 module is module-stmt
[specification-part |
[module-subprogram-part |
end-module-stmt

R1105 module-stmt is MODULE module-name
R1106 end-module-stmt is END [MODULE [module-name | |
R1107 module-subprogram-part is contains-stmt

[module-subprogram | ...

R1108 module-subprogram is function-subprogram
or subroutine-subprogram
or separate-module-subprogram

C1102 (R1104) If the module-name is specified in the end-module-stmt, it shall be identical to the module-name
specified in the module-stmit.

C1103 (R1104) A module specification-part shall not contain a stmi-function-stmt, an entry-stmt, or a format-stmdt.

NOTE 11.3
‘ The module name is global to the program (16.2).

NOTE 11.4

Although statement function definitions, ENTRY statements, and FORMAT statements shall not appear in
the specification part of a module, they may appear in the specification part of a module subprogram in
the module.

NOTE 11.5
’For a discussion of the impact of modules on dependent compilation, see subclause C.8.2. ‘

NOTE 11.6

’For examples of the use of modules, see subclause C.8.3. ‘

3 If a procedure declared in the scoping unit of a module has an implicit interface, it shall be given the EXTERNAL
attribute in that scoping unit; if it is a function, its type and type parameters shall be explicitly declared in a
type declaration statement in that scoping unit.

4 If an intrinsic procedure is declared in the scoping unit of a module, it shall explicitly be given the INTRINSIC
attribute in that scoping unit or be used as an intrinsic procedure in that scoping unit.

11.2.2 The USE statement and use association

1 The USE statement specifies use association. A USE statement is a reference to the module it specifies. At
the time a USE statement is processed, the public portions of the specified module shall be available. A module
shall not reference itself, either directly or indirectly. A submodule shall not reference its ancestor module by use
association, either directly or indirectly.

NOTE 11.7

It is possible for submodules with different ancestor modules to reference each others’ ancestor modules by
use association.

2 The USE statement provides the means by which a scoping unit or BLOCK construct accesses named data
objects, derived types, interface blocks, procedures, abstract interfaces, module procedure interfaces, generic

268 Program units 11.2.2

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

identifiers, and namelist groups in a module. The entities in the scoping unit or BLOCK construct are use
associated with the entities in the module. The accessed entities have the attributes specified in the module,
except that a local entity may have a different accessibility attribute or it may have the ASYNCHRONOUS or
VOLATILE attribute even if the associated module entity does not. The entities made accessible are identified by
the names or generic identifiers used to identify them in the module. By default, the local entities are identified
by the same identifiers in the scoping unit or BLOCK construct containing the USE statement, but it is possible
to specify that different local identifiers are used.

NOTE 11.8

The accessibility of module entities may be controlled by accessibility attributes (4.5.2.2, 5.3.2), and the
ONLY option of the USE statement. Definability of module entities can be controlled by the PROTECTED
attribute (5.3.15).

R1109 wuse-stmt is USE [[, module-nature | :: | module-name | , rename-list]
or USE [[, module-nature] :: | module-name , W
B ONLY : [only-list |

R1110 module-nature is INTRINSIC
or NON_INTRINSIC

R1111 rename is local-name => use-name
or OPERATOR (local-defined-operator) => R
B OPERATOR (use-defined-operator)

R1112 only is generic-spec
or only-use-name
or rename

R1113 only-use-name is wuse-name

C1104 If module-nature is INTRINSIC, module-name shall be the name of an intrinsic module.

C1105 (R1109) If module-nature is NON_INTRINSIC, module-name shall be the name of a nonintrinsic module.

C1107

()
()
C1106 (R1109) A scoping unit shall not access an intrinsic module and a nonintrinsic module of the same name.
(R1111) OPERATOR(use-defined-operator) shall not identify a type-bound generic interface.

()

C1108 (R1112) The generic-spec shall not identify a type-bound generic interface.

NOTE 11.9

The above two constraints do not prevent accessing a generic-spec that is declared by an interface block,
even if a type-bound generic interface has the same generic-spec.

C1109 (R1112) Each generic-spec shall be a public entity in the module.
C1110 (R1113) Each use-name shall be the name of a public entity in the module.

R1114 local-defined-operator is defined-unary-op
or defined-binary-op

R1115 wuse-defined-operator is defined-unary-op
or defined-binary-op

C1111 (R1115) Each use-defined-operator shall be a public entity in the module.

A use-stmt without a module-nature provides access either to an intrinsic or to a nonintrinsic module. If the
module-name is the name of both an intrinsic and a nonintrinsic module, the nonintrinsic module is accessed.

11.2.2 Program units 269

10

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

The USE statement without the ONLY option provides access to all public entities in the specified module.

A USE statement with the ONLY option provides access only to those entities that appear as generic-specs,
use-names, or use-defined-operators in the only-list.

More than one USE statement for a given module may appear in a specification part. If one of the USE statements
is without an ONLY option, all public entities in the module are accessible. If all the USE statements have ONLY
options, only those entities in one or more of the only-lists are accessible.

An accessible entity in the referenced module has one or more local identifiers. These identifiers are

e the identifier of the entity in the referenced module if that identifier appears as an only-use-name or as the
defined-operator of a generic-spec in any only for that module,

e cach of the local-names or local-defined-operators that the entity is given in any rename for that module,
and

e the identifier of the entity in the referenced module if that identifier does not appear as a use-name or
use-defined-operator in any rename for that module.

Two or more accessible entities, other than generic interfaces or defined operators, may have the same local
identifier only if the identifier is not used. Generic interfaces and defined operators are handled as described in
12.4.3.4. Except for these cases, the local identifier of any entity given accessibility by a USE statement shall
differ from the local identifiers of all other entities accessible to the scoping unit through USE statements and
otherwise.

NOTE 11.10

There is no prohibition against a use-name or use-defined-operator appearing multiple times in one USE
statement or in multiple USE statements involving the same module. As a result, it is possible for one
use-associated entity to be accessible by more than one local identifier.

The local identifier of an entity made accessible by a USE statement shall not appear in any other nonexecutable
statement that would cause any attribute (5.3) of the entity to be specified in the scoping unit that contains the
USE statement, except that it may appear in a PUBLIC or PRIVATE statement in the scoping unit of a module
and it may be given the ASYNCHRONOUS or VOLATILE attribute.

The appearance of such a local identifier in a PUBLIC statement in a module causes the entity accessible by
the USE statement to be a public entity of that module. If the identifier appears in a PRIVATE statement in
a module, the entity is not a public entity of that module. If the local identifier does not appear in either a
PUBLIC or PRIVATE statement, it assumes the default accessibility attribute (5.4.1) of that scoping unit.

NOTE 11.11

The constraints in subclauses 5.7.1, 5.7.2, and 5.6 prohibit the local-name from appearing as a common-block-
object in a COMMON statement, an equivalence-object in an EQUIVALENCE statement, or a namelist-
group-name in a NAMELIST statement, respectively. There is no prohibition against the local-name
appearing as a common-block-name or a namelist-group-object.

NOTE 11.12

For a discussion of the impact of the ONLY option and renaming on dependent compilation, see subclause
C.8.2.1.

NOTE 11.13

Examples:

USE STATS_LIB

provides access to all public entities in the module STATS_LIB.

270 Program units 11.2.2

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 11.13 (cont.)
USE MATH_LIB; USE STATS_LIB, SPROD => PROD

makes all public entities in both MATH_LIB and STATS_LIB accessible. If MATH_LIB contains an entity
called PROD, it is accessible by its own name while the entity PROD of STATS_LIB is accessible by the
name SPROD.

USE STATS_LIB, ONLY: YPROD; USE STATS_LIB, ONLY : PROD

makes public entities YPROD and PROD in STATS_LIB accessible.

USE STATS_LIB, ONLY : YPROD; USE STATS_LIB

makes all public entities in STATS_LIB accessible.

11.2.3 Submodules

A submodule is a program unit that extends a module or another submodule. The program unit that it extends
is its parent, and is specified by the parent-identifier in the submodule-stmt. A submodule is a child of its
parent. An ancestor of a submodule is its parent or an ancestor of its parent. A descendant of a module or
submodule is one of its children or a descendant of one of its children. The submodule identifier is the ordered
pair whose first element is the ancestor module name and whose second element is the submodule name.

NOTE 11.14

A module and its submodules stand in a tree-like relationship one to another, with the module at the root.
Therefore, a submodule has exactly one ancestor module and may optionally have one or more ancestor
submodules.

A submodule accesses the scoping unit of its parent by host association (16.5.1.4).

A submodule may provide implementations for module procedures, each of which is declared by a module proce-
dure interface body (12.4.3.2) within that submodule or one of its ancestors, and declarations and definitions of
other entities that are accessible by host association in its descendants.

R1116 submodule is submodule-stmt
[specification-part |
[module-subprogram-part |
end-submodule-stmt

R1117 submodule-stmt is SUBMODULE (parent-identifier) submodule-name
R1118 parent-identifier is ancestor-module-name [: parent-submodule-name |
R1119 end-submodule-stmt is END [SUBMODULE [submodule-name | |

C1112 (R1116) A submodule specification-part shall not contain a format-stmt, entry-stmt, or stmt-function-stmt.

C1113 (R1118) The ancestor-module-name shall be the name of a nonintrinsic module; the parent-submodule-
name shall be the name of a descendant of that module.

C1114 (R1116) If a submodule-name appears in the end-submodule-stmt, it shall be identical to the one in the
submodule-stmt.
11.3 Block data program units

A block data program unit is used to provide initial values for data objects in named common blocks.

11.2.3 Program units 271

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

R1120 block-data is block-data-stmt
[specification-part |
end-block-data-stmt

R1121 block-data-stmt is BLOCK DATA [block-data-name |
R1122 end-block-data-stmt is END [BLOCK DATA [block-data-name |]

C1115 (R1120) The block-data-name shall be included in the end-block-data-stmt only if it was provided in the
block-data-stmt and, if included, shall be identical to the block-data-name in the block-data-stmit.

C1116 (R1120) A block-data specification-part shall contain only derived-type definitions and ASYNCHRONOQUS,
BIND, COMMON, DATA, DIMENSION, EQUIVALENCE, IMPLICIT, INTRINSIC, PARAMETER,
POINTER, SAVE, TARGET, USE, VOLATILE, and type declaration statements.

C1117 (R1120) A type declaration statement in a block-data specification-part shall not contain ALLOCAT-
ABLE, EXTERNAL, or BIND attribute specifiers.

NOTE 11.15
‘For explanatory information about the uses for the block-data-name, see subclause C.8.1.

2 If an object in a named common block is initially defined, all storage units in the common block storage sequence
shall be specified even if they are not all initially defined. More than one named common block may have objects
initially defined in a single block data program unit.

NOTE 11.16

In the example

BLOCK DATA INIT
REAL A, B, C, D, E, F
COMMON /BLOCK1/ A, B, C, D
DATA A /1.2/, C /2.3/
COMMON /BLOCK2/ E, F
DATA F /6.5/

END BLOCK DATA INIT

common blocks BLOCK1 and BLOCK2 both have objects that are being initialized in a single block data
program unit. B, D, and E are not initialized but they need to be specified as part of the common blocks.

3 Only an object in a named common block may be initially defined in a block data program unit.

NOTE 11.17
Objects associated with an object in a common block are considered to be in that common block.

4 The same named common block shall not be specified in more than one block data program unit in a program.
5 There shall not be more than one unnamed block data program unit in a program.

NOTE 11.18

An example of a block data program unit is:

BLOCK DATA WORK
COMMON /WRKCOM/ A, B, C (10, 10)
REAL :: A, B, C
DATA A /1.0/, B /2.0/, C /100 * 0.0/

END BLOCK DATA WORK

272 Program units 11.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

12 Procedures

12.1 Concepts

The concept of a procedure was introduced in 2.3.3. This clause contains a complete description of procedures.
The actions specified by a procedure are performed when the procedure is invoked by execution of a reference to
it.

The sequence of actions encapsulated by a procedure has access to entities in the invoking scoping unit by way of
argument association (12.5.2). A name that appears as a dummy-arg-name in the SUBROUTINE, FUNCTION,
or ENTRY statement in the declaration of a procedure (R1235) is a dummy argument. Dummy arguments are
also specified for intrinsic procedures and procedures in intrinsic modules in Clauses 13, 14, and 15.

The entities in the invoking scoping unit are specified by actual arguments (R1223).

A procedure may also have access to entities in other scoping units, not necessarily the invoking scoping unit,
by use association (16.5.1.3), host association (16.5.1.4), storage association (16.5.3), or by reference to external
procedures (5.3.9).

12.2 Procedure classifications

12.2.1 Procedure classification by reference

The definition of a procedure specifies it to be a function or a subroutine. A reference to a function either appears
explicitly as a primary within an expression, or is implied by a defined operation (7.1.6) within an expression. A
reference to a subroutine is a CALL statement, a defined assignment statement (7.2.1.4), the appearance of an

object processed by defined input/output (9.6.4.7) in an input/output list, or finalization (4.5.6).

A procedure is classified as elemental if it is a procedure that may be referenced elementally (12.8).

12.2.2 Procedure classification by means of definition
12.2.2.1 Intrinsic procedures

A procedure that is provided as an inherent part of the processor is an intrinsic procedure.

12.2.2.2 External, internal, and module procedures
An external procedure is a procedure that is defined by an external subprogram or by a means other than Fortran.

An internal procedure is a procedure that is defined by an internal subprogram. Internal subprograms may
appear in the main program, in an external subprogram, or in a module subprogram. Internal subprograms shall
not appear in other internal subprograms. Internal subprograms are the same as external subprograms except
that the name of the internal procedure is not a global identifier, an internal subprogram shall not contain an ENTRY
statement, and the internal subprogram has access to host entities by host association.

A module procedure is a procedure that is defined by a module subprogram.

A subprogram defines a procedure for the SUBROUTINE or FUNCTION statement. If the subprogram has one or

more ENTRY statements, it also defines a procedure for each of them.

12 Procedures 273

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

12.2.2.3 Dummy procedures

A dummy argument that is specified to be a procedure or appears in a procedure reference is a dummy procedure.
A dummy procedure with the POINTER attribute is a dummy procedure pointer.

12.2.2.4 Procedure pointers

A procedure pointer is a procedure that has the EXTERNAL and POINTER attributes; it may be pointer
associated with an external procedure, an internal procedure, an intrinsic procedure, a module procedure, or a
dummy procedure that is not a procedure pointer.

12.2.2.5 Statement functions

A function that is defined by a single statement is a statement function (12.6.4).

12.3 Characteristics

12.3.1 Characteristics of procedures

The characteristics of a procedure are the classification of the procedure as a function or subroutine, whether it
is pure, whether it is elemental, whether it has the BIND attribute, the characteristics of its dummy arguments,
and the characteristics of its result value if it is a function.

12.3.2 Characteristics of dummy arguments
12.3.2.1 General

FEach dummy argument has the characteristic that it is a dummy data object, a dummy procedure, or an asterisk

(alternate return indicator).

12.3.2.2 Characteristics of dummy data objects

The characteristics of a dummy data object are its type, its type parameters (if any), its shape, its corank, its
codimensions, its intent (5.3.10, 5.4.9), whether it is optional (5.3.12, 5.4.10), whether it is allocatable (5.3.3),
whether it has the ASYNCHRONOUS (5.3.4), CONTIGUOUS (5.3.7), VALUE (5.3.18), or VOLATILE (5.3.19)
attributes, whether it is polymorphic, and whether it is a pointer (5.3.14, 5.4.12) or a target (5.3.17, 5.4.15). If a
type parameter of an object or a bound of an array is not an initialization expression, the exact dependence on
the entities in the expression is a characteristic. If a shape, size, or type parameter is assumed or deferred, it is
a characteristic.

12.3.2.3 Characteristics of dummy procedures

The characteristics of a dummy procedure are the explicitness of its interface (12.4.2), its characteristics as a
procedure if the interface is explicit, whether it is a pointer, and whether it is optional (5.3.12, 5.4.10).

12.3.2.4 Characteristics of asterisk dummy arguments

An asterisk as a dummy argument has no characteristics.

12.3.3 Characteristics of function results

The characteristics of a function result are its type, type parameters (if any), rank, whether it is polymorphic,
whether it is allocatable, whether it is a pointer, whether it has the CONTIGUOUS attribute, and whether it is a
procedure pointer. If a function result is an array that is not allocatable or a pointer, its shape is a characteristic.
If a type parameter of a function result or a bound of a function result array is not an initialization expression,
the exact dependence on the entities in the expression is a characteristic. If type parameters of a function result

274 Procedures 12.2.2.4

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

are deferred, which parameters are deferred is a characteristic. If the length of a character function result is assumed, this

is a characteristic.

12.4 Procedure interface

12.4.1 General

1 The interface of a procedure determines the forms of reference through which it may be invoked. The procedure’s
interface consists of its abstract interface, its name, its binding label if any, and the procedure’s generic identifiers,
if any. The characteristics of a procedure are fixed, but the remainder of the interface may differ in different
scoping units, except that for a separate module procedure body (12.6.2.5), the dummy argument names, binding
label, and whether it is recursive shall be the same as in its corresponding module procedure interface body
(12.4.3.2).

2 An abstract interface consists of procedure characteristics and the names of dummy arguments.

12.4.2 Implicit and explicit interfaces
12.4.2.1 Interfaces and scoping units

1 If a procedure is accessible in a scoping unit, its interface is either explicit or implicit in that scoping unit. The
interface of an internal procedure, module procedure, or intrinsic procedure is always explicit in such a scoping
unit. The interface of a subroutine or a function with a separate result name is explicit within the subprogram
that defines it. The interface of a statement function is always implicit. The interface of an external procedure or dummy
procedure is explicit in a scoping unit other than its own if an interface body (12.4.3.2) for the procedure is
supplied or accessible, and implicit otherwise.

NOTE 12.1
For example, the subroutine LLS of C.8.3.5 has an explicit interface.

12.4.2.2 Explicit interface

1 A procedure other than a statement function shall have an explicit interface if it is referenced and

(1) a reference to the procedure appears

(a) with an argument keyword (12.5.2), or
(b) in a context that requires it to be pure,

(2) the procedure has a dummy argument that
(a) has the ALLOCATABLE, ASYNCHRONOUS, OPTIONAL, POINTER, TARGET, VALUE,
or VOLATILE attribute,
(b) is an assumed-shape array,
(¢c) is a coarray,
(d) is of a parameterized derived type, or
(e) is polymorphic,
(3) the procedure has a result that
(a) is an array,
(b) is a pointer or is allocatable, or
(¢) has a nonassumed type parameter value that is not an initialization expression,

(4) the procedure is elemental, or
(5) the procedure has the BIND attribute.

12.4 Procedures 275

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

12.4.3 Specification of the procedure interface

12.4.3.1 General

The interface for an internal, external, module, or dummy procedure is specified by a FUNCTION, SUBROU-
TINE, or ENTRY statement and by specification statements for the dummy arguments and the result of a function.
These statements may appear in the procedure definition, in an interface body, or both, except that the ENTRY

statement shall not appear in an interface body.

NOTE 12.2

An interface body cannot be used to describe the interface of an internal procedure, a module procedure
that is not a separate module procedure, or an intrinsic procedure because the interfaces of such procedures
are already explicit. However, the name of a procedure may appear in a PROCEDURE statement in an
interface block (12.4.3.2).

12.4.3.2

R1201

R1202

R1203

R1204

R1205

R1206

R1207

R1208

C1201

C1202

276

Interface block
interface-block is interface-stmt
[interface-specification | ...
end-interface-stmt
interface-specification is interface-body
or procedure-stmt
interface-stmt is INTERFACE [generic-spec |
or ABSTRACT INTERFACE
end-interface-stmt is END INTERFACE [generic-spec |
interface-body is function-stmt
[specification-part |
end-function-stmt
or subroutine-stmt
[specification-part]
end-subroutine-stmt
procedure-stmt is [MODULE | PROCEDURE | :: | procedure-name-list
generic-spec is generic-name
or OPERATOR (defined-operator)
or ASSIGNMENT (=)
or dtio-generic-spec
dtio-generic-spec is READ (FORMATTED)
or READ (UNFORMATTED)
or WRITE (FORMATTED)
or WRITE (UNFORMATTED)
(R1201) An interface-block in a subprogram shall not contain an interface-body for a procedure defined

by that subprogram.

(R1201) The generic-spec shall be included in the end-interface-stmt only if it is provided in the interface-
stmt. If the end-interface-stmt includes generic-name, the interface-stmt shall specify the same generic-
name. If the end-interface-stmt includes ASSIGNMENT (=), the interface-stmt shall specify ASSIGN-
MENT(=). If the end-interface-stmt includes dtio-generic-spec, the interface-stmt shall specify the same
dtio-generic-spec. If the end-interface-stmt includes OPERATOR(defined-operator), the interface-stmt
shall specify the same defined-operator. If one defined-operator is .LT., .LE., .GT., .GE., .EQ., or .NE.,

Procedures 12.4.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

the other is permitted to be the corresponding operator <, <=, >, >=, ==, or /=.

C1203 (R1203) If the interface-stmt is ABSTRACT INTERFACE, then the function-name in the function-stmt
or the subroutine-name in the subroutine-stmt shall not be the same as a keyword that specifies an
intrinsic type.

C1204 (R1202) A procedure-stmt is allowed only in an interface block that has a generic-spec.

C1205 (R1205) An interface-body of a pure procedure shall specify the intents of all dummy arguments except
pointer, alternate return, and procedure arguments.

C1206 (R1205) An interface-body shall not contain a data-stmt, format-stmt, entry-stmt, or stmt-function-stmt.

C1207 (R1206) A procedure-name shall have an explicit interface and shall refer to an accessible procedure
pointer, external procedure, dummy procedure, or module procedure.

C1208 (R1206) If MODULE appears in a procedure-stmt, each procedure-name in that statement shall be ac-
cessible in the current scope as a module procedure.

C1209 (R1206) A procedure-name shall not specify a procedure that is specified previously in any procedure-stmt
in any accessible interface with the same generic identifier.

An external or module subprogram specifies a specific interface for the procedures defined in that subprogram.
Such a specific interface is explicit for module procedures and implicit for external procedures.

An interface block introduced by ABSTRACT INTERFACE is an abstract interface block. An interface body
in an abstract interface block specifies an abstract interface. An interface block with a generic specification is
a generic interface block. An interface block with neither ABSTRACT nor a generic specification is a specific
interface block.

The name of the entity declared by an interface body is the function-name in the function-stmt or the subroutine-
name in the subroutine-stmt that begins the interface body.

A module procedure interface body is an interface body whose initial statement contains the keyword
MODULE. It defines the module procedure interface for a separate module procedure (12.6.2.5). A separate
module procedure is accessible by use association if and only if its interface body is declared in the specification
part of a module and is public. If a corresponding (12.6.2.5) separate module procedure is not defined, the
interface may be used to specify an explicit specific interface but the procedure shall not be used in any other
way.

C1210 (R1205) A module procedure interface body shall not appear in an abstract interface block.

An interface body in a generic or specific interface block specifies the EXTERNAL attribute and an explicit
specific interface for an external procedure or a dummy procedure. If the name of the declared procedure is that
of a dummy argument in the subprogram containing the interface body, the procedure is a dummy procedure;
otherwise, it is an external procedure.

An interface body specifies all of the characteristics of the explicit specific interface or abstract interface. The
specification part of an interface body may specify attributes or define values for data entities that do not
determine characteristics of the procedure. Such specifications have no effect.

If an explicit specific interface is specified by an interface body or a procedure declaration statement (12.4.3.6)
for an external procedure, the characteristics shall be consistent with those specified in the procedure definition,
except that the interface may specify a procedure that is not pure if the procedure is defined to be pure. An
interface for a procedure named by an ENTRY statement may be specified by using the entry name as the procedure name in the
interface body. If an external procedure does not exist in the program, an interface body for it may be used to
specify an explicit specific interface but the procedure shall not be used in any other way. A procedure shall not
have more than one explicit specific interface in a given scoping unit.

12.4.3.2 Procedures 277

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

NOTE 12.3

The dummy argument names in an interface body may be different from the corresponding dummy argument
names in the procedure definition because the name of a dummy argument is not a characteristic.

NOTE 12.4

An example of a specific interface block is:

INTERFACE
SUBROUTINE EXT1 (X, Y, Z)
REAL, DIMENSION (100, 100) :: X, Y, Z
END SUBROUTINE EXT1
SUBROUTINE EXT2 (X, Z)
REAL X
COMPLEX (KIND = 4) Z (2000)
END SUBROUTINE EXT2
FUNCTION EXT3 (P, Q)
LOGICAL EXT3
INTEGER P (1000)
LOGICAL Q (1000)
END FUNCTION EXT3
END INTERFACE

This interface block specifies explicit interfaces for the three external procedures EXT1, EXT2, and EXTS3.
Invocations of these procedures may use argument keywords (12.5.2); for example:

PRINT *, EXT3 (Q = P_MASK (N+1 : N+1000), P = ACTUAL_P)

12.4.3.3 IMPORT statement
R1209 import-stmt is IMPORT [[:: | émport-name-list

C1211 (R1209) The IMPORT statement is allowed only in an interface-body that is not a module procedure
interface body.

C1212 (R1209) Each import-name shall be the name of an entity in the host scoping unit.

The IMPORT statement specifies that the named entities from the host scoping unit are accessible in the
interface body by host association. An entity that is imported in this manner and is defined in the host scoping
unit shall be explicitly declared prior to the interface body. The name of an entity made accessible by an IMPORT
statement shall not appear in any of the contexts described in 16.5.1.4 that cause the host entity of that name
to be inaccessible.

Within an interface body, if an IMPORT statement with no import-name-list appears, each host entity not named
in an IMPORT statement also is made accessible by host association if its name does not appear in any of the
contexts described in 16.5.1.4 that cause the host entity of that name to be inaccessible. If an entity that is
made accessible by this means is accessed by host association and is defined in the host scoping unit, it shall be
explicitly declared prior to the interface body.

NOTE 12.5

The IMPORT statement can be used to allow module procedures to have dummy arguments that are
procedures with assumed-shape arguments of an opaque type. For example:

MODULE M
TYPE T
PRIVATE ! T is an opaque type

278 Procedures 12.4.3.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 12.5 (cont.)

END TYPE
CONTAINS
SUBROUTINE PROCESS(X,Y,RESULT,MONITOR)
TYPE(T) ,INTENT(IN) :: X(:,:),Y(:,:)
TYPE(T) ,INTENT (OUT) :: RESULT(:,:)
INTERFACE
SUBROUTINE MONITOR(ITERATION_NUMBER,CURRENT_ESTIMATE)
IMPORT T
INTEGER, INTENT (IN) :: ITERATION_NUMBER
TYPE(T) ,INTENT(IN) :: CURRENT_ESTIMATEC(:,:)
END SUBROUTINE
END INTERFACE

END SUBROUTINE
END MODULE

The MONITOR dummy procedure requires an explicit interface because it has an assumed-shape array
argument, but TYPE(T) would not be available inside the interface body without the IMPORT statement.

12.4.3.4 Generic interfaces
12.4.3.4.1 Generic identifiers

A generic interface block specifies a generic interface for each of the procedures in the interface block. The PRO-
CEDURE statement lists procedure pointers, external procedures, dummy procedures, or module procedures
that have this generic interface. A generic interface is always explicit.

The generic-spec in an interface-stmt is a generic identifier for all the procedures in the interface block. The
rules specifying how any two procedures with the same generic identifier shall differ are given in 12.4.3.4.5. They
ensure that any generic invocation applies to at most one specific procedure.

A generic name specifies a single name to reference all of the procedure names in the interface block. A generic
name may be the same as any one of the procedure names in the interface block, or the same as any accessible
generic name.

A generic name may be the same as a derived-type name, in which case all of the procedures in the interface
block shall be functions.

An interface-stmt having a dtio-generic-spec is an interface for a defined input/output procedure (9.6.4.7).

NOTE 12.6

An example of a generic procedure interface is:

INTERFACE SWITCH
SUBROUTINE INT_SWITCH (X, Y)
INTEGER, INTENT (INOUT) :: X, Y
END SUBROUTINE INT_SWITCH
SUBROUTINE REAL_SWITCH (X, Y)
REAL, INTENT (INOUT) :: X, Y
END SUBROUTINE REAL_SWITCH
SUBROUTINE COMPLEX_SWITCH (X, Y)
COMPLEX, INTENT (INOUT) :: X, Y
END SUBROUTINE COMPLEX_SWITCH
END INTERFACE SWITCH

12.4.3.4 Procedures 279

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

NOTE 12.6 (cont.)

Any of these three subroutines (INT_SWITCH, REAL_SWITCH, COMPLEX_SWITCH) may be referenced
with the generic name SWITCH, as well as by its specific name. For example, a reference to INT_SWITCH
could take the form:

CALL SWITCH (MAX_VAL, LOC_VAL) ! MAX_VAL and LOC_VAL are of type INTEGER

12.4.3.4.2 Defined operations

If OPERATOR is specified in a generic specification, all of the procedures specified in the generic interface shall
be functions that may be referenced as defined operations (7.1.6, 12.5). In the case of functions of two arguments,
infix binary operator notation is implied. In the case of functions of one argument, prefix operator notation is
implied. OPERATOR shall not be specified for functions with no arguments or for functions with more than two
arguments. The dummy arguments shall be nonoptional dummy data objects and shall be specified with INTENT
(IN). The function result shall not have assumed character length. If the operator is an intrinsic-operator (R310), the
number of function arguments shall be consistent with the intrinsic uses of that operator, and the types, kind
type parameters, or ranks of the dummy arguments shall differ from those required for the intrinsic operation
(7.1.5).

A defined operation is treated as a reference to the function. For a unary defined operation, the operand
corresponds to the function’s dummy argument; for a binary operation, the left-hand operand corresponds to the
first dummy argument of the function and the right-hand operand corresponds to the second dummy argument.
All restrictions and constraints that apply to actual arguments in a reference to the function also apply to the
corresponding operands in the expression as if they were used as actual arguments.

A given defined operator may, as with generic names, apply to more than one function, in which case it is generic
in exact analogy to generic procedure names. For intrinsic operator symbols, the generic properties include the
intrinsic operations they represent. Because both forms of each relational operator have the same interpretation
(7.1.6.2), extending one form (such as <=) has the effect of defining both forms (<= and .LE.).

NOTE 12.7
An example of the use of the OPERATOR generic specification is:

INTERFACE OPERATOR (*)
FUNCTION BOOLEAN_AND (B1, B2)
LOGICAL, INTENT (IN) :: Bl (:), B2 (SIZE (Bl))
LOGICAL :: BOOLEAN_AND (SIZE (B1))
END FUNCTION BOOLEAN_AND
END INTERFACE OPERATOR (*)

This allows, for example
SENSOR (1:N) * ACTION (1:N)
as an alternative to the function call

BOOLEAN_AND (SENSOR (1:N), ACTION (1:N)) ! SENSOR and ACTION are
! of type LOGICAL

12.4.3.4.3 Defined assignments

If ASSIGNMENT (=) is specified in a generic specification, all the procedures in the generic interface shall be
subroutines that may be referenced as defined assignments (7.2.1.4). Defined assignment may, as with generic
names, apply to more than one subroutine, in which case it is generic in exact analogy to generic procedure
names.

280 Procedures 12.4.3.4

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

Each of these subroutines shall have exactly two dummy arguments. The dummy arguments shall be nonoptional
dummy data objects. The first argument shall have INTENT (OUT) or INTENT (INOUT) and the second
argument shall have INTENT (IN). Either the second argument shall be an array whose rank differs from that of
the first argument, the declared types and kind type parameters of the arguments shall not conform as specified
in Table 7.10, or the first argument shall be of derived type. A defined assignment is treated as a reference to the
subroutine, with the left-hand side as the first argument and the right-hand side enclosed in parentheses as the
second argument. All restrictions and constraints that apply to actual arguments in a reference to the subroutine
also apply to the left-hand-side and to the right-hand-side enclosed in parentheses as if they were used as actual
arguments. The ASSIGNMENT generic specification specifies that assignment is extended or redefined.

NOTE 12.8
An example of the use of the ASSIGNMENT generic specification is:

INTERFACE ASSIGNMENT (=)

SUBROUTINE LOGICAL_TO_NUMERIC (N, B)
INTEGER, INTENT (OUT) :: N
LOGICAL, INTENT (IN) :: B

END SUBROUTINE LOGICAL_TO_NUMERIC

SUBROUTINE CHAR_TO_STRING (S, C)

USE STRING_MODULE ! Contains definition of type STRING
TYPE (STRING), INTENT (OUT) :: S ! A variable-length string
CHARACTER (%), INTENT (IN) :: C

END SUBROUTINE CHAR_TO_STRING
END INTERFACE ASSIGNMENT (=)

Example assignments are:

KOUNT = SENSOR (J) ! CALL LOGICAL_TO_NUMERIC (KOUNT, (SENSOR (J)))
NOTE = ’89AB’ ! CALL CHAR_TO_STRING (NOTE, (’89AB’))

12.4.3.4.4 Defined input/output procedure interfaces

All of the procedures specified in an interface block for a defined input/output procedure shall be subroutines
that have interfaces as described in 9.6.4.7.3.

12.4.3.4.5 Restrictions on generic declarations

This subclause contains the rules that shall be satisfied by every pair of specific procedures that have the same
generic identifier within a scoping unit. If a generic procedure name is accessed from a module, the rules apply
to all the specific versions even if some of them are inaccessible by their specific names.

NOTE 12.9

In most scoping units, the possible sources of procedures with a particular generic identifier are the accessible
interface blocks and the generic bindings other than names for the accessible objects in that scoping unit.
In a type definition, they are the generic bindings, including those from a parent type.

A dummy argument is type, kind, and rank compatible, or TKR compatible, with another dummy argument
if the first is type compatible with the second, the kind type parameters of the first have the same values as the
corresponding kind type parameters of the second, and both have the same rank.

Two dummy arguments are distinguishable if

e one is a procedure and the other is a data object,
e they are both data objects or known to be functions, and neither is TKR compatible with the other,
e one has the ALLOCATABLE attribute and the other has the POINTER attribute, or

12.4.3.4 Procedures 281

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

e one is a function with nonzero rank and the other is not known to be a function.

C1213 Within a scoping unit, if two procedures have the same generic operator and the same number of argu-
ments or both define assignment, one shall have a dummy argument that corresponds by position in the
argument list to a dummy argument of the other that is distinguishable from it.

C1214 Within a scoping unit, if two procedures have the same dtio-generic-spec (12.4.3.2), they shall be distin-
guishable.

C1215 Within a scoping unit, two procedures that have the same generic name shall both be subroutines or
both be functions, and

(1) there is a non-passed-object dummy data object in one or the other of them such that

(a) the number of dummy data objects in one that are nonoptional, are not passed-object, and
with which that dummy data object is TKR compatible, possibly including that dummy data
object itself,

exceeds

(b) the number of non-passed-object dummy data objects, both optional and nonoptional, in the
other that are not distinguishable from that dummy data object,

(2) both have passed-object dummy arguments and the passed-object dummy arguments are distinguish-
able, or

(3) at least one of them shall have both

(a) anonoptional non-passed-object dummy argument at an effective position such that either the
other procedure has no dummy argument at that effective position or the dummy argument
at that position is distinguishable from it, and

(b) a nonoptional non-passed-object dummy argument whose name is such that either the other
procedure has no dummy argument with that name or the dummy argument with that name
is distinguishable from it.

and the dummy argument that disambiguates by position shall either be the same as or occur earlier
in the argument list than the one that disambiguates by name.

4 The effective position of a dummy argument is its position in the argument list after any passed-object dummy
argument has been removed.

5 Within a scoping unit, if a generic name is the same as the generic name of an intrinsic procedure, the intrinsic
procedure is not accessible by its generic name if the procedures in the interface and the intrinsic procedure are
not all functions or not all subroutines. If a generic invocation applies to both a specific procedure from an
interface and an accessible intrinsic procedure, it is the specific procedure from the interface that is referenced.

NOTE 12.10

An extensive explanation of the application of these rules is in C.9.6.

12.4.3.5 EXTERNAL statement
1 An EXTERNAL statement specifies the EXTERNAL attribute (5.3.9) for a list of names.
R1210 external-stmt is EXTERNAL [:: | external-name-list

2 The appearance of the name of a block data program unit in an EXTERNAL statement confirms that the block
data program unit is a part of the program.

NOTE 12.11

‘ For explanatory information on potential portability problems with external procedures, see subclause C.9.1. ‘

282 Procedures 12.4.3.5

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 12.12
An example of an EXTERNAL statement is:

EXTERNAL FOCUS

12.4.3.6 Procedure declaration statement

A procedure declaration statement declares procedure pointers, dummy procedures, and external procedures.
It specifies the EXTERNAL attribute (5.3.9) for all entities in the proc-decl-list.

R1211 procedure-declaration-stmt is PROCEDURE (| proc-interface |) B
W [[, proc-attr-spec | ... :: | proc-decl-list

R1212 proc-interface is interface-name
or declaration-type-spec

R1213 proc-attr-spec is access-spec
or proc-language-binding-spec
or INTENT (intent-spec)
or OPTIONAL

or POINTER

or SAVE
R1214 proc-decl is procedure-entity-name [=> proc-pointer-init |
R1215 interface-name is name
R1216 proc-pointer-init is null-init

or initial-proc-target

R1217 initial-proc-target is procedure-name

C1216 (R1215) The name shall be the name of an abstract interface or of a procedure that has an explicit
interface. If name is declared by a procedure-declaration-stmt it shall be previously declared. If name
denotes an intrinsic procedure it shall be one that is listed in 13.6 and not marked with a bullet (e).

C1217 (R1215) The name shall not be the same as a keyword that specifies an intrinsic type.

C1218 If a procedure entity has the INTENT attribute or SAVE attribute, it shall also have the POINTER
attribute.

C1219 (R1211) If a proc-interface describes an elemental procedure, each procedure-entity-name shall specify an
external procedure.

C1220 (R1214) If => appears in proc-decl, the procedure entity shall have the POINTER attribute.

C1221 (R1217) The procedure-name shall be the name of a nonelemental external or module procedure, or a
specific intrinsic function listed in 13.6 and not marked with a bullet (e).

C1222 (R1211) If proc-language-binding-spec with a NAME= is specified, then proc-decl-list shall contain exactly
one proc-decl, which shall neither have the POINTER attribute nor be a dummy procedure.

C1223 (R1211) If proc-language-binding-spec is specified, the proc-interface shall appear, it shall be an interface-
name, and interface-name shall be declared with a proc-language-binding-spec.

If proc-interface appears and consists of interface-name, it specifies an explicit specific interface (12.4.3.2) for the
declared procedures or procedure pointers. The abstract interface (12.4) is that specified by the interface named
by interface-name.

12.4.3.6 Procedures 283

10

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

If proc-interface appears and consists of declaration-type-spec, it specifies that the declared procedures or proce-
dure pointers are functions having implicit interfaces and the specified result type. If a type is specified for an
external function, its function definition (12.6.2.2) shall specify the same result type and type parameters.

If proc-interface does not appear, the procedure declaration statement does not specify whether the declared
procedures or procedure pointers are subroutines or functions.

If a proc-attr-spec other than a proc-language-binding-spec appears, it specifies that the declared procedures or
procedure pointers have that attribute. These attributes are described in 5.3. If a proc-language-binding-spec with
NAME= appears, it specifies a binding label or its absence, as described in 15.5.2. A proc-language-binding-spec
without a NAME= is allowed, but is redundant with the proc-interface required by C1223.

If => appears in a proc-decl in a procedure-declaration-stmt it specifies the initial association status of the
corresponding procedure entity, and implies the SAVE attribute, which may be confirmed by explicit specification.
If => null-init appears, the procedure entity is initially disassociated. If => initial-proc-target appears, the
procedure entity is initially associated with the target.

If procedure-entity-name has an explicit interface, its characteristics shall be the same as initial-proc-target except
that initial-proc-target may be pure even if procedure-entity-name is not pure and initial-proc-target may be an
elemental intrinsic procedure.

If the characteristics of procedure-entity-name or initial-proc-target are such that an explicit interface is required,
both procedure-entity-name and initial-proc-target shall have an explicit interface.

If procedure-entity-name has an implicit interface and is explicitly typed or referenced as a function, initial-proc-
target shall be a function. If procedure-entity-name has an implicit interface and is referenced as a subroutine,
initial-proc-target shall be a subroutine.

If initial-proc-target and procedure-entity-name are functions, their results shall have the same characteristics.

NOTE 12.13

In contrast to the EXTERNAL statement, it is not possible to use the procedure declaration statement to
identify a BLOCK DATA subprogram.

NOTE 12.14

The following code illustrates procedure declaration statements. Note 7.47 illustrates the use of the P and
BESSEL defined by this code.

ABSTRACT INTERFACE
FUNCTION REAL_FUNC (X)
REAL, INTENT (IN) :: X
REAL :: REAL_FUNC
END FUNCTION REAL_FUNC
END INTERFACE

INTERFACE
SUBROUTINE SUB (X)
REAL, INTENT (IN) :: X
END SUBROUTINE SUB
END INTERFACE

!-— Some external or dummy procedures with explicit interface.
PROCEDURE (REAL_FUNC) :: BESSEL, GFUN

PROCEDURE (SUB) :: PRINT_REAL

!-— Some procedure pointers with explicit interface,

I-- one initialized to NULLQ).

284 Procedures 12.4.3.6

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 12.14 (cont.)

PROCEDURE (REAL_FUNC), POINTER :: P, R => NULLQ)
PROCEDURE (REAL_FUNC), POINTER :: PTR_TO_GFUN
!-— A derived type with a procedure pointer component ...
TYPE STRUCT_TYPE

PROCEDURE (REAL_FUNC), POINTER :: COMPONENT
END TYPE STRUCT_TYPE
!-— ... and a variable of that type.
TYPE(STRUCT_TYPE) :: STRUCT
!-— An external or dummy function with implicit interface
PROCEDURE (REAL) :: PSI

12.4.3.7 INTRINSIC statement
An INTRINSIC statement specifies the INTRINSIC attribute (5.3.11) for a list of names.
R1218 intrinsic-stmt is INTRINSIC [:: | intrinsic-procedure-name-list

C1224 (R1218) Each intrinsic-procedure-name shall be the name of an intrinsic procedure.

NOTE 12.15

A name shall not be explicitly specified to have both the EXTERNAL and INTRINSIC attributes in the
same scoping unit.

12.4.3.8 Implicit interface specification

In a scoping unit where the interface of a function is implicit, the type and type parameters of the function result
are specified by an implicit or explicit type specification of the function name. The type, type parameters, and
shape of dummy arguments of a procedure invoked from a scoping unit where the interface of the procedure is
implicit shall be such that the actual arguments are consistent with the characteristics of the dummy arguments.

12.5 Procedure reference

12.5.1 Syntax

The form of a procedure reference is dependent on the interface of the procedure or procedure pointer, but is
independent of the means by which the procedure is defined. The forms of procedure references are as follows.

R1219 function-reference is procedure-designator ([actual-arg-spec-list |)
C1225 (R1219) The procedure-designator shall designate a function.
C1226 (R1219) The actual-arg-spec-list shall not contain an alt-return-spec.
R1220 call-stmt is CALL procedure-designator | (| actual-arg-spec-list]) |
C1227 (R1220) The procedure-designator shall designate a subroutine.
R1221 procedure-designator is procedure-name
or proc-component-ref
or data-ref % binding-name
C1228 (R1221) A procedure-name shall be the name of a procedure or procedure pointer.

C1229 (R1221) A binding-name shall be a binding name (4.5.5) of the declared type of data-ref.

C1230 (R1221) If data-ref is an array, the referenced type-bound procedure shall have the PASS attribute.

12.4.3.7 Procedures 285

ISO

JIEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03 /11

Resolving references to type-bound procedures is described in 12.5.6.

A function may also be referenced as a defined operation (7.1.6). A subroutine may also be referenced as a defined
assignment (7.2.1.4, 7.2.1.5), by defined input/output (9.6.4.7), or by finalization (4.5.6).

NOTE 12.16

If image I executes a procedure reference in which the variable of a proc-component-ref specifies a procedure
pointer on image J, the procedure pointer association is fetched from image J but the invocation of the
associated procedure occurs on image I.

R1222 actual-arg-spec is [keyword =] actual-arg

R1223 actual-arg is expr

or wariable
or procedure-name
or proc-component-ref

or alt-return-spec

R1224 alt-return-spec is * label

C1231 (R1222) The keyword = shall not appear if the interface of the procedure is implicit in the scoping unit.

C1232 (R1222) The keyword = shall not be omitted from an actual-arg-spec unless it has been omitted from

each preceding actual-arg-spec in the argument list.

C1233 (R1222) Each keyword shall be the name of a dummy argument in the explicit interface of the procedure.

C1234 (R1223) A nonintrinsic elemental procedure shall not be used as an actual argument.

C1235 (R1223) A procedure-name shall be the name of an external, internal, module, or dummy procedure, a

specific intrinsic function listed in 13.6 and not marked with a bullet (o), or a procedure pointer.

C1236 (R1224) The label shall be the statement label of a branch target statement that appears in the same scoping unit as the

call-stmt.

NOTE 12.17

Successive commas shall not be used to omit optional arguments.

NOTE 12.18

Examples of procedure reference using procedure pointers:

P => BESSEL
WRITE (*x, *) P(2.5) I-- BESSEL(2.5)

S => PRINT_REAL
CALL S(3.14)

NOTE 12.19

An internal procedure cannot be invoked using a procedure pointer from either Fortran or C after the host
instance completes execution, because the pointer is then undefined. While the host instance is active,
however, the internal procedure may be invoked from outside of the host procedure scoping unit if that
internal procedure was passed as an actual argument or is the target of a procedure pointer.

Let us assume there is a procedure with the following interface that calculates f; f(z)dx.

INTERFACE

286

Procedures 12.5.1

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 12.19 (cont.)

FUNCTION INTEGRATE(F, A, B) RESULT(INTEGRAL) BIND(C)
USE ISO_C_BINDING
INTERFACE
FUNCTION F(X) BIND(C) ! Integrand
USE ISO_C_BINDING
REAL(C_FLOAT), VALUE :: X
REAL(C_FLOAT) :: F
END FUNCTION
END INTERFACE
REAL(C_FLOAT), VALUE :: A, B ! Bounds
REAL(C_FLOAT) :: INTEGRAL
END FUNCTION INTEGRATE
END INTERFACE

This procedure can be called from Fortran or C, and could be written in either Fortran or C. The argument F
representing the mathematical function f(z) can be written as an internal procedure; this internal procedure
will have access to any host instance local variables necessary to actually calculate f(x). For example:

REAL FUNCTION MY_INTEGRATION(N, A, B) RESULT(INTEGRAL)
! Integrate f(x)=x"n over [a,b]
USE ISO_C_BINDING
INTEGER, INTENT(IN) :: N
REAL, INTENT(IN) :: A, B

INTEGRAL = INTEGRATE(MY_F, REAL(A, C_FLOAT), REAL(B, C_FLOAT))
! This will call the internal function MY_F to calculate f(x).
! The above interface of INTEGRATE must be explicit and available.

CONTAINS

REAL(C_FLOAT) FUNCTION MY_F(X) BIND(C) ! Integrand

REAL(C_FLOAT), VALUE :: X

MY_F = X*x*N ! N is taken from the host instance of MY_INTEGRATION.
END FUNCTION

END FUNCTION MY_INTEGRATION

The function INTEGRATE shall not retain a function pointer to MY _F and use it after INTEGRATE has
finished execution, because the host instance of MY _F might no longer exist, making the pointer undefined.
If such a pointer is retained, then it can only be used to invoke MY_F during the execution of the host
instance of MY_INTEGRATION called from INTEGRATE.

12.5.2 Actual arguments, dummy arguments, and argument association

12.5.2.1 Argument correspondence

In either a subroutine reference or a function reference, the actual argument list identifies the correspondence
between the actual arguments supplied and the dummy arguments of the procedure. This correspondence may be
established either by keyword or by position. If an argument keyword appears, the actual argument corresponds to
the dummy argument whose name is the same as the argument keyword (using the dummy argument names from
the interface accessible in the scoping unit containing the procedure reference). In the absence of an argument
keyword, an actual argument corresponds to the dummy argument occupying the corresponding position in the
reduced dummy argument list; that is, the first actual argument corresponds to the first dummy argument in
the reduced list, the second actual argument corresponds to the second dummy argument in the reduced list,

12.5.2 Procedures 287

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

etc. The reduced dummy argument list is either the full dummy argument list or, if there is a passed-object
dummy argument (4.5.4.5), the dummy argument list with the passed-object dummy argument omitted. Exactly
one actual argument shall correspond to each nonoptional dummy argument. At most one actual argument shall
correspond to each optional dummy argument. Each actual argument shall correspond to a dummy argument.

NOTE 12.20
For example, the procedure defined by

SUBROUTINE SOLVE (FUNCT, SOLUTION, METHOD, STRATEGY, PRINT)

INTERFACE

FUNCTION FUNCT (X)

REAL FUNCT, X

END FUNCTION FUNCT
END INTERFACE
REAL SOLUTION
INTEGER, OPTIONAL :: METHOD, STRATEGY, PRINT

may be invoked with

CALL SOLVE (FUN, SOL, PRINT = 6)

provided its interface is explicit; if the interface is specified by an interface block, the name of the last
argument shall be PRINT.

12.5.2.2 The passed-object dummy argument and argument correspondence

In a reference to a type-bound procedure, or a procedure pointer component, that has a passed-object dummy
argument (4.5.4.5), the data-ref of the function-reference or call-stmt corresponds, as an actual argument, with
the passed-object dummy argument.

12.5.2.3 Argument association

Except in references to intrinsic inquiry functions, a pointer actual argument that corresponds to a nonoptional
nonpointer dummy argument shall be pointer associated with a target.

If a nonpointer dummy argument without the VALUE attribute corresponds to a pointer actual argument that
is pointer associated with a target, the dummy argument becomes argument associated with that target.

If a present nonpointer dummy argument without the VALUE attribute corresponds to a nonpointer actual
argument it becomes argument associated with that actual argument.

A present dummy argument with the VALUE attribute becomes argument associated with a definable anonymous
data object whose initial value is the value of the actual argument.

A present pointer dummy argument that corresponds to a pointer actual argument becomes argument associated
with that actual argument. A present pointer dummy argument that does not correspond to a pointer actual
argument is not argument associated.

The entity that is argument associated with a dummy argument is called its effective argument.

The ultimate argument is the effective argument if the effective argument is not a dummy argument or a subobject
of a dummy argument. If the effective argument is a dummy argument, the ultimate argument is the ultimate
argument of that dummy argument. If the effective argument is a subobject of a dummy argument, the ultimate
argument is the corresponding subobject of the ultimate argument of that dummy argument.

288 Procedures 12.5.2.2

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 12.21
For the sequence of subroutine calls

INTEGER :: X(100)
CALL SUBA (X)

SUBROUTINE SUBA(A)
INTEGER :: A(:)
CALL SUBB (A(1:5), A(5:1:-1))

SUBROUTINE SUBB(B, C)
INTEGER :: B(:), C(:)

the ultimate argument of B is X(1:5). The ultimate argument of C is X(5:1:-1) and this is not the same
object as the ultimate argument of B.

NOTE 12.22

Fortran argument association is usually similar to call by reference and call by value-result. If the VALUE
attribute is specified, the effect is as if the actual argument is assigned to a temporary, and the temporary is
then argument associated with the dummy argument. Subsequent changes to the value or definition status
of the dummy argument do not affect the actual argument. The actual mechanism by which this happens
is determined by the processor.

12.5.2.4 Ordinary dummy variables

The requirements in this subclause apply to actual arguments that correspond to nonallocatable nonpointer
dummy data objects.

The dummy argument shall be type compatible with the actual argument.

The type parameter values of the actual argument shall agree with the corresponding ones of the dummy argument
that are not assumed, except for the case of the character length parameter of a default character actual argument
associated with a dummy argument that is not assumed shape.

If a scalar dummy argument is default character, the length len of the dummy argument shall be less than or
equal to the length of the actual argument. The dummy argument becomes associated with the leftmost len
characters of the actual argument. If an array dummy argument is default character and is not assumed shape,
it becomes associated with the leftmost characters of the actual argument element sequence (12.5.2.11).

The values of assumed type parameters of a dummy argument are assumed from the corresponding type param-
eters of the actual argument.

If the actual argument is a coindexed object with an allocatable ultimate component, the dummy argument shall
have the INTENT (IN) or the VALUE attribute.

NOTE 12.23

If the actual argument is a coindexed object, a processor that uses distributed memory might create a copy
on the executing image of the actual argument, including copies of any allocated allocatable subcomponents,
and associate the dummy argument with that copy. If necessary, on return from the procedure, the value
of the copy would be copied back to the actual argument.

Except in references to intrinsic inquiry functions, if the dummy argument is nonoptional and the actual argument
is allocatable, the corresponding actual argument shall be allocated.

If the dummy argument does not have the TARGET attribute, any pointers associated with the effective argument
do not become associated with the corresponding dummy argument on invocation of the procedure. If such a

12.5.24 Procedures 289

10

11

12

13

14

15

16

17

18

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

dummy argument is used as an actual argument that corresponds to a dummy argument with the TARGET
attribute, whether any pointers associated with the original effective argument become associated with the dummy
argument with the TARGET attribute is processor dependent.

If the dummy argument has the TARGET attribute, does not have the VALUE attribute, and is either a scalar
or an assumed-shape array that does not have the CONTIGUOUS attribute, and the effective argument has the
TARGET attribute but is not a coindexed object or an array section with a vector subscript then

e any pointers associated with the effective argument become associated with the corresponding dummy
argument on invocation of the procedure, and

e when execution of the procedure completes, any pointers that do not become undefined (16.5.2.5) and are
associated with the dummy argument remain associated with the effective argument.

If the dummy argument has the TARGET attribute and is an explicit-shape array, an assumed-shape array with
the CONTIGUOUS attribute, or an assumed-size array, and the effective argument has the TARGET attribute
but is not an array section with a vector subscript then

e on invocation of the procedure, whether any pointers associated with the effective argument become asso-
ciated with the corresponding dummy argument is processor dependent, and

e when execution of the procedure completes, the pointer association status of any pointer that is pointer
associated with the dummy argument is processor dependent.

If the dummy argument has the TARGET attribute and the effective argument does not have the TARGET
attribute or is an array section with a vector subscript, any pointers associated with the dummy argument
become undefined when execution of the procedure completes.

If the dummy argument has the TARGET attribute and the VALUE attribute, any pointers associated with the
dummy argument become undefined when execution of the procedure completes.

If the actual argument is scalar, the corresponding dummy argument shall be scalar unless the actual argument is
default character, of type character with the C character kind (15.2), or is an element or substring of an element
of an array that is not an assumed-shape, pointer, or polymorphic array. If the procedure is nonelemental and is
referenced by a generic name or as a defined operator or defined assignment, the ranks of the actual arguments
and corresponding dummy arguments shall agree.

If a dummy argument is an assumed-shape array, the rank of the actual argument shall be the same as the rank
of the dummy argument; the actual argument shall not be an assumed-size array (including an array element
designator or an array element substring designator).

Except when a procedure reference is elemental (12.8), each element of an array actual argument or of a sequence
in a sequence association (12.5.2.11) is associated with the element of the dummy array that has the same position
in array element order (6.5.3.2).

NOTE 12.24

For default character sequence associations, the interpretation of element is provided in 12.5.2.11.

A scalar dummy argument of a nonelemental procedure shall correspond only to a scalar actual argument.

If a dummy argument has INTENT (OUT) or INTENT (INOUT), the actual argument shall be definable. If a
dummy argument has INTENT (OUT), the actual argument becomes undefined at the time the association is
established, except for direct components of an object of derived type for which default initialization has been
specified. If the dummy argument is not polymorphic and the type of the effective argument is an extension of
the type of the dummy argument, only the part of the effective argument that is of the same type as the dummy
argument becomes undefined.

If the actual argument is an array section having a vector subscript, the dummy argument is not definable and
shall not have the ASYNCHRONOUS, INTENT (OUT), INTENT (INOUT), or VOLATILE attributes.

290 Procedures 12.5.2.4

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 12.25
‘ Argument intent specifications serve several purposes. See Note 5.16. ‘

NOTE 12.26
‘ For more explanatory information on targets as dummy arguments, see subclause C.9.4. ‘

C1237 An actual argument that is a coindexed object shall not correspond to a dummy argument that has either
the ASYNCHRONOUS or VOLATILE attribute.

C1238 (R1223) If an actual argument is a nonpointer array that is not simply contiguous (6.5.4), and the
corresponding dummy argument has either the VOLATILE or ASYNCHRONOUS attribute, that dummy
argument shall be an assumed-shape array that does not have the CONTIGUOUS attribute.

C1239 (R1223) If an actual argument is an array pointer that does not have the CONTIGUOUS attribute,
and the corresponding dummy argument has either the VOLATILE or ASYNCHRONOUS attribute,
that dummy argument shall be an array pointer or an assumed-shape array that does not have the
CONTIGUOUS attribute.

NOTE 12.27

The constraints on actual arguments that correspond to a dummy argument with either the ASYN-
CHRONOUS or VOLATILE attribute are designed to avoid forcing a processor to use the so-called copy-
in/copy-out argument passing mechanism. Making a copy of actual arguments whose values are likely to
change due to an asynchronous I/O operation completing or in some unpredictable manner will cause those
new values to be lost when a called procedure returns and the copy-out overwrites the actual argument.

12.5.2.5 Allocatable and pointer dummy variables

The requirements in this subclause apply to actual arguments that correspond to either allocatable or pointer
dummy data objects.

The actual argument shall be polymorphic if and only if the associated dummy argument is polymorphic, and
either both the actual and dummy arguments shall be unlimited polymorphic, or the declared type of the actual
argument shall be the same as the declared type of the dummy argument.

NOTE 12.28

The dynamic type of a polymorphic allocatable or pointer dummy argument may change as a result of
execution of an ALLOCATE statement or pointer assignment in the subprogram. Because of this the
corresponding actual argument needs to be polymorphic and have a declared type that is the same as the
declared type of the dummy argument or an extension of that type. However, type compatibility requires
that the declared type of the dummy argument be the same as, or an extension of, the type of the actual
argument. Therefore, the dummy and actual arguments need to have the same declared type.

Dynamic type information is not maintained for a nonpolymorphic allocatable or pointer dummy argument.
However, allocating or pointer assigning such a dummy argument would require maintenance of this infor-
mation if the corresponding actual argument is polymorphic. Therefore, the corresponding actual argument
needs to be nonpolymorphic.

The rank of the actual argument shall be the same as that of the dummy argument. The type parameter values
of the actual argument shall agree with the corresponding ones of the dummy argument that are not assumed or
deferred.

The values of assumed type parameters of a dummy argument are assumed from the corresponding type param-
eters of its effective argument.

The actual argument shall have deferred the same type parameters as the dummy argument.

12.5.2.5 Procedures 291

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

If the actual argument is a coindexed object, the dummy argument shall have the INTENT (IN) attribute.

12.5.2.6 Allocatable dummy variables
The requirements in this subclause apply to actual arguments that correspond to allocatable dummy data objects.

The actual argument shall be allocatable. It is permissible for the actual argument to have an allocation status
of unallocated.

If the dummy argument does not have the TARGET attribute, any pointers associated with the actual argument
do not become associated with the corresponding dummy argument on invocation of the procedure. If such a
dummy argument is used as an actual argument that is associated with a dummy argument with the TARGET
attribute, whether any pointers associated with the original actual argument become associated with the dummy
argument with the TARGET attribute is processor dependent.

If the dummy argument has the TARGET attribute, does not have the INTENT (OUT) or VALUE attribute,
and the corresponding actual argument has the TARGET attribute then

e any pointers associated with the actual argument become associated with the corresponding dummy argu-
ment on invocation of the procedure, and

e when execution of the procedure completes, any pointers that do not become undefined (16.5.2.5) and are
associated with the dummy argument remain associated with the actual argument.

If a dummy argument has INTENT (OUT) or INTENT (INOUT), the actual argument shall be definable. If
a dummy argument has INTENT (OUT), an allocated actual argument is deallocated on procedure invocation
(6.6.3.2).

12.5.2.7 Pointer dummy variables
The requirements in this subclause apply to actual arguments that correspond to dummy data pointers.

If the dummy argument does not have the INTENT (IN), the actual argument shall be a pointer. Otherwise, the
actual argument shall be a pointer or a valid target for the dummy pointer in a pointer assignment statement. If
the actual argument is not a pointer, the dummy pointer becomes pointer-associated with the actual argument.

The nondeferred type parameters and ranks shall agree.

C1240 The actual argument corresponding to a dummy pointer with the CONTIGUOUS attribute shall be
simply contiguous (6.5.4).

If the dummy argument has INTENT (OUT), the pointer association status of the actual argument becomes
undefined on invocation of the procedure.

If the dummy argument is nonoptional and the actual argument is allocatable, the actual argument shall be
allocated.

NOTE 12.29

For more explanatory information on pointers as dummy arguments, see subclause C.9.4.

12.5.2.8 Coarray arguments

If the dummy argument is a coarray, the corresponding actual argument shall be a coarray. If the dummy
argument is an allocatable coarray, the corresponding actual argument shall have the same rank and corank.

292 Procedures 12.5.2.6

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 12.30

Consider the invocation of a procedure on a particular image. Each dummy coarray is associated with its
ultimate argument on the image. In addition, during this execution of the procedure, this image can access
the coarray corresponding to the ultimate argument on any other image. For example, consider

INTERFACE
SUBROUTINE SUB(X)
REAL :: X[x*]

END SUBROUTINE SUB
END INTERFACE

REAL :: A(1000) [:]
CALL SUB(A(10))

During execution of this invocation of SUB, the executing image has access through the syntax X[P] to
A(10) on image P.

NOTE 12.31

Each invocation of a procedure with a nonallocatable coarray dummy argument establishes a dummy coarray
for the image with its own bounds and cobounds. During this execution of the procedure, this image may
use its own bounds and cobounds to access the coarray corresponding to the ultimate argument on any
other image. For example, consider

INTERFACE
SUBROUTINE SUB(X,N)
INTEGER :: N

REAL :: X(N,N)[N,x*]
END SUBROUTINE SUB
END INTERFACE

REAL :: A(1000)[:]
CALL SUB(A,10)

During execution of this invocation of SUB, the executing image has access through the syntax X(1,2)[3,4]
to A(11) on the image with image index 33.

2 If the dummy argument is a coarray that has the CONTIGUOUS attribute or is not of assumed shape, the
corresponding actual argument shall be simply contiguous.

NOTE 12.32

The requirements on an actual argument that corresponds to a dummy coarray that is not of assumed-
shape or has the CONTIGUOUS attribute are designed to avoid forcing a processor to use the so-called
copy-in/copy-out argument passing mechanism.

12.5.2.9 Actual arguments associated with dummy procedure entities

1 If the actual argument is the name of an internal subprogram, the host instance of the dummy argument is the
innermost currently executing instance of the host of that internal subprogram. If the actual argument has a
host instance the host instance of the dummy argument is that instance. Otherwise the dummy argument has
no host instance.

2 If a dummy argument is a procedure pointer, the corresponding actual argument shall be a procedure pointer, a
reference to a function that returns a procedure pointer, a reference to the intrinsic function NULL, or a valid

12.5.2.9 Procedures 293

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

target for the dummy pointer in a pointer assignment statement. If the actual argument is not a pointer, the
dummy argument shall have the INTENT (IN) and becomes pointer associated with the actual argument.

If a dummy argument is a dummy procedure without the POINTER attribute, its effective argument shall be an
external, internal, module, or dummy procedure, or a specific intrinsic procedure listed in 13.6 and not marked
with a bullet (e). If the specific name is also a generic name, only the specific procedure is associated with the
dummy argument.

If an external procedure name or a dummy procedure name is used as an actual argument, its interface shall be
explicit or it shall be explicitly declared to have the EXTERNAL attribute.

If the interface of a dummy procedure is explicit, its characteristics as a procedure (12.3.1) shall be the same as
those of its effective argument, except that a pure effective argument may be associated with a dummy argument
that is not pure and an elemental intrinsic actual procedure may be associated with a dummy procedure (which
is prohibited from being elemental).

If the interface of a dummy procedure is implicit and either the dummy argument is explicitly typed or referenced
as a function, it shall not be referenced as a subroutine and any corresponding actual argument shall be a function,
function procedure pointer, or dummy procedure.

If the interface of a dummy procedure is implicit and a reference to it appears as a subroutine reference, any
corresponding actual argument shall be a subroutine, subroutine procedure pointer, or dummy procedure.

12.5.2.10 Actual arguments associated with alternate return indicators

If a dummy argument is an asterisk (12.6.2.3), the corresponding actual argument shall be an alternate return specifier (R1224).

12.5.2.11 Sequence association

An actual argument represents an element sequence if it is an array expression, an array element designator, a
default character scalar, or a scalar of type character with the C character kind (15.2.2). If the actual argument is
an array expression, the element sequence consists of the elements in array element order. If the actual argument
is an array element designator, the element sequence consists of that array element and each element that follows
it in array element order.

If the actual argument is default character or of type character with the C character kind, and is an array
expression, array element, or array element substring designator, the element sequence consists of the storage
units beginning with the first storage unit of the actual argument and continuing to the end of the array. The
storage units of an array element substring designator are viewed as array elements consisting of consecutive
groups of storage units having the character length of the dummy array.

If the actual argument is default character or of type character with the C character kind, and is a scalar that is
not an array element or array element substring designator, the element sequence consists of the storage units of
the actual argument.

NOTE 12.33

Some of the elements in the element sequence may consist of storage units from different elements of the
original array.

An actual argument that represents an element sequence and corresponds to a dummy argument that is an array
is sequence associated with the dummy argument if the dummy argument is an explicit-shape or assumed-size
array. The rank and shape of the actual argument need not agree with the rank and shape of the dummy
argument, but the number of elements in the dummy argument shall not exceed the number of elements in the
element sequence of the actual argument. If the dummy argument is assumed-size, the number of elements in the
dummy argument is exactly the number of elements in the element sequence.

294 Procedures 12.5.2.10

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

12.5.2.12 Argument presence and restrictions on arguments not present

1 A dummy argument or an entity that is host associated with a dummy argument is not present if the dummy

argument

e does not correspond to an actual argument,

e corresponds to an actual argument that is not present, or

e does not have the ALLOCATABLE or POINTER attribute, and corresponds to an actual argument that
— has the ALLOCATABLE attribute and is not allocated, or
— has the POINTER attribute and is disassociated.

2 Otherwise, it is present. A nonoptional dummy argument shall be present. If an optional nonpointer dummy
argument corresponds to a present pointer actual argument, the pointer association status of the actual argument
shall not be undefined.

3 An optional dummy argument that is not present is subject to the following restrictions.

If it is a data object, it shall not be referenced or be defined. If it is of a type that has default
initialization, the initialization has no effect.

It shall not be used as the data-target or proc-target of a pointer assignment.
If it is a procedure or procedure pointer, it shall not be invoked.

It shall not be supplied as an actual argument corresponding to a nonoptional dummy argument
other than as the argument of the intrinsic function PRESENT or as an argument of a function
reference that meets the requirements of (7) or (4) in 7.1.12.

A designator with it as the base object and with one or more subobject selectors shall not be supplied
as an actual argument.

If it is an array, it shall not be supplied as an actual argument to an elemental procedure unless an
array of the same rank is supplied as an actual argument corresponding to a nonoptional dummy
argument of that elemental procedure.

If it is a pointer, it shall not be allocated, deallocated, nullified, pointer-assigned, or supplied as an
actual argument corresponding to an optional nonpointer dummy argument.

If it is allocatable, it shall not be allocated, deallocated, or supplied as an actual argument corre-
sponding to an optional nonallocatable dummy argument.

If it has length type parameters, they shall not be the subject of an inquiry.

It shall not be used as the selector in a SELECT TYPE or ASSOCIATE construct.

4 Except as noted in the list above, it may be supplied as an actual argument corresponding to an optional dummy
argument, which is then also considered not to be present.

12.5.2.13 Restrictions on entities associated with dummy arguments

1 While an entity is associated with a dummy argument, the following restrictions hold.

(1)

Action that affects the allocation status of the entity or a subobject thereof shall be taken through
the dummy argument. Action that affects the value of the entity or any subobject of it shall be taken
only through the dummy argument unless

(a) the dummy argument has the POINTER attribute or

(b) the dummy argument has the TARGET attribute, the dummy argument does not have IN-
TENT (IN), the dummy argument is a scalar object or an assumed-shape array without the
CONTIGUOQOUS attribute, and the actual argument is a target other than an array section
with a vector subscript.

NOTE 12.34

‘In

12.5.2.13

Procedures 295

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

NOTE 12.34 (cont.)

SUBROUTINE OUTER
REAL, POINTER :: A (:)

ALLOCATE (A (1:N))
CALL INNER (A)
CONTAINS
SUBROUTINE INNER (B)
REAL :: B (:)

END SUBROUTINE INNER
SUBROUTINE SET (C, D)
REAL, INTENT (OUT) :: C
REAL, INTENT (IN) :: D
C=0D
END SUBROUTINE SET
END SUBROUTINE OUTER

an assignment statement such as

A (1) =1.0

would not be permitted during the execution of INNER because this would be changing A without using
B, but statements such as

B (1) = 1.0

or

CALL SET (B (1), 1.0)
would be allowed. Similarly,
DEALLOCATE (4)

would not be allowed because this affects the allocation of B without using B. In this case,

DEALLOCATE (B)

also would not be permitted. If B were declared with the POINTER, attribute, either of the statements

DEALLOCATE (A)

and

DEALLOCATE (B)

would be permitted, but not both.

NOTE 12.35

If there is a partial or complete overlap between the effective arguments of two different dummy arguments
of the same procedure and the dummy arguments have neither the POINTER nor TARGET attribute,
the overlapped portions shall not be defined, redefined, or become undefined during the execution of the
procedure. For example, in

296

Procedures 12.5.2.13

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 12.35 (cont.)
CALL SUB (A (1:5), A (3:9))

A (3:5) shall not be defined, redefined, or become undefined through the first dummy argument because it
is part of the argument associated with the second dummy argument and shall not be defined, redefined,
or become undefined through the second dummy argument because it is part of the argument associated
with the first dummy argument. A (1:2) remains definable through the first dummy argument and A (6:9)
remains definable through the second dummy argument.

NOTE 12.36

This restriction applies equally to pointer targets. In

REAL, DIMENSION (10), TARGET :: A

REAL, DIMENSION (:), POINTER :: B, C

B => A (1:5)

C =>4 (3:9)

CALL SUB (B, C) ! The dummy arguments of SUB are neither pointers nor targets.

B (3:5) cannot be defined because it is part of the argument associated with the second dummy argument.
C (1:3) cannot be defined because it is part of the argument associated with the first dummy argument.
A (1:2) [which is B (1:2)] remains definable through the first dummy argument and A (6:9) [which is C (4:7)]
remains definable through the second dummy argument.

NOTE 12.37

Because a nonpointer dummy argument declared with INTENT (IN) shall not be used to change its effective
argument, its effective argument remains constant throughout the execution of the procedure.

(2) If the allocation status of the entity or a subobject thereof is affected through the dummy argument,
then at any time during the execution of the procedure, either before or after the allocation or
deallocation, it may be referenced only through the dummy argument. If the value of the entity or
any subobject of it is affected through the dummy argument, then at any time during the execution
of the procedure, either before or after the definition, it may be referenced only through that dummy
argument unless

(a) the dummy argument has the POINTER attribute or

(b) the dummy argument has the TARGET attribute, the dummy argument does not have IN-
TENT (IN), the dummy argument is a scalar object or an assumed-shape array without the
CONTIGUOUS attribute, and the actual argument is a target other than an array section
with a vector subscript.

NOTE 12.38

In

MODULE DATA
REAL :: W, X, Y, Z
END MODULE DATA

PROGRAM MAIN
USE DATA

CALL INIT (X)
END PROGRAM MAIN

SUBROUTINE INIT (V)
USE DATA

12.5.2.13 Procedures 297

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

NOTE 12.38 (cont.)

READ (%, *) V
END SUBROUTINE INIT

variable X shall not be directly referenced at any time during the execution of INIT because it is being
defined through the dummy argument V. X may be (indirectly) referenced through V. W, Y, and Z may
be directly referenced. X may, of course, be directly referenced once execution of INIT is complete.

NOTE 12.39

The restrictions on entities associated with dummy arguments are intended to facilitate a variety of opti-
mizations in the translation of the subprogram, including implementations of argument association in which
the value of an actual argument that is neither a pointer nor a target is maintained in a register or in local
storage.

12.5.3 Function reference

1 A function is invoked during expression evaluation by a function-reference or by a defined operation (7.1.6).
When it is invoked, all actual argument expressions are evaluated, then the arguments are associated, and then
the function is executed. When execution of the function is complete, the value of the function result is available
for use in the expression that caused the function to be invoked. The characteristics of the function result (12.3.3)
are determined by the interface of the function. If a reference to an elemental function (12.8) is an elemental
reference, all array arguments shall have the same shape.

12.5.4 Subroutine reference

1 A subroutine is invoked by execution of a CALL statement, execution of a defined assignment statement (7.2.1.4),
defined input/output (9.6.4.7.2), or finalization(4.5.6). When a subroutine is invoked, all actual argument ex-
pressions are evaluated, then the arguments are associated, and then the subroutine is executed. When the
actions specified by the subroutine are completed, the execution of the CALL statement, the execution of the
defined assignment statement, the processing of an input or output list item, or finalization of an object is also
completed. If a CALL statement includes one or more alternate return specifiers among its arguments, control may be transferred
to one of the statements indicated, depending on the action specified by the subroutine. If a reference to an elemental sub-
routine (12.8) is an elemental reference, at least one actual argument shall correspond to an INTENT (OUT) or
INTENT (INOUT) dummy argument, all such actual arguments shall be arrays, and all actual arguments shall
be conformable.

12.5.5 Resolving named procedure references
12.5.5.1 Establishment of procedure names

1 The rules for interpreting a procedure reference depend on whether the procedure name in the reference is
established by the available declarations and specifications to be generic in the scoping unit containing the
reference, is established to be only specific in the scoping unit containing the reference, or is not established.

2 A procedure name is established to be generic in a scoping unit

(1) if that scoping unit contains an interface block with that name;

(2) if that scoping unit contains an INTRINSIC attribute specification for that name and it is the generic
name of an intrinsic procedure;

(3) if that scoping unit contains a USE statement that makes that procedure name accessible and the
corresponding name in the module is established to be generic; or

(4) if that scoping unit contains no declarations of that name, that scoping unit has a host scoping unit,
and that name is established to be generic in the host scoping unit.

298 Procedures 12.5.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

3 A procedure name is established to be only specific in a scoping unit if it is established to be specific and not
established to be generic. It is established to be specific

(1) if that scoping unit contains a module subprogram, internal subprogram, or statement function that
defines a procedure with that name;

(2) if that scoping unit contains an INTRINSIC attribute specification for that name and it is the name
of a specific intrinsic procedure;

(3) if that scoping unit contains an explicit EXTERNAL attribute specification for that name;

(4) if that scoping unit contains a USE statement that makes that procedure name accessible and the
corresponding name in the module is established to be specific; or

(5) if that scoping unit contains no declarations of that name, that scoping unit has a host scoping unit,
and that name is established to be specific in the host scoping unit.

4 A procedure name is not established in a scoping unit if it is neither established to be generic nor established to
be specific.

12.5.5.2 Resolving procedure references to names established to be generic

1 If the reference is consistent with a nonelemental reference to one of the specific interfaces of a generic interface
that has that name and either is in the scoping unit in which the reference appears or is made accessible by a
USE statement in the scoping unit, the reference is to the specific procedure in the interface block that provides
that interface. The rules in 12.4.3.4.5 ensure that there can be at most one such specific procedure.

2 Otherwise, if the reference is consistent with an elemental reference to one of the specific interfaces of a generic
interface that has that name and either is in the scoping unit in which the reference appears or is made accessible
by a USE statement in the scoping unit, the reference is to the specific elemental procedure in the interface block
that provides that interface. The rules in 12.4.3.4.5 ensure that there can be at most one such specific elemental
procedure.

3 Otherwise, if the scoping unit contains either an INTRINSIC attribute specification for that name or a USE
statement that makes that name accessible from a module in which the corresponding name is specified to have
the INTRINSIC attribute, and if the reference is consistent with the interface of that intrinsic procedure, the
reference is to that intrinsic procedure.

4 Otherwise, if the scoping unit has a host scoping unit, the name is established to be generic in that host scoping
unit, and there is agreement between the scoping unit and the host scoping unit as to whether the name is a
function name or a subroutine name, the name is resolved by applying the rules in this subclause to the host
scoping unit.

5 Otherwise, if the name is that of an intrinsic procedure and the reference is consistent with that intrinsic procedure,
the reference is to that intrinsic procedure.

NOTE 12.40
These rules allow particular specific procedures with the same generic identifier to be used for particular
array ranks and a general elemental version to be used for other ranks. For example, given an interface
block such as:

INTERFACE RANF
ELEMENTAL FUNCTION SCALAR_RANF (X)
REAL, INTENT(IN) :: X
END FUNCTION SCALAR_RANF
FUNCTION VECTOR_RANDOM(X)
REAL X(:)
REAL VECTOR_RANDOM(SIZE(X))
END FUNCTION VECTOR_RANDOM

12.5.5.2 Procedures 299

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

NOTE 12.40 (cont.)
END INTERFACE RANF

and a declaration such as:

REAL A(10,10), AA(10,10)

then the statement

A = RANF (AA)

is an elemental reference to SCALAR_RANF. The statement
A(6:10,2) = RANF(AA(6:10,2))

is a nonelemental reference to VECTOR_RANDOM.

NOTE 12.41

In the USE statement case, it is possible, because of the renaming facility, for the name in the reference to
be different from the name of the intrinsic procedure.

12.5.5.3 Resolving procedure references to names established to be only specific

If the scoping unit contains an interface body or EXTERNAL attribute specification for the name and the name
is the name of a dummy argument of the scoping unit, the dummy argument is a dummy procedure and the
reference is to that dummy procedure. That is, the procedure invoked by executing that reference is the procedure
supplied as the effective argument corresponding to that dummy procedure.

If the scoping unit contains an interface body or EXTERNAL attribute specification for the name and the name
is not the name of a dummy argument of the scoping unit, the reference is to an external procedure with that
name.

If the scoping unit contains a module subprogram, internal subprogram, or statement function that defines a proce-
dure with the name, the reference is to the procedure so defined.

If the scoping unit contains an INTRINSIC attribute specification for the name, the reference is to the intrinsic
with that name.

If the scoping unit contains a USE statement that makes a procedure accessible by the name, the reference is to
that procedure.

NOTE 12.42

Because of the renaming facility of the USE statement, the name in the reference may be different from the
original name of the procedure.

If none of the above apply, the scoping unit shall have a host scoping unit, and the reference is resolved by
applying the rules in this subclause to the host scoping unit.

12.5.5.4 Resolving procedure references to names not established

If the name is the name of a dummy argument of the scoping unit, the dummy argument is a dummy procedure
and the reference is to that dummy procedure. That is, the procedure invoked by executing that reference is the
procedure supplied as the effective argument corresponding to that dummy procedure.

Otherwise, if the name is the name of an intrinsic procedure, and if there is agreement between the reference and
the status of the intrinsic procedure as being a function or subroutine, the reference is to that intrinsic procedure.

300 Procedures 12.5.5.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

Otherwise, the reference is to an external procedure with that name.

12.5.6 Resolving type-bound procedure references

If the binding-name in a procedure-designator (R1221) is that of a specific type-bound procedure, the procedure
referenced is the one bound to that name in the dynamic type of the data-ref.

If the binding-name in a procedure-designator is that of a generic type bound procedure, the generic binding with
that name in the declared type of the data-ref is used to select a specific binding using the following criteria.

e If the reference is consistent with one of the specific bindings of that generic binding, that specific binding
is selected.

e Otherwise, the reference shall be consistent with an elemental reference to one of the specific bindings of
that generic binding; that specific binding is selected.

The reference is to the procedure bound to the same name as the selected specific binding in the dynamic type
of the data-ref.

12.6 Procedure definition

12.6.1 Intrinsic procedure definition

Intrinsic procedures are defined as an inherent part of the processor. A standard-conforming processor shall
include the intrinsic procedures described in Clause 13, but may include others. However, a standard-conforming
program shall not make use of intrinsic procedures other than those described in Clause 13.

12.6.2 Procedures defined by subprograms
12.6.2.1 General

A subprogram defines one or more procedures. A procedure is defined by the initial SUBROUTINE or FUNC-
TION statement, and each ENTRY statement defines an additional procedure (12.6.2.6).

A subprogram is specified to be elemental (12.8), pure (12.7), recursive, or a separate module subprogram
(12.6.2.5) by a prefiz-spec in its initial SUBROUTINE or FUNCTION statement.

R1225 prefiz is prefiz-spec [prefiz-spec | ...
R1226 prefix-spec is declaration-type-spec

or ELEMENTAL

or IMPURE

or MODULE

or PURE

or RECURSIVE

C1241 (R1225) A prefiz shall contain at most one of each prefiz-spec.

C1242 (R1225) A prefiz shall not specify both PURE and IMPURE.

C1243 (R1225) A prefiz shall not specify both ELEMENTAL and RECURSIVE.

C1244 (R1225) A prefiz shall not specify ELEMENTAL if proc-language-binding-spec appears in the function-

stmt or subroutine-stmt.

C1245 (R1225) MODULE shall appear only within the function-stmt or subroutine-stmt of a module subprogram
or of an interface body that is declared in the scoping unit of a module or submodule.

C1246 (R1225) If MODULE appears within the prefiz in a module subprogram, an accessible module procedure

12.5.6 Procedures 301

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

interface having the same name as the subprogram shall be declared in the module or submodule in which
the subprogram is defined, or shall be declared in an ancestor of that program unit.

C1247 (R1225) If MODULE appears within the prefiz in a module subprogram, the subprogram shall specify
the same characteristics and dummy argument names as its corresponding (12.6.2.5) module procedure
interface body.

C1248 (R1225) If MODULE appears within the prefiz in a module subprogram and a binding label is specified,
it shall be the same as the binding label specified in the corresponding module procedure interface body.

C1249 (R1225) If MODULE appears within the prefiz in a module subprogram, RECURSIVE shall appear if
and only if RECURSIVE appears in the prefiz in the corresponding module procedure interface body.

The RECURSIVE prefiz-spec shall appear if any procedure defined by the subprogram directly or indirectly
invokes itself or any other procedure defined by the subprogram.

If the prefiz-spec PURE appears, or the prefiz-spec ELEMENTAL appears and IMPURE does not appear, the
subprogram is a pure subprogram and shall meet the additional constraints of 12.7.

If the prefiz-spec ELEMENTAL appears, the subprogram is an elemental subprogram and shall meet the additional
constraints of 12.8.1.

12.6.2.2 Function subprogram
A function subprogram is a subprogram that has a FUNCTION statement as its first statement.

R1227 function-subprogram is function-stmt
[specification-part]
[execution-part |
[internal-subprogram-part |
end-function-stmt

R1228 function-stmt is [prefix | FUNCTION function-name B
B ([dummy-arg-name-list |) [suffiz]

C1250 (R1228) If RESULT appears, result-name shall not be the same as function-name and shall not be the same

as the entry-name in any ENTRY statement in the subprogram.

C1251 (R1228) If RESULT appears, the function-name shall not appear in any specification statement in the
scoping unit of the function subprogram.

R1229 proc-language-binding-spec is language-binding-spec

C1252 (R1229) A proc-language-binding-spec with a NAME= specifier shall not be specified in the function-stmt
or subroutine-stmt of an internal procedure, or of an interface body for an abstract interface or a dummy
procedure.

C1253 (R1229) If proc-language-binding-spec is specified for a procedure, each of the procedure’s dummy ar-
guments shall be a nonoptional interoperable variable (15.3.5, 15.3.6) or a nonoptional interoperable
procedure (15.3.7). If proc-language-binding-spec is specified for a function, the function result shall be
an interoperable scalar variable.

R1230 dummy-arg-name is name
C1254 (R1230) A dummy-arg-name shall be the name of a dummy argument.

R1231 suffix is proc-language-binding-spec | RESULT (result-name) |
or RESULT (result-name) [proc-language-binding-spec |

302 Procedures 12.6.2.2

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

R1232 end-function-stmt is END [FUNCTION [function-name]]
C1255 (R1227) An internal function subprogram shall not contain an internal-subprogram-part.

C1256 (R1232) If a function-name appears in the end-function-stmt, it shall be identical to the function-name
specified in the function-stmt.

The name of the function is function-name.

The type and type parameters (if any) of the result of the function defined by a function subprogram may be
specified by a type specification in the FUNCTION statement or by the name of the result variable appearing
in a type declaration statement in the specification part of the function subprogram. They shall not be specified
both ways. If they are not specified either way, they are determined by the implicit typing rules in force within
the function subprogram. If the function result is an array, allocatable, or a pointer, this shall be specified by
specifications of the name of the result variable within the function body. The specifications of the function
result attributes, the specification of dummy argument attributes, and the information in the procedure heading
collectively define the characteristics of the function (12.3.1).

If RESULT appears, the name of the result variable of the function is result-name and all occurrences of the
function name in ezecution-part statements in the scoping unit refer to the function itself. If RESULT does not
appear, the result variable is function-name and all occurrences of the function name in ezecution-part statements
in the scoping unit are references to the result variable. The characteristics (12.3.3) of the function result are
those of the result variable. On completion of execution of the function, the value returned is that of its result
variable. If the function result is a pointer, the shape of the value returned by the function is determined by the
shape of the result variable when the execution of the function is completed. If the result variable is not a pointer,
its value shall be defined by the function. If the function result is a pointer, on return the pointer association
status of the result variable shall not be undefined.

NOTE 12.43

The result variable is similar to any other variable local to a function subprogram. Its existence begins
when execution of the function is initiated and ends when execution of the function is terminated. However,
because the final value of this variable is used subsequently in the evaluation of the expression that invoked
the function, an implementation may wish to defer releasing the storage occupied by that variable until
after its value has been used in expression evaluation.

NOTE 12.44

An example of a recursive function is:

RECURSIVE FUNCTION CUMM_SUM (ARRAY) RESULT (C_SUM)
REAL, INTENT (IN), DIMENSION (:) :: ARRAY
REAL, DIMENSION (SIZE (ARRAY)) ::C_SUM
INTEGER N
N = SIZE (ARRAY)
IF (N <= 1) THEN
C_SUM = ARRAY

ELSE

N=N/2

C_SUM (:N) = CUMM_SUM (ARRAY (:N))

C_SUM (N+1:) = C_SUM (N) + CUMM_SUM (ARRAY (N+1:))
END IF

END FUNCTION CUMM_SUM

NOTE 12.45

The following is an example of the declaration of an interface body with the BIND attribute, and a reference
to the procedure declared.

12.6.2.2 Procedures 303

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

NOTE 12.45 (cont.)
USE, INTRINSIC :: ISO_C_BINDING

INTERFACE
FUNCTION JOE (I, J, R) BIND(C,NAME="FrEd")
USE, INTRINSIC :: ISO_C_BINDING
INTEGER(C_INT) :: JOE
INTEGER(C_INT), VALUE :: I, J
REAL(C_FLOAT), VALUE :: R
END FUNCTION JOE
END INTERFACE

INT = JOE(1_C_INT, 3_C_INT, 4.0_C_FLOAT)
END PROGRAM

The invocation of the function JOE results in a reference to a function with a binding label "FrEd". FrEd
may be a C function described by the C prototype

int FrEd(int n, int m, float x);

12.6.2.3 Subroutine subprogram
A subroutine subprogram is a subprogram that has a SUBROUTINE statement as its first statement.

R1233 subroutine-subprogram is subroutine-stmt
[specification-part |
[execution-part |
[internal-subprogram-part |
end-subroutine-stmt

R1234 subroutine-stmt is [prefix | SUBROUTINE subroutine-name B

[
B [([dummy-arg-list |) [proc-language-binding-spec |]

C1257 (R1234) The prefiz of a subroutine-stmt shall not contain a declaration-type-spec.

R1235 dummy-arg is dummy-arg-name
or *
R1236 end-subroutine-stmt is END [SUBROUTINE [subroutine-name]]

C1258 (R1233) An internal subroutine subprogram shall not contain an internal-subprogram-part.

C1259 (R1236) If a subroutine-name appears in the end-subroutine-stmt, it shall be identical to the subroutine-
name specified in the subroutine-stmt.

The name of the subroutine is subroutine-name.

12.6.2.4 Instances of a subprogram

When a procedure defined by a subprogram is invoked, an instance of that subprogram is created. Execu-
tion begins with the first executable construct following the FUNCTION, SUBROUTINE, or ENTRY statement
specifying the name of the procedure invoked.

When a statement function is invoked, an instance of that statement function is created.
When execution of an instance completes it ceases to exist.

Each instance has an independent sequence of execution and an independent set of dummy arguments and
local unsaved data objects. If an internal procedure or statement function in the subprogram is invoked by name

304 Procedures 12.6.2.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

from an instance of the subprogram or from an internal subprogram or statement function that has access to the
entities of that instance, the created instance of the internal subprogram or statement function also has access to the
entities of that instance of the host subprogram. If an internal procedure is invoked via a dummy procedure or
procedure pointer, the internal procedure has access to the entities of the host instance of that dummy procedure
or procedure pointer.

All other entities are shared by all instances of the subprogram.

NOTE 12.46

The value of a saved data object appearing in one instance may have been defined in a previous instance
or by initialization in a DATA statement or type declaration statement.

12.6.2.5 Separate module procedures

A separate module procedure is a module procedure defined by a separate-module-subprogram, by a function-
subprogram whose initial statement contains the keyword MODULE, or by a subroutine-subprogram whose ini-
tial statement contains the keyword MODULE. Its interface is declared by a module procedure interface body
(12.4.3.2) in the specification-part of the module or submodule in which the procedure is defined, or in an ancestor
module or submodule.

R1237 separate-module-subprogram is — mp-subprogram-stmt
[specification-part |
[execution-part |
[internal-subprogram-part |
end-mp-subprogram-stmt

R1238 mp-subprogram-stmt is MODULE PROCEDURE procedure-name

R1239 end-mp-subprogram-stmt ~ is END [PROCEDURE [procedure-name]]

C1260 (R1237) The procedure-name shall be the same as the name of an accessible module procedure interface
that is declared in the module or submodule in which the separate-module-subprogram is defined, or is
declared in an ancestor of that program unit.

C1261 (R1239) If a procedure-name appears in the end-mp-subprogram-stmt, it shall be identical to the procedure-
name in the MODULE PROCEDURE statement.

A module procedure interface body and a subprogram that defines a separate module procedure correspond
if they have the same name, and the module procedure interface is declared in the same program unit as the
subprogram or is declared in an ancestor of the program unit in which the procedure is defined and is accessible
by host association from that ancestor. A module procedure interface body shall not correspond to more than
one subprogram that defines a separate module procedure.

NOTE 12.47

A separate module procedure can be accessed by use association only if its interface body is declared in the
specification part of a module and is public.

If a procedure is defined by a separate-module-subprogram, its characteristics are specified by the corresponding
module procedure interface body.

If a separate module procedure is a function defined by a separate-module-subprogram, the result variable name is
determined by the FUNCTION statement in the module procedure interface body. Otherwise, the result variable
name is determined by the FUNCTION statement in the module subprogram.

12.6.2.5 Procedures 305

10

11

12

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

12.6.2.6 ENTRY statement

An ENTRY statement permits a procedure reference to begin with a particular executable statement within the function or

subroutine subprogram in which the ENTRY statement appears.

R1240 entry-stmt is ENTRY entry-name [([dummy-arg-list |) | suffiz]|

C1262 (R1240) If RESULT appears, the entry-name shall not appear in any specification or type-declaration statement in the
scoping unit of the function program.

C1263 (R1240) An entry-stmt shall appear only in an external-subprogram or a module-subprogram that does not define a separate
module procedure. An entry-stmt shall not appear within an ezxecutable-construct.

C1264 (R1240) RESULT shall appear only if the entry-stmt is in a function subprogram.
C1265 (R1240) A dummy-arg shall not be an alternate return indicator if the ENTRY statement is in a function subprogram.

C1266 (R1240) If RESULT appears, result-name shall not be the same as the function-name in the FUNCTION statement and
shall not be the same as the entry-name in any ENTRY statement in the subprogram.

Optionally, a subprogram may have one or more ENTRY statements.

If the ENTRY statement is in a function subprogram, an additional function is defined by that subprogram. The name of the function
is entry-name and the name of its result variable is result-name or is entry-name if no result-name is provided. The characteristics
of the function result are specified by specifications of the result variable. The dummy arguments of the function are those specified
in the ENTRY statement. If the characteristics of the result of the function named in the ENTRY statement are the same as the
characteristics of the result of the function named in the FUNCTION statement, their result variables identify the same variable,
although their names need not be the same. Otherwise, they are storage associated and shall all be nonpointer, nonallocatable scalars

that are default integer, default real, double precision real, default complex, or default logical.

If the ENTRY statement is in a subroutine subprogram, an additional subroutine is defined by that subprogram. The name of the

subroutine is entry-name. The dummy arguments of the subroutine are those specified in the ENTRY statement.

The order, number, types, kind type parameters, and names of the dummy arguments in an ENTRY statement may differ from the
order, number, types, kind type parameters, and names of the dummy arguments in the FUNCTION or SUBROUTINE statement

in the containing subprogram.

Because an ENTRY statement defines an additional function or an additional subroutine, it is referenced in the same manner as any

other function or subroutine (12.5).

In a subprogram, a name that appears as a dummy argument in an ENTRY statement shall not appear in an executable statement
preceding that ENTRY statement, unless it also appears in a FUNCTION, SUBROUTINE, or ENTRY statement that precedes the

executable statement.

In a subprogram, a dummy argument specified in an ENTRY statement shall not appear in an executable statement preceding that
ENTRY statement, unless it also appears in a FUNCTION, SUBROUTINE, or ENTRY statement that precedes the executable

statement.

In a subprogram, a name that appears as a dummy argument in an ENTRY statement shall not appear in the expression of a statement
function unless the name is also a dummy argument of the statement function, appears in a FUNCTION or SUBROUTINE statement,

or appears in an ENTRY statement that precedes the statement function statement.

If a dummy argument appears in an executable statement, the execution of the executable statement is permitted during the execution
of a reference to the function or subroutine only if the dummy argument appears in the dummy argument list of the procedure name

referenced.

If a dummy argument is used in a specification expression to specify an array bound or character length of an object, the appearance
of the object in a statement that is executed during a procedure reference is permitted only if the dummy argument appears in the

dummy argument list of the procedure name referenced and it is present (12.5.2.12).

A scoping unit containing a reference to a procedure defined by an ENTRY statement may have access to an interface body for the

306 Procedures 12.6.2.6

13

14

15

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

procedure. The procedure header for the interface body shall be a FUNCTION statement for an entry in a function subprogram and
shall be a SUBROUTINE statement for an entry in a subroutine subprogram.

The keyword RECURSIVE is not used in an ENTRY statement. Instead, the presence or absence of RECURSIVE in the initial
SUBROUTINE or FUNCTION statement controls whether the procedure defined by an ENTRY statement is permitted to reference
itself or another procedure defined by the subprogram.

The keywords PURE and IMPURE are not used in an ENTRY statement. Instead, the procedure defined by an ENTRY statement

is pure if and only if the subprogram is a pure subprogram.

The keyword ELEMENTAL is not used in an ENTRY statement. Instead, the procedure defined by an ENTRY statement is elemental
if and only if ELEMENTAL is specified in the SUBROUTINE or FUNCTION statement.

12.6.2.7 RETURN statement

R1241 return-stmt is RETURN [scalar-int-expr |

C1267 (R1241) The return-stmt shall be in the scoping unit of a function or subroutine subprogram.
C1268 (R1241) The scalar-int-expr is allowed only in the scoping unit of a subroutine subprogram.

Execution of the RETURN statement completes execution of the instance of the subprogram in which it
appears. If the expression appears and has a value n between 1 and the number of asterisks in the dummy argument list, the CALL
statement that invoked the subroutine transfers control to the statement identified by the nth alternate return specifier in the actual
argument list of the referenced procedure. If the expression is omitted or has a value outside the required range, there is no transfer

of control to an alternate return.

Execution of an end-function-stmt, end-mp-subprogram-stmt, or end-subroutine-stmt is equivalent to execution
of a RETURN statement with no expression.

12.6.2.8 CONTAINS statement
R1242 contains-stmt is CONTAINS

The CONTAINS statement separates the body of a main program, module, submodule, or subprogram from
any internal or module subprograms it may contain, or it introduces the type-bound procedure part of a derived-
type definition (4.5.2). The CONTAINS statement is not executable.

12.6.3 Definition and invocation of procedures by means other than Fortran

A procedure may be defined by means other than Fortran. The interface of a procedure defined by means other
than Fortran may be specified by an interface body or procedure declaration statement. A reference to such a
procedure is made as though it were defined by an external subprogram.

If the interface of a procedure has a proc-language-binding-spec, the procedure is interoperable (15.5).
Interoperation with C functions is described in 15.5.

NOTE 12.48

‘ For explanatory information on definition of procedures by means other than Fortran, see subclause C.9.2.

12.6.4 Statement function

A statement function is a function defined by a single statement.

R1243 stmit-function-stmt is function-name ([dummy-arg-name-list |) = scalar-expr

C1269 (R1243) The primaries of the scalar-ezpr shall be constants (literal and named), references to variables, references to
functions and function dummy procedures, and intrinsic operations. If scalar-expr contains a reference to a function or a

12.6.2.7 Procedures 307

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

function dummy procedure, the reference shall not require an explicit interface, the function shall not require an explicit
interface unless it is an intrinsic function, the function shall not be a transformational intrinsic, and the result shall be
scalar. If an argument to a function or a function dummy procedure is an array, it shall be an array name. If a reference
to a statement function appears in scalar-expr, its definition shall have been provided earlier in the scoping unit and shall
not be the name of the statement function being defined.

C1270 (R1243) Named constants in scalar-ezpr shall have been declared earlier in the scoping unit or made accessible by use
or host association. If array elements appear in scalar-expr, the array shall have been declared as an array earlier in the
scoping unit or made accessible by use or host association.

C1271 (R1243) If a dummy-arg-name, variable, function reference, or dummy function reference is typed by the implicit typing
rules, its appearance in any subsequent type declaration statement shall confirm this implied type and the values of any
implied type parameters.

C1272 (R1243) The function-name and each dummy-arg-name shall be specified, explicitly or implicitly, to be scalar.

C1273 (R1243) A given dummy-arg-name shall not appear more than once in any dummy-arg-name-list.

The definition of a statement function with the same name as an accessible entity from the host shall be preceded by the declaration

of its type in a type declaration statement.

The dummy arguments have a scope of the statement function statement. Each dummy argument has the same type and type

parameters as the entity of the same name in the scoping unit containing the statement function.
A statement function shall not be supplied as a procedure argument.

The value of a statement function reference is obtained by evaluating the expression using the values of the actual arguments for the
values of the corresponding dummy arguments and, if necessary, converting the result to the declared type and type parameters of

the function.

A function reference in the scalar expression shall not cause a dummy argument of the statement function to become redefined or
undefined.

12.7 Pure procedures

A pure procedure is

e a pure intrinsic procedure (13.1),
e defined by a pure subprogram,
e a dummy procedure that has been specified to be PURE, or

® a statement function that references only pure functions.

A pure subprogram is a subprogram that has the prefiz-spec PURE or that has the prefiz-spec ELEMENTAL
and does not have the prefiz-spec IMPURE. The following additional constraints apply to pure subprograms.

C1274 The specification-part of a pure function subprogram shall specify that all its nonpointer dummy data
objects have INTENT (IN).

C1275 The specification-part of a pure subroutine subprogram shall specify the intents of all its nonpointer
dummy data objects.

C1276 A local variable of a pure subprogram, or of a BLOCK construct within a pure subprogram, shall not
have the SAVE attribute.

NOTE 12.49

Variable initialization in a type-declaration-stmt or a data-stmt implies the SAVE attribute; therefore, such
initialization is also disallowed.

308 Procedures 12.7

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

c1277

C1278

C1279

C1280

The specification-part of a pure subprogram shall specify that all its dummy procedures are pure.

If a procedure that is neither an intrinsic procedure nor a statement function is used in a context that requires
it to be pure, then its interface shall be explicit in the scope of that use. The interface shall specify that
the procedure is pure.

All internal subprograms in a pure subprogram shall be pure.

In a pure subprogram any designator with a base object that is in common or accessed by host or use
association, is a dummy argument of a pure function, is a dummy argument with INTENT (IN) of a
pure subroutine, is a coindexed object, or an object that is storage associated with any such variable,
shall not be used

1) in a variable definition context (16.6.7),
2

)
3) as the expr corresponding to a component with the POINTER attribute in a structure-constructor,
4)

as the data-target in a pointer-assignment-stmt,

~ o~~~

as the expr of an intrinsic assignment statement in which the variable is of a derived type if the
derived type has a pointer component at any level of component selection, or

(5) as an actual argument corresponding to a dummy argument with INTENT (OUT) or INTENT
(INOUT) or with the POINTER attribute.

NOTE 12.50

Item 3 requires that processors be able to determine if entities with the PRIVATE attribute or with private
components have a pointer component.

C1281

C1282

C1283
C1284

C1285

Any procedure referenced in a pure subprogram, including one referenced via a defined operation, defined
assignment, defined input/output, or finalization, shall be pure.

A pure subprogram shall not contain a print-stmt, open-stmt, close-stmt, backspace-stmt, endfile-stmt,
rewind-stmt, flush-stmt, wait-stmt, or inquire-stmt.

A pure subprogram shall not contain a read-stmt or write-stmt whose io-unit is a file-unit-number or *.
A pure subprogram shall not contain a stop-stmt or allstop-stmt.

A pure subprogram shall not contain an image control statement (8.5.1).

NOTE 12.51

The above constraints are designed to guarantee that a pure procedure is free from side effects (modifica-
tions of data visible outside the procedure), which means that it is safe to reference it in constructs such
as a FORALL assignment-stmt or a DO CONCURRENT construct, where there is no explicit order of
evaluation.

The constraints on pure subprograms may appear complicated, but it is not necessary for a programmer to be
intimately familiar with them. From the programmer’s point of view, these constraints can be summarized
as follows: a pure subprogram shall not contain any operation that could conceivably result in an assignment
or pointer assignment to a common variable, a variable accessed by use or host association, or an INTENT
(IN) dummy argument; nor shall a pure subprogram contain any operation that could conceivably perform
any external file input/output or STOP operation. Note the use of the word conceivably; it is not sufficient
for a pure subprogram merely to be side-effect free in practice. For example, a function that contains an
assignment to a global variable but in a block that is not executed in any invocation of the function is
nevertheless not a pure function. The exclusion of functions of this nature is required if strict compile-time
checking is to be used.

It is expected that most library procedures will conform to the constraints required of pure procedures,
and so can be declared pure and referenced in FORALL statements and constructs, DO CONCURRENT
constructs, and within user-defined pure procedures.

12.7 Procedures 309

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

NOTE 12.52

Pure subroutines are included to allow subroutine calls from pure procedures in a safe way, and to allow
forall-assignment-stmts to be defined assignments. The constraints for pure subroutines are based on the
same principles as for pure functions, except that side effects to INTENT (OUT), INTENT (INOUT), and

pointer dummy arguments are permitted.

12.8 Elemental procedures

12.8.1 Elemental procedure declaration and interface

An elemental procedure is an elemental intrinsic procedure or a procedure that is defined by an elemental sub-
program.

An elemental subprogram has the prefiz-spec ELEMENTAL. An elemental subprogram is a pure subprogram
unless it has the prefiz-spec IMPURE. The following additional constraints apply to elemental subprograms.

C1286 All dummy arguments of an elemental procedure shall be scalar noncoarray dummy data objects and
shall not have the POINTER or ALLOCATABLE attribute.

(C1287 The result variable of an elemental function shall be scalar and shall not have the POINTER or ALLO-
CATABLE attribute.

C1288 In the scoping unit of an elemental subprogram, an object designator with a dummy argument as the
base object shall not appear in a specification-expr except as the designator in a type parameter inquiry
(6.4.4) or as the argument to one of the intrinsic functions BIT_SIZE, DIGITS, EPSILON, HUGE, KIND,
LEN, MAXEXPONENT, MINEXPONENT, PRECISION, RADIX, RANGE, or TINY.

NOTE 12.53
The restriction on dummy arguments in specification expressions is imposed primarily to facilitate opti-
mization. An example of usage that is not permitted is

ELEMENTAL REAL FUNCTION F (A, N)
REAL, INTENT (IN) :: A
INTEGER, INTENT (IN) :: N
REAL :: WORK_ARRAY(N) ! Invalid

END FUNCTION F
An example of usage that is permitted is
ELEMENTAL REAL FUNCTION F (A)

REAL, INTENT (IN) :: A
REAL (SELECTED_REAL_KIND (PRECISION (A)#*2)) :: WORK

END FUNCTION F

12.8.2 Elemental function actual arguments and results

If a generic name or a specific name is used to reference an elemental function, the shape of the result is the
same as the shape of the actual argument with the greatest rank. If there are no actual arguments or the actual
arguments are all scalar, the result is scalar. For those elemental functions that have more than one argument,
all actual arguments shall be conformable. In the array case, the values of the elements, if any, of the result are
the same as would have been obtained if the scalar function had been applied separately, in array element order,
to corresponding elements of each array actual argument.

310 Procedures 12.8

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

NOTE 12.54

An example of an elemental reference to the intrinsic function MAX:

if X and Y are arrays of shape (M, N),

MAX (X, 0.0, Y)

is an array expression of shape (M, N) whose elements have values

MAX (X(I, J), 0.0, Y(I, 1)), I=1,2, ..., M, J=1,2, ..., N

12.8.3 Elemental subroutine actual arguments

An elemental subroutine has only scalar dummy arguments, but may have array actual arguments. In a reference
to an elemental subroutine, either all actual arguments shall be scalar, or all actual arguments corresponding to
INTENT (OUT) and INTENT (INOUT) dummy arguments shall be arrays of the same shape and the remaining
actual arguments shall be conformable with them. In the case that the actual arguments corresponding to
INTENT (OUT) and INTENT (INOUT) dummy arguments are arrays, the values of the elements, if any, of the
results are the same as would be obtained if the subroutine had been applied separately, in array element order,
to corresponding elements of each array actual argument.

In a reference to the intrinsic subroutine MVBITS, the actual arguments corresponding to the TO and FROM
dummy arguments may be the same variable and may be associated scalar variables or associated array variables
all of whose corresponding elements are associated. Apart from this, the actual arguments in a reference to an
elemental subroutine must satisfy the restrictions of 12.5.2.13.

12.8.3 Procedures 311

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

312 Procedures 12.8.3

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

13 Intrinsic procedures and modules

13.1 Classes of intrinsic procedures

There are four classes of intrinsic procedures: inquiry functions, elemental functions, transformational functions,
and subroutines. Some intrinsic subroutines are elemental.

An intrinsic inquiry function is one whose result depends on the properties of one or more of its arguments instead
of their values; in fact, these argument values may be undefined. Unless the description of an intrinsic inquiry
function states otherwise, these arguments are permitted to be unallocated allocatable variables or pointers that
are undefined or disassociated. An elemental intrinsic function is one that is specified for scalar arguments,
but may be applied to array arguments as described in 12.8. All other intrinsic functions are transformational
functions; they almost all have one or more array arguments or an array result. All standard intrinsic functions
are pure.

The subroutine MOVE_ALLOC and the elemental subroutine MVBITS are pure. No other standard intrinsic
subroutine is pure.

Generic names of standard intrinsic procedures are listed in 13.5. In most cases, generic functions accept
arguments of more than one type and the type of the result is the same as the type of the arguments. Specific
names of standard intrinsic functions with corresponding generic names are listed in 13.6.

If an intrinsic procedure is used as an actual argument to a procedure, its specific name shall be used and it
may be referenced in the called procedure only with scalar arguments. If an intrinsic procedure does not have a
specific name, it shall not be used as an actual argument (12.5.2.9).

Elemental intrinsic procedures behave as described in 12.8.

13.2 Arguments to intrinsic procedures

13.2.1 General rules

All intrinsic procedures may be invoked with either positional arguments or argument keywords (12.5). The
descriptions in 13.5 through 13.7 give the argument keyword names and positional sequence for standard intrinsic
procedures.

Many of the intrinsic procedures have optional arguments. These arguments are identified by the notation
“optional” in the argument descriptions. In addition, the names of the optional arguments are enclosed in square
brackets in description headings and in lists of procedures. The valid forms of reference for procedures with
optional arguments are described in 12.5.2.

NOTE 13.1

The text CMPLX (X [, Y, KIND]) indicates that Y and KIND are both optional arguments. Valid ref-
erence forms include CMPLX(z), CMPLX(z, y), CMPLX(z, KIND=kind), CMPLX(z, y, kind), and CM-
PLX(KIND=*kind, X=z, Y=y).

NOTE 13.2

Some intrinsic procedures impose additional requirements on their optional arguments. For example, SE-
LECTED_REAL_KIND requires that at least one of its optional arguments be present, and RANDOM -
SEED requires that at most one of its optional arguments be present.

13 Intrinsic procedures and modules 313

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

The dummy arguments of the specific intrinsic procedures in 13.6 have INTENT (IN). The dummy arguments of
the intrinsic procedures in 13.7 have INTENT (IN) if the intent is not stated explicitly.

The actual argument corresponding to an intrinsic function dummy argument named KIND shall be a scalar
integer initialization expression and its value shall specify a representation method for the function result that
exists on the processor.

Intrinsic subroutines that assign values to arguments of type character do so in accordance with the rules of
intrinsic assignment (7.2.1.3).

13.2.2 The shape of array arguments

Unless otherwise specified, the intrinsic inquiry functions accept array arguments for which the shape need not
be defined. The shape of array arguments to transformational and elemental intrinsic functions shall be defined.

13.2.3 Mask arguments

Some array intrinsic functions have an optional MASK argument of type logical that is used by the function to
select the elements of one or more arguments to be operated on by the function. Any element not selected by the
mask need not be defined at the time the function is invoked.

The MASK affects only the value of the function, and does not affect the evaluation, prior to invoking the
function, of arguments that are array expressions.

13.3 Bit model

13.3.1 General

The bit manipulation procedures are described in terms of a model for the representation and behavior of bits
on a Processor.

For the purposes of these procedures, a bit is defined to be a binary digit w located at position k of a nonnegative
integer scalar object based on a model nonnegative integer defined by

z—1
j= wyx 2k
k=0

and for which w; may have the value 0 or 1. This defines a sequence of bits w,_1 ... wp, with w,_; the leftmost
bit and wq the rightmost bit. The positions of bits in the sequence are numbered from right to left, with the
position of the rightmost bit being zero. The length of a sequence of bits is z. An example of a model number
compatible with the examples used in 13.4 would have z = 32, thereby defining a 32-bit integer.

The interpretation of a negative integer as a sequence of bits is processor dependent.
The inquiry function BIT_SIZE provides the value of the parameter z of the model.

Effectively, this model defines an integer object to consist of z bits in sequence numbered from right to left from
0 to z — 1. This model is valid only in the context of the use of such an object as the argument or result of an
intrinsic procedure that interprets that object as a sequence of bits. In all other contexts, the model defined for
an integer in 13.4 applies. In particular, whereas the models are identical for r = 2 and w,_; = 0, they do not
correspond for r # 2 or w,_1 = 1 and the interpretation of bits in such objects is processor dependent.

13.3.2 Bit sequence comparisons

When bit sequences of unequal length are compared, the shorter sequence is considered to be extended to the
length of the longer sequence by padding with zero bits on the left.

314 Intrinsic procedures and modules 13.2.2

08-007r2:2008/03/11 CD 1539-1 ISO/IEC SC22/WG5/N1723

2 Bit sequences are compared from left to right, one bit at a time, until unequal bits are found or all bits have been
compared and found to be equal. If unequal bits are found, the sequence with zero in the unequal position is
considered to be less than the sequence with one in the unequal position. Otherwise the sequences are considered
to be equal.

13.3.3 Bit sequences as arguments to INT and REAL

1 When a boz-literal-constant is the argument A of the intrinsic function INT or REAL,

e if the length of the sequence of bits specified by A is less than the size in bits of a scalar variable of the
same type and kind type parameter as the result, the boz-literal-constant is treated as if it were extended
to a length equal to the size in bits of the result by padding on the left with zero bits, and

e if the length of the sequence of bits specified by A is greater than the size in bits of a scalar variable of the
same type and kind type parameter as the result, the boz-literal-constant is treated as if it were truncated
from the left to a length equal to the size in bits of the result.

C1301 If a boz-literal-constant is truncated as an argument to the intrinsic function REAL, the discarded bits
shall all be zero.

NOTE 13.3

The result values of the intrinsic functions CMPLX and DBLE are defined by references to the intrinsic
function REAL with the same arguments. Therefore, the padding and truncation of boz-literal-constant
arguments to those intrinsic functions is the same as for the intrinsic function REAL.

13.4 Numeric models

1 The numeric manipulation and inquiry functions are described in terms of a model for the representation and
behavior of numbers on a processor. The model has parameters that are determined so as to make the model
best fit the machine on which the program is executed.

2 The model set for integer ¢ is defined by

qg—1
. k
1=58X g wy X T
k=0

4 where r is an integer exceeding one, ¢ is a positive integer, each wy, is a nonnegative integer less than r, and s is
+1 or —1.

5 The model set for real x is defined by

0 or

xr = P
sxbefokxb_k,

k=1

7 where b and p are integers exceeding one; each fi is a nonnegative integer less than b, with fi nonzero; s is +1 or
—1; and e is an integer that lies between some integer maximum e,,x and some integer minimum e,;, inclusively.
For z = 0, its exponent e and digits fi are defined to be zero. The integer parameters r and ¢ determine the
set of model integers and the integer parameters b, p, emin, and epax determine the set of model floating-point
numbers. The parameters of the integer and real models are available for each representation method of the
integer and real types. The parameters characterize the set of available numbers in the definition of the model.
Intrinsic functions provide the values of some parameters and other values related to the models.

13.3.3 Intrinsic procedures and modules 315

ISO/IEC SC22/WG5/N1723 CD 1539-1 08-007r2:2008/03/11

8 There is also an extended model set for each kind of real x; this extended model is the same as the ordinary
model except that there are no limits on the range of the exponent e.

NOTE 13.4
Examples of these functions in 13.7 use the models

30
1 =8 X E wk><2]~C
k=0

and

24
e 1 —k
z=0o0rsx2°x <2+kzsz><2) —126 < e < 127

13.5 Standard generic intrinsic procedures

1 For all of the standard intrinsic procedures, the arguments shown are the names that shall be used for argument
keywords if the keyword form is used for actual arguments.

NOTE 13.5

For example, a reference to CMPLX may be written in the form CMPLX (A, B, M) or in the form
CMPLX (Y =B, KIND =M, X = A).

NOTE 13.6

Many of the argument keywords have names that are indicative of their usage. For example:
KIND Describes the kind type parameter of the result
STRING, STRING_A An arbitrary character string
BACK Controls the direction of string scan

(forward or backward)

MASK A mask that may be applied to the arguments
DIM A selected dimension of an array argument

2 In the Class column of Table 13.1,
E indicates that the procedure is an elemental function,
ES indicates that the procedure is an elemental subroutine,
I indicates that the procedure is an inquiry function,
PS indicates that the procedure is a pure subroutine,
S indicates that the procedure is a subroutine but not pure, and
T indicates that the procedure in a transformational function.

Table 13.1: Standard generic intrinsic procedure summary

Procedure Arguments Class Description
ABS (A) E Absolute value.
ACHAR (I], KIND]) E Character in a specified position of the ASCII

collating sequence. It is the inverse of the
TACHAR function.

ACOS (X) E Arccosine (inverse cosine) function.

ACOSH (X) E Inverse hyperbolic cosine function.

316 Intrinsic procedures and modules 13.5

08-007r2:2008/03 /11

Table 13.1: Standard generic intrinsic procedure summary

CD 1539-1

ISO/IEC SC22/WG5/N1

(cont.)

Procedure Arguments Class Description
ADJUSTL (STRING) E Adjust to the left, removing leading blanks
and inserting trailing blanks.
ADJUSTR (STRING) E Adjust to the right, removing trailing blanks
and inserting leading blanks.
AIMAG (Z) E Imaginary part of a complex number.
AINT (A [, KIND]) E Truncation toward zero to a whole number.
ALL (MASK [, DIM]) T Logical conjunction of elements of MASK
along dimension DIM.
ALLOCATED (ARRAY) or (SCALAR) I True if and only if an allocatable variable is
allocated.
ANINT (A [, KIND]) E Nearest whole number.
ANY (MASK [, DIM]) T Logical inclusive disjunction of elements of
MASK along dimension DIM.
ASIN (X) E Arcsine (inverse sine) function.
ASINH (X) E Inverse hyperbolic sine function.
ASSOCIATED (POINTER I True if and only if POINTER is associated or
[, TARGET]) POINTER is associated with TARGET.
ATAN (X) or (Y, X) E Arctangent (inverse tangent) function.
ATAN2 (Y, X) E Arctangent (inverse tangent) function.
ATANH (X) E Inverse hyperbolic tangent function.
BESSEL_JO (X) E Bessel function of the first kind and order zero.
BESSEL_J1 (X) E Bessel function of the first kind and order one.
BESSEL_JN (N, X) E Bessel function of the first kind and order N.
BESSEL_JN (N1, N2, X) T Bessel function of the first kind and order N.
BESSEL_Y0 (X) E Bessel function of the second kind and order
Z€ro.
BESSEL_Y1 (X) E Bessel function of the second kind and order
one.
BESSEL_YN (N, X) E Bessel function of the second kind and order
N.
BESSEL_YN (N1, N2, X) T Bessel function of the second kind and order
N.
BGE (1, J) E True if and only if I is bitwise greater than or
equal to J.
BGT 1, J) E True if and only if T is bitwise greater than J.
BLE (I, J) E True if and only if I is bitwise less than or
equal to J.
BLT (1, J) E True if and only if T is bitwise less than J.
BIT_SIZE Q8] I Number of bits z defined by the model of 13.3.
BTEST (I, POS) E True if and only if a specified bit of an integer
value is one.
CEILING (A [, KIND]) E Least integer greater than or equal to A.
CHAR (I [, KIND]) E Character in a given position of the processor
collating sequence associated with the speci-
fied kind type parameter. It is the inverse of
the ICHAR function.
CMPLX (X [, Y, KIND]) E Conversion to complex type.
CO_LBOUND (COARRAY [, DIM, I Lower cobounds or a specified lower cobound
KIND]) of a coarray.
CO_UBOUND (COARRAY [, DIM, I Upper cobounds or a specified upper cobound
KIND]) of a coarray.
COMMAND_ARGU- () I Number of command arguments.

MENT_COUNT

13.5

Intrinsic procedures and modules

723

317

ISO/IEC SC22/WG5/N1723

Table 13.1: Standard generic intrinsic procedure summary

CD 1539-1

(cont.)

Procedure Arguments Class Description
CONJG (Z) E Conjugate of a complex number.
COSs (X) E Cosine function.
COSH (X) E Hyperbolic cosine function.
COUNT (MASK [, DIM, KIND)) T Number of true elements of MASK along di-
mension DIM.
CPU_TIME (TIME) S Return the processor time.
CSHIFT (ARRAY, SHIFT |, T Circular shift on an array expression of rank
DIM]) one or circular shifts on all the complete rank
one sections along a given dimension of an ar-
ray expression of rank two or greater. Ele-
ments shifted out at one end of a section are
shifted in at the other end. Different sections
may be shifted by different amounts and in
different directions.
DATE_AND_TIME (|[DATE, TIME, ZONE, S Return data about the real-time clock and
VALUES]) date in a form compatible with the represen-
tations defined in ISO 8601:1988.
DBLE (A) E Conversion to double precision real type.
DIGITS (X) I Number of significant digits of a numeric
model.
DIM (X,Y) E Maximum of X — Y and zero.
DOT_PRODUCT (VECTORA, T Dot-product multiplication of numeric or log-
VECTOR_B) ical vectors.
DPROD (X,Y) E Double precision real product.
DSHIFTL (I, J, SHIFT) E Combined left shift.
DSHIFTR (I, J, SHIFT) E Combined right shift.
EOSHIFT (ARRAY, SHIFT |, T End-off shift on an array expression of rank
BOUNDARY, DIM]) one or end-off shifts on all the complete rank-
one sections along a given dimension of an ar-
ray expression of rank two or greater. Ele-
ments are shifted off at one end of a section
and copies of a boundary value are shifted in
at the other end. Different sections may have
different boundary values and may be shifted
by different amounts and in different direc-
tions.
EPSILON (X) I Positive model number that is almost negligi-
ble compared to unity.
ERF (X) E Error function.
ERFC (X) E Complementary error function.
ERFC_SCALED (X) E Exponentially-scaled complementary error
function.
EXECUTE_COM- (COMMAND [, WAIT, S Execute the command line specified by the
MAND_LINE EXITSTAT, CMDSTAT, string COMMAND.
CMDMSG])
EXP (X) E Exponential function.
EXPONENT (X) E Exponent part of the argument when repre-
sented as an extended model number.
EXTENDS_-TYPE.- (A, MOLD) I True if and only if the dynamic type of A is

OF

318

Intrinsic procedures and modules

an extension of the dynamic type of MOLD.

08-007r2:2008/03 /11

13.5

08-007r2:2008/03 /11

Table 13.1: Standard generic intrinsic procedure summary

CD 1539-1

ISO/IEC SC22/WG5/N1

(cont.)

Procedure Arguments Class Description

FINDLOC (ARRAY, VALUE, DIM T Location of the first element of ARRAY iden-
[, MASK, KIND, tified by MASK along dimension DIM having
BACK]) or (ARRAY, a value equal to VALUE.
VALUE [, MASK,
KIND, BACK])

FLOOR (A [, KIND]) E Greatest integer less than or equal to A.

FRACTION (X) E Fractional part of the extended model repre-
sentation of the argument value.

GAMMA (X) E Gamma function.

GET_COMMAND ([COMMAND, S Get the entire command by which the program

LENGTH, STATUS)) was invoked.

GET_.COMMAND_- (NUMBER [, VALUE, S Get an argument from the command by which

ARGUMENT LENGTH, STATUS]) the program was invoked.

GET_ENVIRON- (NAME [, VALUE, S Get the value of an environment variable.

MENT_VARIABLE LENGTH, STATUS,

TRIM_NAME))
HUGE (X) I Largest model number.
HYPOT (X,Y) E Euclidean distance function.
TACHAR (C [, KIND]) E Position of a character in the ASCII collating
sequence. This is the inverse of the ACHAR
function.
TIALL (ARRAY, DIM |, T Bitwise AND of all the elements of ARRAY
MASK]) or (ARRAY |, along dimension DIM corresponding to the
MASK]) true elements of MASK.

TIAND 1, J) E Bitwise AND.

TIANY (ARRAY, DIM [, T Bitwise OR of all the elements of ARRAY
MASK]) or (ARRAY |, along dimension DIM corresponding to the
MASK]) true elements of MASK.

IBCLR (I, POS) E I with bit POS replaced by zero.

IBITS (I, POS, LEN) E Specified sequence of bits.

IBSET (I, POS) E I with bit POS replaced by one.

ICHAR (C [, KIND]) E Position of a character in the processor col-
lating sequence associated with the kind type
parameter of the character. This is the inverse
of the CHAR function.

IEOR (I, J) E Bitwise exclusive OR.

IMAGE_INDEX (COARRAY, SUB) I Index of the image corresponding to the co-
subscripts SUB for COARRAY.

INDEX (STRING, SUBSTRING E Starting position of a substring within a

[, BACK, KIND]) string.

INT (A [, KIND]) E Conversion to integer type.

IOR (I, J) E Bitwise inclusive OR.

IPARITY (ARRAY, DIM |, T Bitwise exclusive OR of all the elements of

MASK]) or (ARRAY |, ARRAY along dimension DIM corresponding
MASK]) to the true elements of MASK.

ISHFT (I, SHIFT) E Logical shift.

ISHFTC (I, SHIFT [, SIZE]) E Circular shift of the rightmost bits.

IS_.CONTIGUOUS (A) I True if and only if an object is contiguous
(5.3.7).

IS.IOSTAT_END Q8] E Trueif and only if a value indicates an end-of-
file condition.

IS.IOSTAT_EOR (I E Trueif and only if a value indicates an end-of-

13.5

record condition.

Intrinsic procedures and modules

723

319

ISO/IEC SC22/WG5/N1723

Table 13.1: Standard generic intrinsic procedure summary

CD 1539-1

(cont.)

Procedure Arguments Class Description

KIND (X) I Value of the kind type parameter of X.

LBOUND (ARRAY [, DIM, I Lower bounds or a specified lower bound of an
KIND]) array.

LEADZ (D E Number of leading zero bits.

LEN (STRING [, KIND]) I Length of a character entity.

LEN_TRIM (STRING [, KIND]) E Length without trailing blank characters.

LGE (STRING_A, E True if and only if a string is lexically greater
STRING_B) than or equal to another string, based on the

ASCII collating sequence.

LGT (STRING_A, E True if and only if a string is lexically greater
STRING_B) than another string, based on the ASCII col-

lating sequence.

LLE (STRING_A, E Trueif and only if a string is lexically less than
STRING_B) or equal to another string, based on the ASCII

collating sequence.

LLT (STRING_A, E Trueif and only if a string is lexically less than
STRING_B) another string, based on the ASCII collating

sequence.

LOG (X) E Natural logarithm.

LOG_.GAMMA (X) E Logarithm of the absolute value of the gamma

function.

LOG10 (X) E Common logarithm.

LOGICAL (L [, KIND]) E Conversion between kinds of logical.

MASKL (I[, KIND]) E Left justified mask.

MASKR (I[, KIND]) E Right justified mask.

MATMUL (MATRIX_A, T Matrix product of numeric or logical matrices.
MATRIX_B)

MAX (A1, A2 [, A3, ...]) E Maximum value.

MAXEXPONENT (X) I Maximum exponent of a real model.

MAXLOC (ARRAY, DIM |, T Location of an element of ARRAY along di-
MASK, KIND, BACK]) mension DIM having the maximum value of
or (ARRAY [, MASK, the elements identified by MASK.

KIND, BACK])

MAXVAL (ARRAY, DIM |, T Maximum value of the elements of ARRAY
MASK]) or (ARRAY |, along dimension DIM corresponding to the
MASK]) true elements of MASK.

MERGE (TSOURCE, FSOURCE, E Value of TSOURCE or FSOURCE according
MASK) to the value of MASK.

MERGE_BITS (I, J, MASK) E Merge of bits under mask.

MIN (A1, A2 [, A3, ...]) E Minimum value.

MINEXPONENT (X) I Minimum (most negative) exponent of a real

model.

MINLOC (ARRAY, DIM |, T Location of an element of ARRAY along di-
MASK, KIND, BACK]) mension DIM having the minimum value of
or (ARRAY [, MASK, the elements identified by MASK.

KIND, BACK)])

MINVAL (ARRAY, DIM [, T Minimum value of all the elements of ARRAY
MASK]) or (ARRAY |, along dimension DIM corresponding to true
MASK]) elements of MASK.

MOD (A, P) E Remainder function.

MODULO (A, P) E Modulo function.

MOVE_ALLOC (FROM, TO) PS Move an allocation from one allocatable object

320

Intrinsic procedures and modules

to another.

08-007r2:2008/03 /11

13.5

08-007r2:2008/03 /11

Table 13.1: Standard generic intrinsic procedure summary

CD 1539-1

ISO/IEC SC22/WG5/N1

(cont.)

Procedure Arguments Class Description
MVBITS (FROM, FROMPOS, ES Copy a sequence of bits from one data object
LEN, TO, TOPOS) to another.
NEAREST X, S) E Nearest di