
[[nodiscard]] Policy

Darius Neațu <dariusn@adobe.com>

David Sankel <dsankel@adobe.com>

2024-03-19 Tokyo WG21 Meeting

https://wg21.link/p3162r0

https://wg21.link/p3162r0

[[nodiscard]] History

, Andrew Tomazos

, Andrew

Tomazos

, Nicolai Josuttis

Proposal of [[unused]], [[nodiscard]] and [[fallthrough]]
attributes (P0068R0)

Wording for [[nodiscard]] attributes (P0189R1)

[[nodiscard]] in the Library (P0600R1)

https://wg21.link/P0068R0
https://wg21.link/P0068R0
https://wg21.link/P0189R1
https://wg21.link/P0600R1

Nico's proposed placement

For existing APIs:

not using the return value always is a “huge mistake” (e.g.,

always resulting in resource leak)

not using the return value is a source of trouble and easily

can happen (not obvious that something is wrong)

For new APIs (not been in the C++ standard yet):

not using the return value is usually an error.

Since then…

Case-by-case LEWG debates

Inconsistent [[nodiscard]] placement

Users are perplexed on when to use the feature

Survey

Standard library instances

.empty()
operator new and allocate() functions

async()
jthread::get_id()
NOT on this_thread::get_id()
NOT on error types (e.g. expected, error_code)

NOT on C allocation functions (e.g. malloc)

SOMETIMES present on operator==

Clang Tidy

Add [[nodiscard]] to non-void, non-template, const

member functions that return.

Speci�c functions (e.g. isspace, lower_bound)

Speci�c return types (e.g. error_condition, expected)

modernize-use-nodiscard

bugprone-unused-return-value

https://clang.llvm.org/extra/clang-tidy/checks/modernize/use-nodiscard.html
https://clang.llvm.org/extra/clang-tidy/checks/bugprone/unused-return-value.html

Important observations

[[nodiscard]] behavior not mandated in
the library

Compiler warnings not mandated in general

As-if rule

[[nodiscard]] in implementations

libstdc++ and Visual C++ make their own decisions

libc++ mimics the standard placement

Other consequences of [[nodiscard]]
placement

Presence in function signatures and

other training materials.

This exposure impacts practice

https://cppreference.org

https://cppreference.org/

Driving principles

1. Minimize complexity

2. Focus on the 90% use case

3. Center on outcomes

Minimize complexity

Make code approachable to new users

Reduce maintenance burden

Improve longevity

Rules out placing [[nodiscard]] almost everywhere

Focus on the 90% use case

A handful of placements addresses the most severe bugs

Examples
std::vector<int> v{...};
v.empty(); // Using 'clear' instead of 'empty' is a
 // common bug, especially for those coming from
 // another language.

std::unique_ptr<X> x{...};
x.release(); // Releasing the 'unique_ptr' in this example
 // results in a memory leak.

std::async(job_x, &x, ...); // Accidentally ignoring the return value of
std::async(job_y, &y, ...); // async gives the false impression that jobs
 // are run in parallel.

calloc(size * sizeof(int)); // Ignoring the return value of calloc is
 // a memory leak.

Center on outcomes

Vendors can do whatever they want, but…

we should consider the larger impact of the decision

Our proposal

Place [[nodiscard]] on functions where ignoring a return value

is inevitably a severe defect, such as resource leakage.

Place [[nodiscard]] on functions where overlooking the return

value is a common mistake, such as function names frequently

confused with others.

Place [[nodiscard]] on types designed to communicate errors

as function return values.

