import std; and stream macros

Introduction of global constants as substitutes for stream macros
in standard library modules

Document #: P3208R0
Date: 2024-04-16

Reply-to: Sunghyun Min
<hubble.stein@gmail.com>

Audience: WG21

Abstract

In C++23, import std; does not expose macros including C streams(stdin, stdout, stderr). Users
have to include the corresponding header files. To improve the usage of standard library modules, this
paper proposes global constants to address this issue: std::in, std::out, and std::err.

1. Rationale

In C++23, import std; was introduced to facilitate the use of standard libraries. Users can access all
library features by one line and it helps to reduce compilation time. However, modules don’t expose
macros intentionally. Therefore, users have to figure out the issue and eventually include the matching
header files again even though they are contained in std module [StackOverflow]. This method can be a
solution. However, P2465R3 suggests that non-macro approaches should be utilized other than feature
test macros. Other efforts have been done to try to resolve macro issues: [P2654R0], [P2883R0], and
[P2884R0]. This paper proposes global constants, std::in, std::out, and std::err as substitutes for
stream macros to improve the usability of std module.

2. Motivation and Proposal

C++23 Proposed
#include <cstdio> // for stderr import std;
// import <cstdio>; // alternative
import std; int main ()
{
int main () std::println(std::err, “...”);
{ }
std::println(stderr, “...”);
}

Of course, there is std: :println(std::cerr, “...”) butstd::print uses stdout by default, so it is
reasonable to use stderr for error output, which is slightly faster than the counterpart (see Appendix).

https://stackoverflow.com/questions/75041883/how-to-use-standard-library-macros-with-std-module-in-c23
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2884r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2883r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2654r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2465r3.pdf

Instead of providing additional APIs to hide or wrap stream macros, €.g., std: :eprint, a fundamental
approach is necessary for other use cases. This paper proposes std::in, std::out, and std::err as
substitutes for stdin, stdout, and stderr, respectively. They are global constants with the type of
std::FILE* const.

Proposed (succinct) Alternative (maybe familiar but repetitive)
std::in std::stdin
std::out std::stdout
std::err std::stderr

Instead of global constants, inline functions returning pointers can be considered if they are preferred
for implementation.

3. Stream Macros in GCC and MSVC

The stream macros in major compilers are defined as follows.

3.1 GCC13.2.1

C streams are global variables in GCC and redefined as macros. “If any of these stad::r1LE* Ivalue is
modified, subsequent operations on the corresponding stream result in unspecified or undefined

behavior.” (cppreference)
Even though the proposed streams are constant pointers, pointees are still mutable.

// filename: stdio.h

/* Standard streams. */

extern FILE *stdin; /* Standard input stream. */

extern FILE *stdout; /* Standard output stream. */
extern FILE *stderr; /* Standard error output stream. */

/* C89/C99 say they're macros. Make them happy. */
#define stdin stdin

#define stdout stdout

#define stderr stderr

3.2 MSVC 2022 Version 17.9.2

Standard streams in MSVC are global constant pointers. (Microsoft)

// filename: corecrt wstdio.h

ACRTIMP ALT FILE* cdecl acrt iob func(unsigned Ix);

#define stdin (__acrt iob func(0))
#define stdout (_acrt iob func(l))
#define stderr (__acrt iob func(2))

https://learn.microsoft.com/en-us/cpp/c-runtime-library/stdin-stdout-stderr?view=msvc-170
https://en.cppreference.com/w/cpp/io/c/std_streams

4. Possible Interface

4.1 Option A: std module only

This option makes stream constants available only in the modules world.

// std module file

//

export module std;

namespace std

{
export extern std::FILE* const in;
export extern std::FILE* const out;
export extern std::FILE* const err;

}

4.2 Option B: a new header file and std module

In this option, users can include the header file separately to use stream constants if necessary without
importing standard library modules.

// filename: cstream

//

namespace std
{
extern std::FILE* const in;
extern std::FILE* const out;
extern std::FILE* const err;

// std module file
module

//

#include <cstream>
export module std;

//

namespace std

{
export using std::in;
export using std::out;
export using std::err;

}

5. Conclusion

The support of macros including C streams is a missing block in import std; for good reason and there
are workarounds. This proposal probably makes C++ more complicated and is a small deviation from
C. However, by introducing substitute constants for stream macros, not only can the convenience of
import std; be improved but also these macros can be replaced. Hopefully, import std; is supposed to
be sufficient to consume standard libraries in the future version of the language after other macro issues
will have been addressed.

6. Acknowledgments
Thanks to Arthur O'Dwyer for feedback.

7. References

[P2465R3]
Standard Library Modules std and std.compat
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2465r3.pdf

[P2654R0]

Macros And Standard Library Modules

import should suffice
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2654r0.pdf

[P2883R0]

offsetof Should Be A Keyword In C++26

Supporting standard C++23 macros in module std
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2883r0.pdf

[P2884R0]

assert Should Be A Keyword In C++26

Supporting standard C++23 macros in module std
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2884r0.pdf

[StackOverflow]

How to use standard library macros with std module in C++23
https://stackoverflow.com/questions/75041883/how-to-use-standard-library-macros-with-std-module-
in-c23

https://stackoverflow.com/questions/75041883/how-to-use-standard-library-macros-with-std-module-in-c23
https://stackoverflow.com/questions/75041883/how-to-use-standard-library-macros-with-std-module-in-c23
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2884r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2883r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2654r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2465r3.pdf

Appendix

The following code was tested using MSVC and GCC. Error messages were redirected and discarded.

#ifdef MSVC LANG
#pragma comment (1lib, "Shlwapi.lib")
#endif

#include <benchmark/benchmark.h>
#include <cstdio>

#ifdef MSVC LANG
import std;

#else

#include <iostream>
#include <print>
#endif

constexpr auto msg{ "is not an integer. Please, enter again." };
constexpr const double num{ 1.23 };

static void test fprintf (benchmark::State& s)
{
for (auto : s)
std::fprintf (stderr, "%.2f %s\n", num, msg); // print trailing zeros by default
}
BENCHMARK (test fprintf);

static void print stderr (benchmark::State& s)

{

for (auto : s)

std::println(stderr, "{} {}", num, msqg);

}
BENCHMARK (print stderr) ;

static void print std cerr (benchmark::State& s)
{
std::ios base::sync_with stdio(true);
for (auto : s)
std::println(std::cerr, "{} {}", num, msqg);
}
BENCHMARK (print std cerr);

static void print std cerr no sync(benchmark::Stateé& s)
{
std::ios base::sync with stdio(false);
for (auto : s)
std::println(std::cerr, "{} {}", num, msqg);
}
BENCHMARK (print std cerr no_sync);

BENCHMARK MAIN () ;

A.1 MSVC

Compiler version and options

Microsoft Visual Studio Community 2022 (64-bit) - Preview
Version 17.10.0 Preview 3.0

built inside the IDE using vcpkg with the following options:

/permissive- /ifcOutput "x64\Release\" /GS /GL /W3 /Gy /Zc:wchar t /Zi /Gm- /02 /sdl
/Fd"x64\Release\vcl43.pdb" /Zc:inline /fp:precise /D "NDEBUG" /D " CONSOLE" /D

" UNICODE" /D "UNICODE" /errorReport:prompt /WX- /Zc:forScope /Gd /0i /MD /std:c++latest
/FC /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Fp"x64\Release\
benchmark stderr std cerr.pch" /diagnostics:column

Run script

benchmark stderr std cerr.exe --benchmark out=b.txt --benchmark out format=console > nul
2>&1

Outcome (CPU: 15-12500)

Run on (12 X 2995 MHz CPU s)
CPU Caches:
L1 Data 48 KiB (x6)
L1 Instruction 32 KiB (x6)
L2 Unified 1280 KiB (x6)
L3 Unified 18432 KiB (x1)

Benchmark Time CPU Iterations
test fprintf 579 ns 343 ns 1866667
print stderr 1092 ns 752 ns 1246609
print std cerr 1208 ns 698 ns 896000
print std cerr no_sync 1212 ns 774 ns 746667

A.2 GCC on Linux

Compiler version and options

Linux fedora 6.8.5-201.fc39.x86 64

gcc version 14.0.1 20240405 (experimental) (GCC)

g++ main.cpp -std=c++23 -03 -DNDEBUG -1lfmt -lbenchmark -lpthread

Run script

./a.out --benchmark out=b.txt --benchmark out format=console >/dev/null 2>&l

Outcome (CPU: 15-12500)

Run on (12 X 4600 MHz CPU s)

CPU Caches:
L1 Data 48 KiB (x6)
L1l Instruction 32 KiB (x6)
L2 Unified 1280 KiB (x6)
L3 Unified 18432 KiB (x1)

Load Average: 0.55, 0.82, 0.78

WARNING CPU scaling is enabled, the benchmark real time measurements may be noisy

and will incur extra overhead.

Benchmark Time CPU Iterations
test fprintf 179 ns 179 ns 3937211
print stderr 222 ns 222 ns 3158193
print std cerr 251 ns 251 ns 2793033
print std cerr no sync 242 ns 242 ns 2892901

	Abstract
	1. Rationale
	2. Motivation and Proposal
	3. Stream Macros in GCC and MSVC
	3.1 GCC 13.2.1
	3.2 MSVC 2022 Version 17.9.2

	4. Possible Interface
	4.1 Option A: std module only
	4.2 Option B: a new header file and std module

	5. Conclusion
	6. Acknowledgments
	7. References
	Appendix
	A.1 MSVC
	A.2 GCC on Linux

