
A Direction for Vector 

Document number: P3147R1 
Date: 2024-03-10 
Audience: Library Evolution Working Group 
Reply to: Alan Talbot 
 cpp@alantalbot.com 

Abstract 
This paper proposes a direction for development of a new contiguous variable-size sequence 
container with storage and element management flexibility. This container is meant to eventually 
replace std::vector as the “go-to” container, offering everything vectors do and more (except 
vector<bool>!). In the near term it could inform or even subsume P0843: inplace_vector and 
P0274: clump (but see Objections below). 

The idea is to have one container with several performance-related behavior adjustments that 
allow the user to fine-tune the container in place based on profiling measurements, with no other 
changes to the client code. Within the bounds of physical limitations, any settings should work in 
any context—albeit with widely varying performance (both of memory and runtime), and 
perhaps with different exception guarantees. 

The design spans two orthogonal dimensions: 

• Location of storage: local (embedded/stack), dynamic (heap), or both (SBO). 
• Management of storage: top (vector), bottom (stack), or middle (deque). 

It offers a choice between fixed and dynamic storage (independent of storage location, thus 
allowing fixed-size dynamic allocation). It also offers control over dynamic growth with a choice 
of linear growth specified in elements, or exponential growth specified as a fraction. 

The goal of this proposal is to measure the interest in this approach, gather information and 
feedback, and especially collect objections and their possible resolutions. 

Revision History 
R1: Added user control of the size member type. Changed the recommendations for P0274. Made 
a couple of other small improvements to the text (but not to the meaning). 

Motivation 
Vector is probably the most-used container in the Standard Library, and it is pretty much always 
chosen as an example of a vocabulary type and a prototypical example of what should be in the 
Library. Like all the containers, it does its exact job very well, but if you want something slightly 
different, you have no recourse within the Library. Here is a short list of some of the things not 
available in or not well supported by the Standard Library: 

1. A local vector (e.g. inplace_vector). 
2. A small buffer optimized vector (e.g. clump/small vector). 



P3147R1 

2 

3. A way to control vector growth rate. 
4. push_front for vectors. (I proposed this in P0563, but it was not well received because 

of a perceived philosophical conflict with the meaning of a vector.) 
5. A stack that grows up. 
6. A contiguous and/or local deque. 

Attempting to provide all of this missing functionality with multiple distinct containers seems 
impractical at best. It would generate too much work for the Committee, too much ink in the 
Standard, and the resulting set of options would be too confusing for users. (I have found it is 
difficult enough to get programmers to understand and effectively use the tools we have today.) 

The interactions between such containers would be an even bigger challenge. It seems like 
efficient operations (moves, comparisons, etc.) between different location and management 
strategies are an important feature. I’m sure it’s possible to do this with distinct containers, but 
it is surely quite a lot more difficult and confusing. 

Client code compatibility seems like a very important goal—we want users to be able to switch 
between various storage and element management strategies without worrying about breaking 
their code. The difficulty of meeting this requirement will expand exponentially with each added 
container. Both P0843 and P0274 refer to std::vector and express or imply a desire to match 
it “where possible”. Providing a single new container eliminates most of that problem, especially 
for new code and for situations where std::vector can be replaced by the new sequence. On 
that topic, I believe it will be possible to match vector behavior with this sequence so that a direct 
substitution can be done in most cases. 

Existing Containers 
Here is a quick review of the sequence containers we have today and their specific limitations. 

Arrays 

Arrays, both built-in and std::array, are a type of contiguous sequence, and they have storage 
location flexibility. Because they are fixed-size, arrays end up being useful for a different set of 
problems than variable-size containers. (I have often used an array to model a variable-size 
embedded container by using a sentinel value—but that’s awkward and error-prone at best.) 

vector 

std::vector is a dynamically allocated, variable capacity contiguous sequence, but it has no 
controls other than supporting custom allocators, and its storage cannot be local. It’s worth 
mentioning that a custom allocator is not a practical way to control memory usage for most users. 

deque 

std::deque is a dynamically allocated, variable capacity sequence that offers efficient front and 
back operations, but it is not contiguous and is extremely inefficient for small sizes, and it cannot 
be local. 



P3147R1 

3 

Node-based Containers 

The node-based sequence containers (std::list, std::forward_list) are again designed to 
address a different set of problems than vector. They are very inefficient for small objects, and 
of course the storage is not contiguous or local. 

Objections 

Derailing P0843 inplace_vector 

I am very excited by the inplace_vector proposal. It addresses one of the biggest limitations of 
vector, and it is well along in the approval process. An obvious objection to this proposal will be: 
are we going to drop or delay P0843? I think that unless there is very strong support to do so, the 
answer should be no. 

I believe that almost all of the considerable work that has gone into P0843 will be directly 
applicable to a new sequence container. One way to think about this proposal is as an expansion 
of the scope of P0843 (and P0274). Little if any of this work would be discarded regardless of how 
we proceed. 

If this proposal is deemed too ambitious for C++26 (which seems likely), then I believe we have a 
way forward that does not create future maintenance issues beyond the unavoidable one with 
std::vector. The idea is to work on a design such as outlined in this proposal and allow it to 
inform the design of inplace_vector. The goal would be to eventually replace 
inplace_vector with a using declaration once we have a new more flexible sequence. This 
approach does not reduce the additional burden on P0843 to zero, but it is far less work than 
expanding it to a fully flexible design. 

Derailing P0274 Clump 

I am also excited by the clump (small vector) proposal. It addresses another big limitation of 
vector, but so far it has not progressed in the approval process. If P0274 does not move forward 
for C++26, then I recommend subsuming it into a new sequence proposal. If by any chance it does 
move forward for C++26, the answers are the same as for P0843. 

Implementation 

Another valid objection is that a concrete proposal with no implementation experience may be 
too new to put into C++26. In contrast, local vectors and small vectors have years of prior art in 
Boost and elsewhere. I agree with this objection. I think that unless there is such a strong interest 
that a lot of people are willing to get involved, the solution is to progress P0843 as I have 
described above, and work on a more flexible sequence for C++29. 

Overgeneralization 

I have heard objections to this type of design, basically that each problem should be solved with 
a dedicated tool. I think that there is an easy answer in this case: we don’t have the time and 
resources to add half a dozen new containers to the Standard Library, nor do we want to take on 
the maintenance load that would entail. I also think that this really is one (albeit broad) problem. 
The proposed design offers a single solution to that problem which can be adjusted in various 
ways to achieve optimum performance. 



P3147R1 

4 

Standardizing a number of distinct containers would require users who want to switch between 
them to pick names for a bunch of type aliases (one for each use). It would fall on us to ensure 
that all these types are compatible without client code changes. (Achieving compatibility would 
likely require changes to std::vector.) 

Design Overview 

Basics 

The sequence object itself is always local (that is, on the stack or embedded in another object by 
composition). Elements are always stored contiguously. There is a size and a capacity, either of 
which may be zero. The size cannot be greater than the capacity. 

Template Parameters 

The first template argument provides the element type. 

The second template argument is a non-type structural argument that provides a set of traits 
specifying the user-defined behaviors of the sequence. The default has been chosen to provide 
equivalent behavior to std::vector. It might look something like this: 
template<std::unsigned_integral SIZE = size_t> 
struct sequence_traits_t { 
 using size_type = SIZE; // The type of the size field. 

 bool dynamic = true; // True if storage could be dynamically allocated. 
bool variable = true; // True if the capacity can grow. 
size_type capacity = 0; // The size of the fixed capacity (or the SBO). 

 enum {FRONT, MIDDLE, BACK} // I.e. vector, deque, stack. 
location = FRONT; 

 enum {LINEAR, EXPONENTIAL, VECTOR} // See below. 
growth = EXPONENTIAL; 

 size_t increment = 0; // The linear growth in elements (size_t, not size_type) 
float factor = 1.5; // The exponential growth factor (> 1.0). 

}; 

For an allocator-aware version, the third template argument would be the allocator type (see 
Allocators below). 

Memory Allocation 

The size_type type provides control over the type used to represent the size of the sequence. 
This allows better utilization of the fixed capacity in the common case where its size is small and 
the elements are small. For example, on a typical 64 bit machine, a sequence object size of 24 
bytes can hold 16 chars (in the local SBO buffer) if the size_type is size_t (the default) but 23 
chars if the size_type is unsigned char. This parameter is constrained to an unsigned integral 
type. 

The dynamic switch specifies whether the capacity is local or dynamically allocated. A local 
sequence contains its capacity in the sequence object. The capacity of a dynamically allocated 
sequence may reside in the sequence object or in a dynamically allocated memory block 
(depending on whether a local SBO buffer is in use). 



P3147R1 

5 

The variable switch specifies whether the capacity is fixed or variable. A variable capacity 
sequence can grow indefinitely, bounded only by physical limitations. The capacity value 
specifies the size of the fixed capacity in elements. 

A local sequence must have a fixed capacity. A dynamically allocated sequence may have either 
a fixed or variable capacity. If a dynamically allocated, variable capacity sequence has a non-zero 
capacity value, then it will utilize the small buffer optimization with an embedded capacity of 
that size. 

Memory Usage 

The location switch specifies whether the elements are managed at the front, back or middle 
of the capacity. FRONT provides vector-like behavior, with elements maintained at the lowest 
memory locations. BACK provides stack-like behavior (last-in on top), with elements maintained 
at the highest memory locations. MIDDLE supports the notion of a “shifty-vector” (a contiguous 
implementation of a deque), with elements floating in the middle of the capacity. The first 
element is placed in the middle of the capacity. When one end or the other would be exceeded 
by an insertion, the elements are recentered in the capacity if there is room (otherwise 
reallocation occurs if allowed—see below). 

Reallocation occurs for dynamically allocated variable capacity sequences if an insertion is 
performed which would exceed the current capacity (as with vector). The growth of the capacity 
is governed by the growth mode which specifies whether the growth is LINEAR or EXPONENTIAL. 
The linear growth rate is specified by the increment value in elements. The exponential growth 
rate is specified by the factor value as a real number greater than 1.0. 

The third VECTOR growth mode may or may not be needed: it is intended to provide 
implementation-defined growth behavior matching the behavior of std::vector, even if that 
behavior cannot be described exactly by either of the other growth modes. If VECTOR is provided, 
then it probably would also be the default growth mode (although perhaps this should be an 
implementation decision). 

Removing elements from a sequence never causes reallocation or repositioning of elements (as 
with std::vector), but see shrink_to_fit below. 

Operations 

This sequence will support full access to both the front and the back. This is necessary because 
one of the most important design goals is the ability to change internal behavior of the sequence 
without changing client code. For more discussion about providing O(n) operations, see P0563. 

The capacity operations reserve and shrink_to_fit are supported, and are quiet no-ops for 
fixed capacity sequences. For SBO sequences, shrink_to_fit has no effect if the elements are 
in the local buffer, but if the elements are in dynamic storage and the size is less than or equal to 
the local buffer size, the elements will be moved to local storage (and the dynamic allocation 
freed). 

The is_dynamic test returns a bool indicating whether the elements are in dynamic storage. This 
is (mostly) equivalent to the is_clumped test described in P0274 (but the sense is reversed). 



P3147R1 

6 

Errors 

The behavior of the sequence when limits are exceeded, and ways to avoid various error states 
(e.g. try_push_back) will be the subject of considerable discussion and future proposals. P0843 
deals with many of these issues. 

Allocators 

The subject of allocators has been addressed at some length for inplace_vector. (That 
discussion is an excellent example of the applicability of work on P0843 to this proposal.) The 
current consensus of that discussion is that allocators should be addressed later with a separate 
proposal. I strongly agree with this approach, and I suspect that allocator-awareness will be found 
to be a valid reason to create a separate entity (rather than adding it to the non-aware template). 

My recommendation is that this sequence container be standardized initially without custom 
allocator support, with the expectation that the design process will be informed by the many 
years of experience with allocators in the Library. If we standardize this container, a proposal to 
add allocator support will no doubt shortly follow. 

Other Designs 

Include array 

This sequence could include array-type behavior. I do not recommend this. While arrays do have 
contiguous memory, they are otherwise very different from variable-size sequences, and I think 
they are best addressed by a separate tool (std::array). 

Use vector 

A possible design approach for this sequence would be to treat it as “Vector 2.0” and try to 
expand std::vector to do everything. I am skeptical that there is a way to do this without either 
breaking compatibility with decades of existing usage or seriously compromising the design. I also 
feel strongly that we should take the opportunity to give this sequence a better name. 

Another related approach would be to attempt to add this functionality to std::vector with 
custom allocators. This approach was considered and rejected by both P0843 and P0274, which 
see for details. 

References 
P0274R0: Clump – A Vector-like Contiguous Sequence Container with Embedded Storage. Liber. 
P0563R0: Vector Front Operations. Talbot. 
P0843R10: inplace_vector. Gadeschi, Doumler, Liber, Sankel. 

Acknowledgements 
Thanks to Timur Doumler, Howard Hinnant, and Nevin Liber for their time and encouragement 
to pursue this proposal. Thanks to Jonathan Wakely for introducing me to shifty-vector. Thanks 
to Wouter Vermaelen for suggesting adding control over the size type. 


	Abstract
	Revision History
	Motivation
	Existing Containers
	Arrays
	vector
	deque
	Node-based Containers

	Objections
	Derailing P0843 inplace_vector
	Derailing P0274 Clump
	Implementation
	Overgeneralization

	Design Overview
	Basics
	Template Parameters
	Memory Allocation
	Memory Usage
	Operations
	Errors
	Allocators

	Other Designs
	Include array
	Use vector

	References
	Acknowledgements

