Proxy: A Pointer-Semantics-
Based Polymorphism Library

Mingxin Wang <mingxwa@microsoft.com>
https://isocpp.org/files/papers/P3086R1.pdf

https://isocpp.org/files/papers/P3086R1.pdf

Introduction

* Review of P0957R3 in EWGI in Belfast (2019)
* https://wiki.edg.com/bin/view/Wg21belfast/P0957

Poll: Do we want to incurage more work on a mechanism to perform generalized type erasure?
SF F N A SA attendees
36 2 0 0 12

Poll: Prefer a primarily library-based approach, built on top of reflection?

SF F N A SA attendees
0 8 3 0 0 12

Poll: Have a core language mechanism, such as "facade" for expressing a type-erased interface?

SF F N A SA attendees

11 3 6 0 12

https://wiki.edg.com/bin/view/Wg21belfast/P0957

Introduction

* Review of P0957R8 in LEWG mailing list (2022)
* https://lists.isocpp.org/lib-ext/2022/06/23355.php

* Library feature or language feature?
* Deployment experience and usage feedback?
* any_object, any_ref, any_unique, any_shared?

* Research and comparison to existing libraries, like
Boost.TypeErasure?

https://lists.isocpp.org/lib-ext/2022/06/23355.php

Introduction

* Open-sourced: https://github.com/microsoft/proxy

* Deployed in Windows via vcpkg

% Fork 45 Y7 Star 782 -

v/ run bvt with g++ 13 / bvt-gcc13
v run bvt with clang 15 / bvt-clang15

v run bvt with msvc14 (vs2022) / bvt-msvcil4

https://github.com/microsoft/proxy

Overview

e Motivation
e Considerations
e Demo

Motivation

* Runtime polymorphism is a useful paradigm of abstraction
* Virtual functions in C++ has certain limitations
* Existing polymorphic wrappers in C++ are not sufficient

* We want to write polymorphic code as easily as in Java or C#
(while keeping it C++ quality)

Motivation — Runtime polymorphism

* Polymorphism is the provision of a single interface to entities of
different types. — Bjarne

8

[Compile Time] [Run Time]

e l

Method Operator Virtual
Overriding Overloading Functions

Motivation — Virtual functions

* Being intrusive is sometimes acceptable, but is not making
everyone comfortable

* Architecting challenge
* Loosing potential for compile-time optimizations

* Lifetime management is missing, making people write bad code
sometimes
* Memory leak
* Abuse of std::shared_ptr

Motivation — Virtual functions

Object

1

Real-world Substance

1

Creature

T void TakeCareOf (Pet) ;

/ Animal

Existing codebase Your job

Motivation

* Runtime polymorphism is a useful paradigm of abstraction
* Virtual functions in C++ has certain limitations
* Existing polymorphic wrappers in C++ are not sufficient

* We want to write polymorphic code as easily as in Java or C#
(while keeping it C++ quality)

Motivation — Virtual functions

trait IDrawable {

class IDrawable {
fn draw(&self) ;

public:
virtual void Draw() const = 0; }

};

struct Rectangle;

class Rectangle : public IDrawable {

public:
void Draw() const override;

}; }

impl IDrawable for Rectangle {
fn draw(&self) {}

C++ RUSt

Motivation — Virtual functions

* Being intrusive is sometimes acceptable, but is not making
everyone comfortable

* Architecting challenge
* Loosing potential for compile-time optimizations

* Lifetime management is missing, making people write bad code
sometimes
* Memory leak
* Abuse of std::shared_ptr

Motivation — Virtual functions

class IDrawable {
public:
virtual void Draw() const = 0;

};

class Rectangle : public IDrawable {
public:
void Draw() const override;

};

Rectangle rect;
rect.Draw() ;

Motivation — Virtual functions

class IDrawable {
public:
virtual void Draw() const = 0;

};

class Rectangle : public IDrawable {
public:
void Draw() const override;

};

Rectangle rect;
rect.Draw() ;

Thank you compiler! But...

Motivation — Virtual functions

class Shape ({
public:
virtual ~Shape() = default;
};
class Polygon : public Shape {};

class TwoDShape : public Shape {}:
class Rectangle : public Polygon, public TwoDShape {};

Motivation — Virtual functions

* Being intrusive is sometimes acceptable, but is not making
everyone comfortable

* Architecting challenge
* Loosing potential for compile-time optimizations

* Lifetime management is missing, making people write bad code
sometimes
* Memory leak
* Abuse of std::shared_ptr

Motivation — Virtual functions

class IDrawable {
public:
virtual void Draw() const = 0;

};

class Rectangle : public IDrawable {
public:
void Draw() const override;

};

Motivation — Virtual functions

class IDrawable {
public:
virtual void Draw() const = 0;

};

class Rectangle : public IDrawable {
public:
void Draw() const override;

};

IDrawable* drawable = new Rectangle() ;
delete drawable;

Motivation — Virtual functions

class IDrawable {

public:
virtual void Draw() const = 0;
virtual ~IDrawable() = default;

};

class Rectangle : public IDrawable {

public:
void Draw() const override;

};

IDrawable* drawable = new Rectangle() ;
delete drawable;

Motivation — Virtual functions

* Being intrusive is sometimes acceptable, but is not making
everyone comfortable

* Architecting challenge
* Loosing potential for compile-time optimizations

* Lifetime management is missing, making people write bad code
sometimes
* Memory leak
* Abuse of std::shared_ptr

Motivation — Virtual functions

?? MakeDrawableFromCommand (const std::stringé& s);

Motivation — Virtual functions

?? MakeDrawableFromCommand (const std::stringé& s);

IDrawable* MakeDrawableFromCommand (const std::string& s) ?

std: :unique ptr<IDrawable> MakeDrawableFromCommand (const std::stringé& s) °?
std: :shared ptr<IDrawable> MakeDrawableFromCommand (const std::stringé& s) °?

some gc ptr<IDrawable> MakeDrawableFromCommand (const std::stringé& s) ?

Motivation

* Runtime polymorphism is a useful paradigm of abstraction
* Virtual functions in C++ has certain limitations
* Existing polymorphic wrappers in C++ are not sufficient

* We want to write polymorphic code as easily as in Java or C#
(while keeping it C++ quality)

Motivation — Existing polymorphic wrappers

std: : function

std: :packaged task

std: :move_only function
std: :any

Motivation — Existing polymorphic wrappers

std: : function

std: :packaged task

std: :move_only function
std: :any

More member functions / overloads?
Reflection?

Small Buffer Optimization (SBO)?
Shared ownership?

Motivation

* Runtime polymorphism is a useful paradigm of abstraction
* Virtual functions in C++ has certain limitations
* Existing polymorphic wrappers in C++ are not sufficient

* We want to write polymorphic code as easily as in Java or C#
(while keeping it C++ quality)

Motivation

?? MakeDrawableFromCommand (const std::stringé& s);

IDrawable* MakeDrawableFromCommand (const std::string& s) ?

std: :unique ptr<IDrawable> MakeDrawableFromCommand (const std::stringé& s) °?
std: :shared ptr<IDrawable> MakeDrawableFromCommand (const std::stringé& s) °?

some gc ptr<IDrawable> MakeDrawableFromCommand (const std::stringé& s) ?

Motivation

?? MakeDrawableFromCommand (const std::stringé& s);

proxy<Drawable> MakeDrawableFromCommand (const std::stringé& s);

Overview

e Motivation
e Considerations
e Demo

Considerations

* Pointer semantics!
* Capabilities
* Library or Core?

* Qol

Considerations — Pointer semantics

* Roadmap
* Constraints
* Implementation

Considerations — Pointer semantics

* Semantics based on configuration since PO957R0
* value semantics, reference semantics, etc.

* Direction changed since PO957R5
* C++ pointer types are good at storage and lifetime management!

Considerations — Pointer semantics

* Roadmap
* Constraints
* Implementation

Considerations — Pointer semantics

e Constraints

enum class constraint level { none, nontrivial, nothrow, trivial };

struct proxiable ptr constraints ({
std::size t max size;
std::size t max align;
constraint level copyability;
constraint level relocatability;

constraint level destructibility;

Considerations — Pointer semantics

e Default constraints

Constraints Defaults
Maximum size No less than the size of a pointer
Maximum alignment No less than the alignment of a pointer
Copyability Trivial
Relocatability Trivial
Destructibility Trivial

Default constraints of relocatable pointer types

Constraints Defaults Constraints Defaults
Maximum size No less than the size of two pointers Maximum size No less than the size of two pointers
Maximum alignment No less than the alignment of a pointer Maximum alignment No less than the alignment of a pointer
Copyability None Copyability Nontrivial
Relocatability Nothrow Relocatability Nothrow
Destructibility Nothrow Destructibility Nothrow

Default constraints of trivial pointer types Default constraints of copyable pointer types

Considerations — Pointer semantics

* Roadmap
* Constraints
* Implementation

Considerations — Pointer semantics

* Inspired by GCC implementation of std::move_only_function

template<typename Tp, typename _Self>
static Tp*
_S access(_Self* self) noexcept

constexpr (__stored locally<remove_const_t< Tp>>)
static_cast< _Tp*>(__self-> M storage. M addr());

static cast< Tp*>(__self-> M storage. M p);

Considerations — Pointer semantics

struct IDrawable {
virtual void Draw() const =
virtual double Area() const
virtual ~IDrawable() {}

};

0;
= O;

class Rectangle : public IDrawable {
public:

void Draw() const override ({

printf (" {Rectangle: width = %f, height = %f}", width , height);
}

double Area () const override
{ return width_ * height ; }

private:
double width ;
double height ;
}i

void DoSomethingWithDrawable (std: :unique ptr<IDrawable> p) {
p->Draw() ;
}

Considerations — Pointer semantics

The "proxy" Inheritance-based polymorphism
Library mov rax, gqword ptr [rdi] mov rdi, gword ptr [rdi]
y add rdi, 8 mov rax, gword ptr [rdi]
side _]

Jjmp gqword ptr [rax + 24] Jmp gqword ptr [rax]
Client mov rax, qword ptr [rdi + movsd xmmO, gword ptr [rdi +
side 8] 8]

movsd xmm0, qword ptr [rax] movsd xmml, qgqword ptr [rdi +

movsd xmml, gword ptr [rax + | 16]

8] mov edi, offset .L.str

mov edi, offset .L.str.18 mov al, 2

mov al, 2 Jmp printf

Jmp printf

Table 6 — Generated code from clang 13.0.0 (x86-64)

Considerations — Pointer semantics

The "proxy" Inheritance-based polymorphism
Library ldr x1l, [x0], 8 ldr x0, [x0]
side ldr x1l, [x1, 24] ldr x1l, [x0]
mov xl6, x1 ldr x1, [x1]
br x16 mov x1l6, x1
br x16
Client mov x1l, xO mov x1l, xO0
side adrp x0, .LC3 adrp x2, .LCO
add x0, x0, :lol2:.LC3 add x0, x2, :lol2:.LCO
ldr do, [x1] ldp do, d1, [x1, 8]
b printf b printf

Table 7 — Generated code from gcc 11.2 (ARM64)

Considerations

* Pointer semantics!
* Capabilities
* Library or Core?

* Qol

Considerations — Capabilities

* Reflection
* Overloading
* Multiple dispatches

Considerations — Capabilities

template <class F>

concept facade;

template <class P, class F>

concept proxiable;

template <class F>

class proxy;

template <class F, class T, class... Args>
proxy<F> make proxy (Args&&... args);

Considerations

* Pointer semantics!
* Capabilities
* Library or Core?

* Qol

Considerations — Library or Core?

struct Draw {
using overload types = std::tuple<void()>;
template <class T>

void operator () (T& self) requires (requires{ self.Draw(); }) {
self .Draw() ;
}
};
struct Drawable {
using dispatch types = Draw;
static constexpr auto constraints = std::relocatable ptr constraints;
using reflection type = void;

};

Considerations — Library or Core?

PRO DEF MEMBER DISPATCH (Draw, wvoid());
PRO DEF FACADE (Drawable, Draw) ;

Considerations

* Pointer semantics!
* Capabilities
* Library or Core?

e Qol

Considerations — Qol

* Constraints prototypes
* Inline

* noexcept

* is_constval()

template <class Expr>

consteval bool is consteval (Expr) ({

return requires {
typename std::bool constant<(Expr{} (), false)>;
};
}

Overview

e Motivation
e Considerations
e Demo

Demo

* https://godbolt.org/z/6EWrdG1KM

* https://godbolt.org/z/cd55hrGv3
* https://godbolt.org/z/Yno/7qnGz4
* https://godbolt.org/z/voEacxT/6
* https://godbolt.org/z/KTMcP7e9v

https://godbolt.org/z/6EWr4G1KM
https://godbolt.org/z/cd55hrGv3
https://godbolt.org/z/Yno7qnGz4
https://godbolt.org/z/voEacxT76
https://godbolt.org/z/KTMcP7e9v

	Proxy: A Pointer-Semantics-Based Polymorphism Library
	Introduction
	Introduction
	Introduction
	Overview
	Motivation
	Motivation – Runtime polymorphism
	Motivation – Virtual functions
	Motivation – Virtual functions
	Motivation
	Motivation – Virtual functions
	Motivation – Virtual functions
	Motivation – Virtual functions
	Motivation – Virtual functions
	Motivation – Virtual functions
	Motivation – Virtual functions
	Motivation – Virtual functions
	Motivation – Virtual functions
	Motivation – Virtual functions
	Motivation – Virtual functions
	Motivation – Virtual functions
	Motivation – Virtual functions
	Motivation
	Motivation – Existing polymorphic wrappers
	Motivation – Existing polymorphic wrappers
	Motivation
	Motivation
	Motivation
	Overview
	Considerations
	Considerations – Pointer semantics
	Considerations – Pointer semantics
	Considerations – Pointer semantics
	Considerations – Pointer semantics
	Considerations – Pointer semantics
	Considerations – Pointer semantics
	Considerations – Pointer semantics
	Considerations – Pointer semantics
	Considerations – Pointer semantics
	Considerations – Pointer semantics
	Considerations
	Considerations – Capabilities
	Considerations – Capabilities
	Considerations
	Considerations – Library or Core?
	Considerations – Library or Core?
	Considerations
	Considerations – QoI
	Overview
	Demo

