
P3064R0: How to Avoid OOTA Without Really
Trying

Alan Stern
stern@rowland.harvard.edu

Paul E. McKenney
paulmck@kernel.org

Michael Wong
fraggamuffin@gmail.com

Maged Michael
maged.michael@gmail.com

April 5, 2024 (Post-Tokyo)

Audience: SG1

Abstract

The out-of-thin-air (OOTA) properties of memory_order_relaxed in the
C++ memory model have caused considerable consternation over the years. At-
tempts to create memory models that rule out OOTA behaviors have been either
non-executable, complex, or unloved by C++ implementers. But at the same time,
we know of no instances of OOTA behavior in real C++ implementations.

We focus on shared-memory programs and C++ implementations based on
traditional compilers and computing hardware, including CPUs and GPGPUs.
This context permits us to consider the detailed relations between source code
and machine code required by the restricted nature of volatile atomic accesses.
The OOTA problem and the related challenge of coming to grips with semantic
dependency are much more tractable at the hardware level than at the source level,
thanks to existing formal hardware models. We show that these models’ constraints
prevent OOTA cycles from occurring in undefined-behavior-free C++ programs
running on compiler-based implementations, provided the cycles involve only
volatile atomics. We also extend this work to nonvolatile atomics by defining
“quasi-volatile” behavior that we expect C++ implementations will adhere to if they
perform single-thread analysis.

1

CONTENTS

Contents
1 Introduction and Background 5

1.1 Brief OOTA Overview . 5
1.1.1 Simple OOTA Cycle . 5
1.1.2 Simple Reordering . 6

1.2 Prior Work . 7
1.3 Code-Analysis Tool . 8

2 OOTA and Semantic Dependencies 9
2.1 OOTA: rf versus rfe . 11
2.2 Properties of Semantic Dependencies 12

2.2.1 Semantic Dependencies and Source Code 12
2.2.2 Semantic Dependencies Can Be Many-To-One 12
2.2.3 Semantic Dependencies Affected by Cross-Thread Optimizations 13
2.2.4 Semantic Dependencies Affected by if Statements 13
2.2.5 Semantic Dependencies Not Affected by if Statements . . . 13
2.2.6 Semantic Dependencies and Matching Up Stores 14

3 What is an Execution? 14
3.1 Abstract Executions . 14
3.2 Hardware Executions . 16
3.3 Relation Between Abstract and Hardware Executions 16

4 C++ Compilers 18
4.1 Users Influence the Behavior of Compilers 18
4.2 Global Optimization Can Destroy Dependencies 18
4.3 Inventing Atomic Loads Can Destroy Semantic Dependencies 19
4.4 Volatile and Quasi Volatile Accesses 20

5 Hardware Dependencies, Instruction Ordering, and the Fundamental Prop-
erty 21
5.1 Dependencies at the Hardware Level 21
5.2 Instruction Ordering . 22
5.3 The Fundamental Property of Semantic Dependencies 23

6 A Definition of Semantic Dependency 24
6.1 For Compilers Using Single-Thread Analysis 25
6.2 For Compilers Using Global Analysis 26
6.3 Verifying the Fundamental Property 26
6.4 Outstanding Issues . 27

6.4.1 Relative versus Absolute Dependency 27
6.4.2 Global Analysis and Volatile versus Quasi Volatile 27
6.4.3 Effect of Memory Layout 28
6.4.4 Merging Quasi-Volatile Loads 29

2

CONTENTS

7 Real-World Constraints 30
7.1 Hardware Architecture and Design 30
7.2 Constraints of the Standard . 32
7.3 Semantic Dependencies and Tooling 35

8 Future Directions 36

9 Conclusion 36

A Interthread Communications 38

B User Influence Over Language Semantics 43

C But What About Tooling? 45
C.1 Load/Store Ordering: Hardware View for Software Hackers 45
C.2 Status Quo and Focused Tooling . 47
C.3 Change Relaxed to Forbid Load Buffering 47
C.4 Add Load-Store Memory Order that Forbids Load Buffering 47

D Illustrative Litmus Tests 49
D.1 Semantic Dependencies and volatile 49
D.2 Non-Trivial Semantic Dependencies 50
D.3 Why rfe Instead of Tried-And-True rf? 55
D.4 Inventing Atomic Loads . 62
D.5 Undefined Behavior and Unwise Optimization 68
D.6 Additional Litmus Tests . 70

E Litmus Tests from “Causality Test Cases" 71
E.1 Causality Test Case 1 . 71
E.2 Causality Test Case 2 . 72
E.3 Causality Test Case 3 . 73
E.4 Causality Test Case 4 . 74
E.5 Causality Test Case 5 . 74
E.6 Causality Test Case 6 . 76
E.7 Causality Test Case 7 . 76
E.8 Causality Test Case 8 . 78
E.9 Causality Test Case 9 . 79
E.10 Causality Test Case 9a . 79
E.11 Causality Test Case 10 . 81
E.12 Causality Test Case 11 . 81
E.13 Causality Test Case 12 . 81
E.14 Causality Test Case 13 . 81
E.15 Causality Test Case 14 . 81
E.16 Causality Test Case 15 . 86
E.17 Causality Test Case 16 . 86
E.18 Causality Test Case 17 . 86
E.19 Causality Test Case 18 . 86

3

CONTENTS

E.20 Causality Test Case 19 . 88
E.21 Causality Test Case 20 . 88

F Acknowledgments 94

References 94

4

1 atomic<int> x(0);
2 atomic<int> y(0);
3
4 void thread1()
5 {
6 int r1 = x.load(memory_order_relaxed);
7 y.store(r1, memory_order_relaxed);
8 }
9

10 void thread2()
11 {
12 int r2 = y.load(memory_order_relaxed);
13 x.store(r2, memory_order_relaxed);
14 }

Listing 1: Simple OOTA

1 Introduction and Background
This paper shows that compiler-based C++ implementations subject to reasonable
constraints on how they treat accesses to atomic objects cannot exhibit out-of-thin-air
(OOTA) cycles. It follows that these implementations need to take almost no special
actions to avoid OOTA. In fact, for many compilers the constraints boil down to a simple
“Don’t invent or duplicate atomic accesses”, which the compiler probably wouldn’t do
anyway.

We begin with a brief overview of the OOTA problem, followed by an equally brief
summary of prior work in this area, and ending with a quick overview of the herd7
tool that will be used to evaluate litmus tests.

1.1 Brief OOTA Overview
In broad terms, OOTA occurs theoretically when a group of threads load from each
others’ stores and each thread’s store depends on the value returned by that thread’s
load. The collection of loads and stores forms an OOTA cycle. In the most extreme
cases a nonsensical value can pop up “out of thin air”; however, as shown by Listing 3
below, OOTA cycles need not involve nonsensical values.

1.1.1 Simple OOTA Cycle

Listing 1 [19] shows a simple example where an OOTA cycle might result in all of x, y,
r1, and r2 having final values of 42, despite the fact that there is nothing in the initial
values or the executable code to support such an outcome:

1. Line 6 loads from x into r1, claiming to read the value of line 13’s store rather
than x’s initial value and somehow obtaining 42.

5

1.1 Brief OOTA Overview

2. Line 7 stores r1, and thus 42, to y.

3. Line 12 loads 42 from y to r2.

4. Line 13 stores 42 to x, justifying the value loaded by line 6.

Because nothing else in the C++ memory model rules out such OOTA cycles, the
C++ standard explicitly prohibits them in 33.5.4p8 ([atomics.order]) [13]:

Implementations should ensure that no “out-of-thin-air” values are com-
puted that circularly depend on their own computation.

The standard’s prohibition of OOTA is of course important, but those of us writing code
in the real world must rely on actual C++ implementations. And in these implementa-
tions, this prohibition is in fact enforced by TSO ordering in strongly ordered systems
and by data-dependency ordering in weakly ordered systems.1

In Listing 1 there is a semantic dependency from line 6 to line 7 and another from
line 12 to line 13. (Roughly speaking, there is a semantic dependency from a given load
to a given store when all other things being equal, a change in the value loaded can
change the value stored or prevent the store from occurring at all. Here the dependencies
are trivial because the values stored simply are the values that were loaded.) Since
real-world CPUs cannot store something until they have determined its value,2 the stores
in lines 7 and 13 cannot take place until the CPU knows what values are loaded by lines 6
and 12, respectively. Thus the hardware orders these stores after their corresponding
loads, and this ordering prevents the OOTA result.

1.1.2 Simple Reordering

It is important to distinguish true OOTA cycles from OOTA-like behavior caused by
simple reordering. An example of simple reordering is shown in Listing 2 [19]. Both
the C++ compiler and the CPU are within their rights to reorder lines 12 and 13, which
can result in all of x, y, r1, and r2 having the value 42 as follows:

1. Line 13 stores 42 to x.

2. Line 6 loads 42 from x into r1.

3. Line 7 stores r1, and thus 42, to y.

4. Line 12 loads 42 from y to r2.

Current C++ implementations can and do exhibit this reordering behavior.

This paper will follow P2055R0 [19] in using the term full C++ to denote the
standard including the prohibition of OOTA mentioned above. Unlike that article, we
will use the term loose C++ (rather than strict C++, which seems too similar to full

1The need to prohibit simple OOTA is one reason why compiler-based value speculation optimizations
require checks on such speculation, and these checks must be based on actual values loaded.

2Another way of saying this is that real-world CPUs do not make their stores visible to other CPUs until
those stores are no longer speculative. See Section 7.1 for more discussion about hardware speculation.

6

1.2 Prior Work

1 atomic<int> x(0);
2 atomic<int> y(0);
3
4 void thread1()
5 {
6 int r1 = x.load(memory_order_relaxed);
7 y.store(r1, memory_order_relaxed);
8 }
9

10 void thread2()
11 {
12 int r2 = y.load(memory_order_relaxed);
13 x.store(42, memory_order_relaxed);
14 }

Listing 2: Simple Reordering

C++ for comfort) to denote a hypothetical standard that excludes this prohibition but is
otherwise identical to full C++. Unqualified C++ means full C++.

The next section looks at how prior work has refined these issues.

1.2 Prior Work
All OOTA workers owe a debt to the foundational work in the infamous “Causality Test
Cases”,3 a version of which may be found in Appendix E.

Some executable C++ memory models correctly flag at least some executions
involving OOTA cycles [2].4 However, because these models are atemporal, they cannot
reject OOTA executions other than by flagging the OOTA value as arbitrary, which some
in fact do in at least some cases.

P0442R0 (“Out-of-Thin-Air Execution is Vacuous”) [21] provided a decision proce-
dure for classifying behaviors as permitted misordering on the one hand or disallowed
OOTA on the other, using a perturbation method based on the insight that all OOTA
behaviors are fixed-point computations.

Some workers recommend avoiding OOTA by forcing prior relaxed loads to be
ordered before subsequent relaxed stores [7, 6, 14], but this can require real instructions
be executed [17, Section 7.1], consuming real time and real electrical power to solve a
strictly theoretical problem. This might have been acceptable in the 1960s of some of
the authors’ youths, but it is now the year 2024.

Other workers recommend various procedures to identify and avoid OOTA cy-
cles [14, 26, 15, 3], but none of these have been looked upon favorably by C++ imple-
menters. Some of these workers appear to have abandoned this effort, but as of early
2024, Mark Batty is persisting with modular relaxed dependencies.

3http://www.cs.umd.edu/~pugh/java/memoryModel/unifiedProposal/
testcases.html.

4Others cleverly avoid this issue by forbidding atomic stores of nonconstant values [4].

7

http://www.cs.umd.edu/~pugh/java/memoryModel/unifiedProposal/testcases.html
http://www.cs.umd.edu/~pugh/java/memoryModel/unifiedProposal/testcases.html

1.3 Code-Analysis Tool

1 C oota-ctrl
2 {
3 [x] = 0;
4 [y] = 0;
5 }
6
7 P0(atomic_int *x, atomic_int *y) {
8 int r0 = atomic_load_explicit(y, memory_order_relaxed);
9 if (r0 == 42)

10 atomic_store_explicit(x, 42, memory_order_relaxed);
11 else
12 atomic_store_explicit(x, r0, memory_order_relaxed);
13 }
14
15 P1(atomic_int *x, atomic_int *y) {
16 int r1 = atomic_load_explicit(x, memory_order_relaxed);
17 if (r1 == 42)
18 atomic_store_explicit(y, 42, memory_order_relaxed);
19 else
20 atomic_store_explicit(y, r1, memory_order_relaxed);
21 }
22
23 locations[x;y]
24 exists(0:r0=42 /\ 1:r1=42)

Listing 3: OOTA Cycle

Goldblatt looked at interactions between OOTA cycles and undefined behavior
(UB) [10]. This document will concentrate on examples lacking UB.

All this work focused on either identifying OOTA or seeing how C++ implemen-
tations could avoid it. None applied real-world hardware ordering constraints to the
problem of avoiding OOTA cycles, yet doing so might help explain why no known
real-world C++ implementation results in OOTA behavior. We therefore dig more
deeply into OOTA cycles in the light of these constraints.

1.3 Code-Analysis Tool
This paper will use the herd75 tool to analyze fragments of C++ code. This tool carries
out the moral equivalent of full state-space searches of concurrent code fragments. In
some cases its output will include executions with OOTA cycles, on occasion reporting
undefined values for the variables involved in the cycle.6

Listing 3 shows a code fragment that under loose C++ has an OOTA cycle (although
the cycle is of course prohibited in full C++). This section describes the fragment,
thereby giving an overview of the herd7 tool.

The first line identifies it as a C-language litmus test and gives it a name, and this
name identifies the litmus test’s source file within the litmus directory in the https:
//github.com/paulmckrcu/oota repository. Lines 2–5 initialize variables,
in this case setting the initial values of the global shared variables x and y to zero.
(Variables that are not explicitly initialized are initialized to zero by default.) Lines 7–13

5Available at https://github.com/herd/herdtools7.
6This happens only some of the time because of idiosyncrasies in the algorithm used by herd7’s self-

consistency solver.

8

https://github.com/paulmckrcu/oota
https://github.com/paulmckrcu/oota

1 Test oota-ctrl Allowed
2 States 2
3 0:r0=0; 1:r1=0; [x]=0; [y]=0;
4 0:r0=42; 1:r1=42; [x]=42; [y]=42;
5 Ok
6 Witnesses
7 Positive: 1 Negative: 3
8 Condition exists (0:r0=42 /\ 1:r1=42)
9 Observation oota-ctrl Sometimes 1 3

10 Time oota-ctrl 0.00
11 Hash=db3300c0e3cc86ab1a1477ca446dac5e

Listing 4: OOTA Cycle, herd7 Output

define the first thread, P0(), and lines 15–21 define the second thread, P1().7 The
arguments to both P0() and P1() specify which of the global shared variables each
thread may access, in this case, x and y. The body of each thread contains C++ code,
written in a slightly stilted manner to keep the load operations separate from the rest
and because herd7’s knowledge of C++ is limited.

Line 23 has a locations clause, which causes herd7 to dump out the final
values of x and y. Finally, line 24 specifies an exists clause, which gives a condition
to check for the final values of the specified variables. The 0: prefix denotes a variable
local to P0() and the 1: prefix denotes a variable local to P1(). The /\ is a boolean
AND, and the = signs are equality comparisons. If a variable appears in the exists
clause then the final value of that variable constitutes observable behavior.

Listing 4 shows the corresponding output of the herd7 tool. Lines 3 and 4 show
the possible states, with line 4 showing the counterintuitive outcome where both threads
load the value 42. Normally these lines would include only those variables mentioned
in the exists clause, but because of the locations clause the values of x and y
are also listed, which can be helpful for debugging. Line 9 contains Sometimes (as
opposed to Never or Always), indicating that some executions satisfy the exists
clause and others do not.

Later examples will usually combine the litmus test and the herd7 output into one
listing, as shown in Listing 5, which recasts Listing 2 into litmus-test form. Listing 1
can also be recast as a herd7 litmus test, as shown in Listing 31 on page 74. Other
OOTA-related litmus tests may be found in Appendix D and Appendix E.

2 OOTA and Semantic Dependencies
Section 2.1 demonstrates advantages of formulating an OOTA cycle as a cycle in sdep ∪
rfe instead of the traditional sdep ∪ rf. Section 2.2 then discusses properties of semantic
dependences, showing that they are functions of executions rather than strictly of source
code, among other things.

7The “P” stands for “process”, which is herd7’s name for “thread”.

9

1 C simple-reordering
2 {
3 [x] = 0;
4 [y] = 0;
5 }
6
7 P0(atomic_int *x, atomic_int *y) {
8 int r1 = atomic_load_explicit(x, memory_order_relaxed);
9 atomic_store_explicit(y, r1, memory_order_relaxed);

10 }
11
12 P1(atomic_int *x, atomic_int *y) {
13 int r2 = atomic_load_explicit(y, memory_order_relaxed);
14 atomic_store_explicit(x, 42, memory_order_relaxed);
15 }
16
17 exists(0:r1=42 /\ 1:r2=42)

Analysis by "herd7 -c11 litmus/simple-reordering.litmus":

1 Test simple-reordering Allowed
2 States 3
3 0:r1=0; 1:r2=0;
4 0:r1=42; 1:r2=0;
5 0:r1=42; 1:r2=42;
6 Ok
7 Witnesses
8 Positive: 1 Negative: 3
9 Condition exists (0:r1=42 /\ 1:r2=42)

10 Observation simple-reordering Sometimes 1 3
11 Time simple-reordering 0.00
12 Hash=1b186d8f9445998c9c4ac29e062ffb74

Listing 5: Simple Reordering as Litmus Test

10

2.1 OOTA: rf versus rfe

2.1 OOTA: rf versus rfe
Semantic dependencies form only one type of link in an OOTA cycle. The other type
extends from a given store to a load that returns the value stored. It is tempting to argue
that the store must precede the load in global time and combine this with the intuitive
notion that any real C++ implementation must consume global time when computing
a semantic dependency. This combination suggests that OOTA cycles cannot occur.
The idea has been formalized by defining an OOTA cycle as a cycle in sdep ∪ rf [20],
where sdep is the set of semantic dependencies within each thread and rf is the set of
store-to-load “reads-from” links, whether within a thread (rfi) or between threads (rfe).8

This is a fine definition and is consistent with the words in the C++ standard, but it
has a problem with intrathread rfi links as exemplified by the following code:

1 int r2 = atomic_load_explicit(&x, memory_order_relaxed);
2 atomic_store_explicit(&y, r2, memory_order_relaxed);
3 int r3 = atomic_load_explicit(&y, memory_order_relaxed);
4 atomic_store_explicit(&z, r3, memory_order_relaxed);

This is an elaboration of thread2() from Listing 1 that adds z along with lines 3
and 4. The problem is that a C++ implementation may note that line 3 could well
execute immediately after line 2, giving other threads no chance to modify y in between.
Such an implementation might therefore behave as if the source code had instead been
as follows:

1 int r2 = atomic_load_explicit(&x, memory_order_relaxed);
2 atomic_store_explicit(&y, r2, memory_order_relaxed);
3 // int r3 = atomic_load_explicit(&y, memory_order_relaxed);
4 atomic_store_explicit(&z, r2, memory_order_relaxed);

Here line 3 has been optimized away in favor of line 4 storing the same value to z that
was stored to y by line 2. And given that the load from y no longer exists, it cannot
possibly act as a temporal constraint.

In order to avoid these rfi links we will substitute rfe for rf, defining an OOTA
cycle—for now—as a cycle in sdep ∪ rfe. Any rfi links in a cycle can instead be
interpreted as part of sdep. Although this does shunt additional complexity onto the
term “semantic dependency”, it also enables us to cleanly separate the interthread and
intrathread portions of any given OOTA cycle.

The inability of rfi links to act as temporal constraints is not the only, or even the
main, weakness in the intuitive argument against OOTA cycles. The primary difficulty
lies in the fact that the code transformations performed by optimizing compilers can
destroy dependencies, including semantic ones (depending on one’s definition). That is,
even when the potential for a dependency exists in the source code for a thread, there
might be no dependency in the machine code produced by a compiler. There would then
be no constraint forcing the implementation to execute the thread’s store later in global
time than the load it supposedly depends on, and thus no impediment to the occurrence
of an OOTA cycle. We will see examples of this destruction in Sections 4.2 and 4.3
below.

8See Appendix A for definitions and properties of rf, rfe, and rfi.

11

2.2 Properties of Semantic Dependencies

2.2 Properties of Semantic Dependencies
This section uncovers some semantic-dependency complexities. Section 2.2.1 shows
that semantic dependencies are functions of executions, rather than being strict functions
of the source code. Section 2.2.2 shows that semantic dependencies do not necessarily
extend from a single load to a single store, but can instead involve multiple loads.
Section 2.2.3 shows that semantic dependencies can be affected by cross-thread opti-
mizations. Sections 2.2.4 and 2.2.5 show that if statements can have surprising effects
on semantic dependencies, up to and including eliminating them completely. Finally,
Section 2.2.6 demonstrates some challenges in determining which of a group of stores
is involved in a given semantic dependency.

2.2.1 Semantic Dependencies and Source Code

Some discussions of semantic dependencies assume that they are strictly functions of
the source code. Although there are ways of making this work, many instances of
semantic dependency must be considered functions of particular executions. Consider
for example:

x = y * z;

(Here and below, we have written shared-variable accesses without annotations, for
brevity. Please imagine they are all relaxed atomic.)

As long as z is zero, changes in the value of y will not cause a change in the value
stored to x. As a result, the semantic dependency from y to x exists only in executions
where z is nonzero, which shows it is a property of the execution, not just of the source
code.

2.2.2 Semantic Dependencies Can Be Many-To-One

Suppose that in some execution of the previous example, both y and z are zero. Then
changes to either y or z will not cause a change in the value stored to x. In other
words, in this execution there is no semantic dependency from either y or z to x. But
there is a semantic dependency from the pair {y, z} to x, because changes to both
y and z can cause the value stored in x to change. This means that, prior work [21]
notwithstanding, accurate definitions of sdep cannot always rely on single-variable
perturbations; they must consider changes to multiple variables. See Appendix D.2 for
examples and additional discussion.

Since we can no longer regard sdep as always relating a single load to a store, the
notion of a cycle involving sdep appears problematic. We are forced to change our
definition of an OOTA cycle again; we will say that an execution is an instance of OOTA
if in that execution:

There are stores W0, . . . , Wm, where each Wi semantically depends on a
set of loads {Ri,0, . . . , Ri,ni}, such that each Ri, j reads from one of the Wk
stores in a different thread.

12

2.2 Properties of Semantic Dependencies

This makes OOTA more complicated than a simple cycle but we will continue to refer
to “OOTA cycles” out of habit. Note that this new definition includes and generalizes
the earlier “cycle in sdep ∪ rfe” definition.

2.2.3 Semantic Dependencies Affected by Cross-Thread Optimizations

Consider the following:

x = y - z;

There appear to be semantic dependencies from y to x and from z to x. However, if the
implementation somehow knows that y is always equal to z at this point then there is
no semantic dependency; the implementation can act as if the statement were simply
“x = 0”. We leave aside the question of how the implementation would know this,
given that y and z cannot be updated simultaneously9 and are subject to change at any
time by other threads (a point we will return to in Section 4.2).

2.2.4 Semantic Dependencies Affected by if Statements

Consider the following if statement:

r1 = x;
if (r1 > 0)

y = r1;
else

z = r1;

Here there is a semantic dependency from x, but in some executions it extends to y and
in others to z. This is an example of a load affecting not the value of a given store, but
rather whether or not that store is executed at all.

2.2.5 Semantic Dependencies Not Affected by if Statements

Compare this example to the previous one:

if (x > 0)
y = 42;

else
y = 42;

Because the stores executed on each arm of the if statement write identical values to
identical addresses, one could equally well regard the two statements as performing two
different stores or as performing for all intents and purposes a single store, independent
of x. Reasonable C++ implementations might disagree on this matter and therefore
on whether or not the example has a semantic dependency. It is the implementation’s
choice.

9At least not by any means within the confines of the standard.

13

2.2.6 Semantic Dependencies and Matching Up Stores

Suppose we take the view that the previous example involves only one store. This opens
up the door to greater complexity:

if (x > 0) {
L1: y = 42;

} else {
y = 53;
y = 42;

}

Consider an execution in which x is greater than zero, so the statement labeled L1 runs.
Is it semantically dependent on x? The answer isn’t immediately clear. If the other arm
of the if is taken then a store of the same value 42 to y occurs, but 53 is written before
it. Which of these two stores should be compared with the store in L1?

One way to cut the Gordian knot is to match up the stores by the order they occur:
Since L1 is the first store to y in its arm of the if statement, it should be matched up
with the first store to y in the other arm. Those two stores write different values so there
is a semantic dependency.

On the other hand, a compiler may decide to drop the y = 53 store entirely, leaving
it out of the machine code, on the grounds that it’s always possible for the two adjacent
stores to y to execute in such quick succession that no other thread manages to read the
value 53 before it gets overwritten with 42. If the compiler does this then the first store
to y in that arm of the if statement would agree with the store in L1, and so there would
not be a semantic dependency. Once again, the decision is up to the implementation.

We have seen several examples showing that semantic dependencies may vary
according to the execution and even the implementation. This raises several questions,
of which the first is: What exactly is an execution?

3 What is an Execution?
This section looks more carefully at executions, in some cases revisiting example code
from Section 2.2. Section 3.1 looks at executions from the viewpoint of the abstract
machine, and Section 3.2 looks at them from the viewpoint of the computer hardware.
Finally, Section 3.3 describes how to relate these two viewpoints.

3.1 Abstract Executions
The C++ standard describes the execution of a program in terms of “a parameterized
nondeterministic abstract machine” in 4.1.2p1 ([intro.abstract]). This descrip-
tion specifies how the abstract machine carries out the operations of a source program
in great, but not complete, detail:

• Some of the abstract machine’s characteristics are implementation defined, in-
cluding things like the number of bits in the various integer types or whether the
char type is signed.

14

3.1 Abstract Executions

• Some aspects of an execution are unspecified or nondeterministic, including
things like the order of evaluation of the operands of most binary operators or
of the arguments in a function call. Implementations may choose from a set of
allowed behaviors.

• Some actions are deemed to have undefined results; the standard says essentially
nothing about programs that can give rise to undefined behavior.

• Asynchronous actions (i.e., signal handlers) are largely ignored.

• Input and output are not described in any detail.

In addition to these points, the standard does not specify which store an atomic load must
read from, beyond requiring that the overall pattern of loads and stores be consistent
with the C++ memory model. We assume that programs will not indulge in any
computations that could vary spontaneously from one execution to another, such as
basing a dependency on the time of day or a process ID.

The implementation-defined aspects can affect whether or not an abstract execution
contains a semantic dependency. As an example consider the following, where the type
of c is char:

y = (c >= 0);

Here y is semantically dependent on c in executions running on implementations in
which char is a signed type, but not those for which it is unsigned.

The same is true for the nondeterministic aspects of an execution. Consider this
example, with i initially zero:

int foo(int a, int b)
{

return a / b;
}

r1 = foo(++i, ++i);
x = r1 * z;

Because early C implementers could not come to agreement, the standard does not
specify the order of evaluation of function arguments, so the value calculated for r1
might be zero (1/2 truncated) or two (2/1). In the former case there is no semantic
dependency from z to x, but in the latter case there is.10

(According to the current version of the standard, conflicting side effects in unse-
quenced subexpressions constitute undefined behavior, although there are proposals to
make them defined in both C++ [25] and C [8]. Nevertheless, the example above is al-
lowed because the order of evaluation of arguments to a function call is “indeterminately
sequenced” (7.6.1.3p7 [expr.call]) rather than unsequenced, a subtle distinction.)

The abstract executions we use will be fully specified. This means that all the
missing information must be supplied: the implementation-defined characteristics, the

10Thanks to Peter Sewell for pointing out this possibility.

15

3.2 Hardware Executions

selections for the nondeterministic pathways, and most notably, for each load, the store
from which it reads and the value of the load. We ignore issues of signal handlers and
I/O; in any case our litmus-test programs don’t use them (but see the discussion of
volatile loads in Section 3.3 below). The totality of this information—along with the
program’s source code, of course—determines within each thread a unique, linearly
ordered series of steps to be carried out by the abstract machine. However, with a few
exceptions11 there is no ordering relation between steps carried out in different threads.
Even if a relaxed atomic load in one thread reads from a relaxed atomic store in another
thread, the standard does not require the store to come before the load in any meaningful
way.

With the compiler-based implementations we are considering, the choices for the
nondeterministic pathways are “frozen” into the machine-code executable file and thus
are completely determined at runtime. A consequence of this is that if two abstract
executions of the same thread under the same implementation agree on the values
obtained by the load operations during their first N steps then they will agree in every
respect during those steps, although they may diverge later.

3.2 Hardware Executions
The outcome when a given computer executes the machine code in a file has histori-
cally been much better defined than the executions of the C++ abstract machine. The
hardware’s behavior is typically specified with great precision by the designer or man-
ufacturer, and there are formal, executable memory models describing exactly what
patterns of loads and stores can occur. Thus, leaving aside questions of asynchronous
interrupts and system calls, the behavior of a CPU executing a particular thread within
a program is entirely determined by the values obtained by the various memory-load
instructions.12

For this reason, the hardware executions we use will comprise (along with the
machine code being run) the computer architecture and for each load instruction, the
store instruction from which it reads and the value obtained. At this level, the fact that
the original program was in C++ is irrelevant; the same concepts apply to the execution
of a program in any compiled language.

A computer may execute the instructions in a thread out of order. The architecture
specifies the extent to which this may happen, and it also specifies circumstances under
which some pairs of instructions must be executed in order. Nevertheless, we will
consider an execution to be determined by the values obtained by its loads. As with
abstract executions, if two hardware executions of the same thread on the same type of
computer agree on the values obtained by the load instructions during their first N steps
then they will agree in every respect during those steps, although they may diverge later.

3.3 Relation Between Abstract and Hardware Executions
The C++ standard requires that for any valid implementation, when a program runs
its observable behavior must be the same as that of some abstract execution of the

11Such as a load-acquire synchronizing with a store-release.
12We regard read-modify-write instructions as consisting of both a memory load and a memory store.

16

3.3 Relation Between Abstract and Hardware Executions

source code given the same input (in the absence of any abstract executions containing
undefined behavior).13 This means:

• The program’s output must be the same as that of the abstract execution.

• Volatile accesses “are evaluated strictly according to the rules of the abstract
machine” (4.1.2p6.1 [intro.abstract]).

• (There is a condition on the timing and interleaving of input and output, which
does not matter for our purposes.)

We will say that the abstract execution is realized by the hardware execution.
Under any particular implementation, a single program can have many different

abstract executions, varying in their decisions about which store each load reads from
and thus the value obtained. It’s worth noting, however, that not all the possible abstract
executions of a program need be realizable by the machine-code executable file produced
by that implementation. In fact, we will see that none of the possible OOTA executions
allowed by the loose C++ abstract machine will ever be realized by the executables
produced by many compilers,

Exactly what the standard’s restriction on volatile accesses means isn’t entirely clear.
The handling of volatiles, as understood by compiler developers, has been described
as more folklore or a gentlemen’s agreement than anything else. To help guide C++
users and implementers, the standard adds these suggestive comments (9.2.9.2p5 and 6
[dcl.type.cv]):

The semantics of an access through a volatile glvalue are implementation-
defined.

volatile is a hint to the implementation to avoid aggressive optimization
involving the object because the value of the object might be changed by
means undetectable by an implementation.

Taking our cue from the folklore, we propose to recognize formally that programs
with volatile objects can execute in two different kinds of environment: a benign one in
which accesses to these objects work the same as nonvolatile memory accesses, and a
nonbenign one in which accesses to volatile objects are subject to outside interference
and act more like I/O. In particular, when it runs in a nonbenign environment, a program’s
volatile loads can return unpredictable values. They don’t necessarily read from stores
(in contrast to nonvolatile loads, which always must return the value of the store they
read from). This implies that volatile load-acquires do not synchronize with volatile
store-releases in the sense of the C++ memory model,14 so they do not contribute to the
happens-before relation. Also, in these environments the rfe relation does not apply to
volatile loads and stores, and hence the accesses in an OOTA cycle must be nonvolatile.

Of course, the machine-code file produced by a compiler must work properly in
either kind of environment. Therefore the compiler must generally treat accesses to

13This requirement is the standard’s “as-if” rule.
14However, they might instead synchronize with store-releases in device firmware (or vice versa), roughly

speaking.

17

volatile objects as a form of I/O, and it may not invent, omit, merge, or reorder these
accesses, as we will discuss in Section 4.4 below.

Given this relation between abstract and hardware executions, it is time to turn our
attention to the tools that manage hardware executions so as to enforce that relation,
namely, compilers.

4 C++ Compilers
A complete C++ implementation consists of much more than just a compiler. Among
other things, for example, it might have a collection of .h header files, a linker, runtime
libraries, and a dynamic loader. Nevertheless, for our purposes the compiler is the most
important component because it is what primarily determines the translation from a C++
source program to directly executable machine code. We will therefore use the terms
“compiler” and “implementation” interchangeably.

Section 4.1 shows that C++ compilers can be influenced by their users as well as by
the standard. Section 4.2 presents an example showing that global optimizations can
destroy semantic dependencies, and then Section 4.3 analyzes examples showing that
inventing atomic loads can destroy semantic dependencies. Section 4.4 then presents
required properties of volatile atomic operations, and also defines properties of quasi-
volatile atomic operations.

4.1 Users Influence the Behavior of Compilers
The exact definition of a computer language is a subject of some debate, with standards,
implementations, and users all having some degree of influence [23, 24], and each
being prone to change over time. In areas that are not well settled or where users might
reasonably want to resist the dictates of the standard, compilers often provide switches to
override their default behaviors. An example is GCC’s -funsigned-char command-
line argument, which causes it to treat variables of type char as unsigned. More
examples of user control over language semantics are given in Appendix B and by the
discussion in [23, 24].

We will consider these user-specified compiler switch settings to fall within the
implementation-defined parameters of the C++ abstract machine. They should be
provided, implicitly or explicitly, as part of any abstract execution.

4.2 Global Optimization Can Destroy Dependencies
Recall the Simple OOTA example in Listing 1 on page 5, in which thread1() loads
the value of x and stores it in y while thread2() does the reverse. A globally
optimizing loose C++ compiler given that program might transform it to the following
before translating it into machine code, if the compiler is sufficiently perverse:

1 atomic<int> x(0);
2 atomic<int> y(0);
3

18

4.3 Inventing Atomic Loads Can Destroy Semantic Dependencies

4 void thread1()
5 {
6 int r1 = 42;
7 y.store(r1, memory_order_relaxed);
8 }
9

10 void thread2()
11 {
12 int r2 = 42;
13 x.store(r2, memory_order_relaxed);
14 }

The loads previously on lines 6 and 12 have been replaced by constants. Such a transfor-
mation complies with the loose C++ standard, even though the resulting executable file
would produce an unintuitive OOTA outcome every time it runs!

The only justification a compiler could have for generating output like this is that it
knows exactly what accesses will be performed by both threads, and therefore it knows
that it will not violate the loose C++ memory model by assuming each thread’s load
reads from the other’s store.15 A similar justification can underlie the reasoning in
Section 2.2.3; in principle an analysis of the complete program could lead a compiler to
conclude that y will always be equal to z whenever a particular y - z expression is
evaluated, allowing the compiler to replace the expression with a constant 0.

By contrast, a compiler that analyzes only one thread at a time when performing
its optimizations and other code transformations will not have this kind of global
knowledge, and consequently it would not perform the OOTA-ful transformation shown
here.

Because we seek to find characteristics of compilers that will guarantee the absence
of OOTA behavior in the machine code they generate, we will for now confine our
attention to compilers that analyze only one thread of source code at a time. In more
precise terms, we want the compilers under consideration always to generate the same
machine-code output for threads having the same source code, regardless of the rest of
the code in the programs containing those threads. Later on we will return to globally
optimizing compilers.

4.3 Inventing Atomic Loads Can Destroy Semantic Dependencies
Consider this code, in which the final values of r1 and r2 are observable:

int r1 = (x != 0);
int r2 = (y != 0);
z = (r1 == r2);

It is clear that the store to z semantically depends on the load from y, because the value
of z will change whenever y changes between zero and nonzero (all else being equal).

However, an especially devious compiler might transform the source into the follow-
ing form before translating it to machine code:

15A less perverse compiler could choose to avoid the OOTA cycle simply by not making this transformation.

19

4.4 Volatile and Quasi Volatile Accesses

1 int r1;
2 int r1a = (x != 0);
3 int r1b = (x != 0);
4 int r2 = (y != 0);
5 if (r1a != r1b) {
6 r1 = r2;
7 z = 1;
8 } else {
9 r1 = r1b;

10 z = (r1 == r2);
11 }

The idea is that r1a, r1b, and r2 can each be only zero or one, so if r1a and r1b
differ then one of them must be equal to r2. In executions where this happens—because
another thread writes to x between the two loads—the implementation can choose at
runtime to use for r1 whichever value agrees with r2, as shown on line 6. Then the
value stored to z on line 7 will always be one, with no dependence on the value loaded
from y. This example is discussed more fully in Appendix D.4.

A noteworthy aspect of this transformation is that it invents an atomic load: The
original form of the code reads x only once, whereas the transformed code reads it
twice. Therefore we can rule out transformations like this one by insisting the compiler
not invent (or duplicate) atomic loads. In fact, we will require that atomic accesses be
treated as “quasi volatile”, in that the compiler is allowed to omit, merge, or reorder
them but not invent them.

Just what does this mean?

4.4 Volatile and Quasi Volatile Accesses
Declaring objects to be volatile is a way for the programmer to indicate that the hardware
should perform all accesses to these objects exactly as written in the source code, perhaps
because they represent memory-mapped device registers or DMA buffers rather than
normal memory locations. In any event, we expect compilers’ translations of volatile-
object accesses into machine code to be as close to verbatim as possible.

To express this idea in more formal terms, and to explain what we mean by “quasi-
volatile” object accesses, we augment the requirements for a hardware execution H to
realize an abstract execution A. Each realization must include a map from the set of
accesses of volatile objects in A to the set of instructions in H that access these objects,
having the following properties:

• The map connects accesses of the same type (loads to loads and stores to stores)
and to the same object.

• The map connects accesses in a thread of A to accesses in the corresponding
thread of H.

• The map is value-preserving: The value of an access in A must be the same as the
value of the access it maps to in H.

20

• In benign environments the map must preserve the rf relation. That is, if volatile
load R in A reads from store W then then the instruction it maps to in H must read
from the instruction that W maps to.

• The map is order-preserving: Two accesses in the same thread of A must map to
accesses occurring in the same order in H. (In other words, the compiler may not
reorder accesses to volatile objects.)

• The map is onto: For every access in H to a volatile object there must be an access
in A that maps to it. (In other words, the compiler may not invent accesses to
volatile objects.)

• The map is one-to-one: Different accesses in A map to different accesses in H.
(In other words, the compiler may not merge accesses to volatile objects.)

• The map is total: Every access in A to a volatile object maps to some access in H.
(In other words, the compiler may not omit accesses to volatile objects.)

Most of these are direct consequences of the fact that volatile-object accesses are
considered to be a form of I/O when the program runs in a nonbenign environment. But
to be clear, these requirements apply in all environments.

By contrast, accesses to quasi-volatile objects are normal memory accesses, not sub-
ject to unpredictable interference in nonbenign environments (otherwise the program’s
behavior would be undefined). However, we do impose most of the requirements above
on quasi-volatile object accesses. The last two bullet points are left out: Compilers
are allowed to merge or omit accesses to these objects. Because of this, the bullet
point about preserving the rf relation applies only when R is not omitted, in which
case W must not be omitted either, but now it applies in all environments. Lastly, the
requirement for order preservation is weakened; it applies only to pairs of accesses to
the same quasi-volatile object. Accesses to different objects may be reordered relative
to each other.

Section 7.2 presents examples illustrating some of these requirements.

5 Hardware Dependencies, Instruction Ordering, and
the Fundamental Property

Section 5.1 discusses hardware-level dependencies involving machine instructions.
Section 5.2 then examines the relationships between various instruction-ordering mech-
anisms and semantic dependencies. This material feeds into Section 5.3, which presents
the fundamental property of semantic dependencies and related complications.

5.1 Dependencies at the Hardware Level
Dependencies between machine instructions can be understood in terms of the flow of
information within a CPU. Each instruction has a set of inputs and is the source of a set
of outputs, some of which flow to the inputs of later instructions. The inputs determine
what an instruction will do. A few examples:

21

5.2 Instruction Ordering

• An add instruction would typically have two inputs (the register values to be
added together) and two outputs (the sum to be stored in a general-purpose register
and some condition-code bits—e.g., Zero, Carry, and Overflow—to be stored in a
status register).

• A conditional-move instruction would have as inputs the condition-code bits to
test, the source register value, and the target register value; the output would be
the value to be stored in the target register.

• A conditional- or computed-branch instruction would have as inputs the condition-
code bits to test, the address of the following instruction (to be used if the condition
is false) and the destination address (to be used if the condition is true). The
output is the new address to be written to the instruction-pointer register.

• A memory-load instruction’s input is the address to load from, and its output is
the value obtained by the load, to be stored in a register.

• A memory-store instruction’s inputs are the value to store and the address at
which to store it; there are no outputs.

Note: Hardware dependency analysis considers only the information flowing within
a CPU, not information flowing between the CPU and memory, which is handled
separately as part of the action taken by an instruction.

Using this scheme, we say that an instruction J is dependent on another instruction
I when any of I’s outputs flow into J’s inputs, perhaps indirectly via some intermediate
instructions. Tracing back the flow of information between instructions, you can see
that any hardware dependency must ultimately emanate from a load instruction or the
thread’s initial register values (or possibly some sort of input instruction, but we will not
consider that complication here). These are the only sources of truly new information in
a thread.

The concept is simple, but it is important because of the way dependencies affect
instruction ordering in weakly ordered architectures.

5.2 Instruction Ordering
A CPU may start executing an instruction speculatively, but at some point it must commit
to a decision either to definitely execute the instruction’s action with some collection
of well defined inputs and outputs or else to abandon it. Thanks to the law of cause
and effect, a CPU is not able to commit an instruction or its outputs until the relevant
inputs’ sources have committed. The reason is obvious: An input is subject to change
at any time until its source commits to its value, and the instruction and its outputs
can’t commit until the CPU has fully determined what it will do and what they will be.
(On the other hand, the CPU need not wait for inputs that won’t affect the instruction’s
results. For instance, a conditional-move instruction wouldn’t need to wait for the source
register input to be determined once it knew that the condition was definitely false. And,
although no architectures we are aware of do this, there is nothing in principle to prevent
a CPU from committing a multiply instruction as soon as either one of its inputs’
sources has committed to the value zero.)

22

5.3 The Fundamental Property of Semantic Dependencies

Of course, an instruction’s inputs don’t all have to be outputs from earlier instruc-
tions; some of them may be immediate constants present in the instruction itself. In this
case there is no need to wait for those inputs because their values are fully determined
from the start.

The overall effect of these hardware dependencies is that if a change to an output
of instruction I would lead to a change in the action or outputs of a later instruction
J, then the CPU must commit I’s output before committing J’s action and outputs.
Thus dependencies force instructions to commit in order, even on weakly ordered
architectures.

We will say that one instruction is ordered after another to mean that the CPU
forces it to commit after the other one commits. Hence instructions are ordered after
the instructions they depend on. (Note that this implies nothing about when a load
instruction retrieves its value from memory; it may do so long before it or a prior
instruction commits.)

Dependencies aren’t the only mechanism that can lead to ordering in hardware
executions. The simplest alternative is a load reading from a store in another thread,
i.e., the rfe relation. As mentioned in Section 1.1.1, a CPU does not make the value
of a store instruction available for other CPUs to load until the store commits or some
time later. And after this happens, it takes some time for the information about the store
to travel from that CPU to others, owing to the inescapable facts that processors have
nonzero size and information cannot travel faster than the speed of light. Since the load
instruction cannot commit until its output (the value it reads) is fully determined, it must
commit after the store it reads from. (To be fair, this should be considered more as a
result of ordering than as a cause of ordering, in that if a load commits before a store on
another thread then it cannot possibly read from that store.)

A similarly straightforward mechanism for ordering is conditional or computed
branches. An instruction executing after such a branch cannot commit until the CPU
has committed to whether the branch will be taken and if taken, where it will branch to
(that is, the output value it will send to the instruction-pointer register); until then the
CPU cannot know whether the later instruction should be executed at all. Therefore
instructions following a conditional- or computed-branch instruction in a hardware
execution must commit after the branch, and hence after the source for the branch’s
condition or destination input. (There could theoretically be an exception for a branch
that conditionally jumps to the immediately following instruction. We can ignore this
possibility by treating such branches as no-ops.)

5.3 The Fundamental Property of Semantic Dependencies
With the contents of the last few sections under our belts, we can formulate the Fun-
damental Property that we would like all semantic dependencies to satisfy. Note that
this formulation makes sense only for implementations in which all atomic objects are
treated as volatile or quasi volatile.

Let W be a store which semantically depends on loads {R0, . . . , Rn} in
some abstract execution A, and suppose that W is not omitted in some
hardware execution H realizing A. Then for some i, load Ri is not omitted

23

in H and the instruction it maps to is ordered before the instruction W maps
to.

It’s quite straightforward to show that under any implementation in which semantic
dependencies satisfy the Fundamental Property, no OOTA cycle has a nontrivial realiza-
tion.

Indeed, suppose that abstract execution A is realized by hardware execution H and A
has an OOTA cycle. This means there are atomic stores Wi in A, semantically depending
on atomic loads {Ri, j} where each of the loads reads from one of the Wk stores in a
different thread. Let W ′

i and R′
i, j be the hardware instructions these accesses map to in

H, if they aren’t omitted. Assuming that the stores are not all omitted, one of the W ′
i

instructions, let’s say W ′
0, must commit first. By the Fundamental Property, one of the

loads that W0 depends on, let’s say R0,0, is not omitted and R′
0,0 is ordered before W ′

0.
But now we have a contradiction:

• W ′
0 commits after R′

0,0;

• R′
0,0 commits after the store instruction W ′

k it reads from;

• W ′
k commits no earlier than W ′

0.

If all the stores in the OOTA cycle are omitted then all the reads must be omitted
as well. In effect, the entire cycle has been optimized out of existence by the compiler.
Although we are unable to prove it, we conjecture that in this situation there must
be another abstract execution which has the same observable effects as A and is also
realized by H, but in which the OOTA cycle does not occur. Thus there would be no
way to tell, merely by observing the effects of H, whether there was an OOTA cycle or
not. For this reason we declare realizations of OOTA cycles in which all the accesses
are omitted to be trivial.

6 A Definition of Semantic Dependency
Semantic dependency is a notoriously difficult concept to define rigorously and precisely.
A large part of the reason is because it was never a completely clear concept to begin
with, especially when there are multiple accesses to the variables involved. In this
section we will stick our necks out by offering just such a definition. No doubt many
people will object to it for various reasons, but we nevertheless hope it will help move
the discussion forward.

The definition given below is applicable only to C++ implementations that treat all
atomic objects as though they are volatile or quasi volatile. (For compilers that perform
only single-thread analysis, not global analysis, quasi volatile is sufficient.) In this
setting we can relate abstract and hardware executions by means of the map of accesses
described in Section 4.4. The key insight is that this allows us to consider semantic
dependencies at the level of the machine code, where they are much more tractable.

Section 6.1 focuses on compilers that restrict their analysis to a single thread,
Section 6.2 relaxes this single-thread restriction, Section 6.3 verifies the fundamen-
tal property of semantic dependencies, and Section 6.4 discusses general questions
regarding our definitions.

24

6.1 For Compilers Using Single-Thread Analysis

6.1 For Compilers Using Single-Thread Analysis
In this section we consider implementations whose compilers perform only single-thread
analysis and treat atomic objects as quasi volatile. This implies that if two different
programs contain the same thread (i.e., the same source code for the functions and
objects in the thread), the machine code generated by the compiler for the thread will be
the same in the two programs.

We begin by recognizing that semantic dependencies are relative to a particular
execution and a particular implementation, as described in Section 2.2. The same source
code may or may not contain a semantic dependency, according to the details of the
execution in question and the machine code produced by the compiler. For this reason
we will characterize semantic dependencies in a given abstract execution realized by a
given hardware execution. (While it possible to argue about semantic dependencies in
abstract executions that have no hardware realizations, doing so seems pointless.)

Let A be an abstract execution of some program P containing a thread T , and let H
be a hardware execution realizing A. Let W in T be a store to an atomic object, and let
{R0, . . . , Rn} in T be a set of loads from atomic objects on which W might or might not
depend. We can dispose of one case immediately: If W is omitted in H then the issue of
semantic dependency is moot. You can give either answer since it will have no effect.
Therefore we’ll assume that W is not omitted. Then:

There is a semantic dependency from {Ri} to W in A and H, relative to
the compiler used to produce H, if there is another abstract execution B
realized by hardware execution G under the same compiler that together
witness the semantic dependency.

To be a proper witness, B must be an execution of some program Q, not necessarily
the same as P but which contains the same thread T . The thread should start out with
the same initial state in A and B, and all loads in A coming before any of the Ri should
obtain the same value as they do in B (this is part of our interpretation of “all else being
equal”). It follows that the two abstract executions of T will be identical up to the first
of the Ri loads.

Let W ′ and {R′
i} be the accesses in H that W and the non-omitted {Ri} loads map

to. We then require that the hardware executions of T in H and G be identical for an
initial period lasting up to the first of the R′

i. Following this initial period there will be
a common period, during which H and G execute the same machine instructions but
do not necessarily compute the same values. This common period ends when one of
the hardware executions takes a conditional branch that the other doesn’t, or when a
computed branch leads to different addresses in the two executions, or when T ends,
whichever comes first. Past this point H and G diverge and are no longer directly
comparable, as they execute different instructions. Our third requirement for being a
witness is that each load in the common period either must obtain the same value in H
and G, or must itself be one of the R′

i loads, or must be ordered in H after one of the R′
i

loads (this is the remaining part of our interpretation of “all else being equal”.)
Finally, we need to determine an instruction X ′ in G that corresponds to W ′. If W ′

is in the initial or common period of H this is no problem; we can take X ′ to be W ′

itself. But if W ′ is in the divergent part of H then things aren’t so simple. The choice

25

6.2 For Compilers Using Global Analysis

is somewhat arbitrary, and so we will fall back on the earlier proposal of matching up
stores by the order they occur. Let y be the atomic object that W ′ stores to, and suppose
W ′ is the Nth store to y within the divergent part of H. Then X ′ will be the Nth store
to y in the divergent part of G, if such a store exists. Our last requirement for being a
witness to a semantic dependency is that X ′ act differently from W ′: it doesn’t exist, it
stores a different value, or it stores to an object other than y.

6.2 For Compilers Using Global Analysis
As promised earlier, we now consider implementations whose compilers may use global
analysis. In order to obtain the desired results we have to require that these compilers
treat all atomic objects as volatile. Equivalently, the machine code generated by such
a compiler must be the same for a given program as for a “volatilized” form of the
program in which all the atomic objects are defined to be volatile.

In this context our definition of semantic dependency is essentially the same as
before. Since we can no longer expect the machine code for a thread to be the same
regardless of the program it belongs to, the program Q in the earlier definition (of which
B and G are executions) must be P or its volatilized form. However, we do now allow
the possibility that the executions B and G take place in a nonbenign environment. Aside
from these minor adjustments, the definition remains unchanged.

6.3 Verifying the Fundamental Property
Of course we want to check that our definition of semantic dependency satisfies the
Fundamental Property of Section 5.3. Given the information we have already presented,
the demonstration is easy.

Suppose we have W , {Ri}, A, and H as in the definition. The Fundamental Property
assumes that W is not omitted in H, so there is an abstract execution B with hardware
realization G witnessing the semantic dependency of the store W on the loads {Ri} in
A and H. We must show that some Ri is not omitted and R′

i is ordered before W ′ in H.
The proof splits into three cases.

First case: W ′ lies in the initial period of H. During the initial period of the hardware
executions, H and G behave identically and therefore W ′ performs the same write in
both. This contradicts the fact that B and G witness the semantic dependency.

Second case: W ′ lies in the common period of H. Since the action of W ′ in H
is different from its action in G, at least one of its inputs must differ between the
two hardware executions. Therefore the source instruction for that input must behave
differently, and so must one of its sources, going back until we reach a load instruction
that obtains differing values in H and G. Then W ′ depends on this load and so is ordered
after it. And since the load must lie in the common period of H, by the definition of
semantic dependency it must either be one of the R′

i or be ordered after one of them.
Therefore W ′ is ordered after one of the R′

i in H, which certainly means that Ri is not
omitted.

Third case: W ′ lies in the divergent part of H. This happens when W ′ comes after
the conditional or computed branch which marks the end of the common period by
going different ways in H and G. Just as in the previous case, since the branch behaves

26

6.4 Outstanding Issues

differently in the two executions it must be ordered after one of the R′
i loads. And

then so must W ′, because any instruction following a conditional- or computed-branch
instruction must commit after the branch commits. QED.

A corollary of this result is that if an implementation’s compiler either

• uses single-thread analysis and treats atomic objects as quasi volatile, or

• uses global analysis and treats atomic objects as volatile,

then programs produced by that implementation will never exhibit OOTA. Thus the
implementation will automatically comply with full C++, even though it may be been
designed only to comply with loose C++.

6.4 Outstanding Issues
Here we consider some general questions related to our definition of semantic depen-
dency.

6.4.1 Relative versus Absolute Dependency

A drawback of the definition is that it is only relative to a specific compiler or imple-
mentation. This may strike some people as wishy-washy and avoiding the real problem,
in that a given piece of code should either contain or not contain a semantic dependency,
independent of the implementation used to run it.

We can address this drawback by defining an absolute semantic dependency as
one that is present relative to any valid loose C++ implementation, past, present, or
future, real or imagined. Of course this notion has its own problems, including that it is
extremely nonconstructive and impossible to apply in practice. However it may be the
best we can do with our current understanding of computing systems.

There is one thing we can definitely state: Programs produced by an implementation
of the right sort will never exhibit absolute OOTA (that is, an OOTA cycle in which all
the semantic dependencies are absolute). This is simply because an absolute semantic
dependency is a fortiori a semantic dependency relative to the compiler in use.

But in fact we have shown more than this: Programs will never exhibit an OOTA
cycle relative to the compiler used to build them, even when that cycle is not absolute.
In this sense we have gone beyond the requirement of full C++.

6.4.2 Global Analysis and Volatile versus Quasi Volatile

In principle we don’t need to require global-analysis compilers to treat atomic objects
as volatile; our results would still hold if they merely treated them as quasi volatile. We
chose not to do this because it would violate our intuitions about semantic dependencies.

For example, consider the Simple OOTA program, repeated here in simplified form:

void thread1() {
int r1 = x;
y = r1;

27

6.4 Outstanding Issues

}

void thread2() {
int r2 = y;
x = r2;

}

A loose C++ compiler using global analysis and treating x and y as quasi-volatile
objects could omit the two loads, replacing them in the machine code with simple
assignments “r1 = 42” and “r2 = 42”. This would be a valid transformation, and
the resulting behavior would not count as OOTA according to our definition because the
dependencies in thread1 and thread2 would not be semantic.

To see why not, recall that a semantic dependency must have a witness, another
execution in which the store acts differently. But this transformed program has no other
hardware executions; every time it runs it will store 42 to both x and y. (Keep in mind
also that since the atomic objects are not treated as volatile, they are not subject to
unspecified interference when the program runs in a nonbenign environment.)

This unintuitive behavior could not occur if the two loads were not omitted. In
fact, the definition of semantic dependency might remain perfectly acceptable if the
requirement for global-analysis compilers were weakened, if the compiler treated atomic
objects as quasi volatile and in addition was not allowed to omit accesses to them. This
is a possible topic for future research.

6.4.3 Effect of Memory Layout

Part of our demonstration of the Fundamental Property of semantic dependencies relies
on the fact, stated in Section 3.1, that an abstract execution of a thread is entirely deter-
mined by the values obtained for its loads. But when we compare abstract executions of
the same thread in two different programs, this may no longer be entirely true owing to
the effect of differing memory layouts.

Consider this simple example:

x = (int) &x;

Even though the example contains no loads at all, it may store different values when
running in different programs because the object x may be allocated at differing ad-
dresses in those programs. According to our definition, this could count as a degenerate
OOTA cycle of length one, in which the store is semantically dependent on an empty
set of loads!

To rule out such pathological counterexamples we should require that in a witness
to a semantic dependency, the addresses of all the objects and functions referred to in
the thread T are the same as in the original execution. This is a very technical restriction
but there are occasions when the issue might realistically arise, such as when computing
a hash value based on an object’s address.

28

6.4 Outstanding Issues

6.4.4 Merging Quasi-Volatile Loads

The compiler is permitted to merge quasi-volatile loads. This can lead to surprising
results because a particular load may be merged with an earlier load in one execution
and with a later load in another. This is demonstrated in the following, which is a variant
of the example in Section 4.3:

int r1 = (x != 0);
int r2 = (x != 0);
int r3 = (x != 0);
int r4 = (y != 0);
z = (r2 == r4);

Consider an abstract execution in which r1, r2, and r4 are zero and r3 is one (because
another thread changed the value of x between two of the loads). We would expect that
the store to z would be semantically dependent on the load of y in this execution.

However, a single-thread analysis compiler can translate this into the machine-code
equivalent of:

int r1 = (x != 0);
int r2;
int r3 = (x != 0);
int r4 = (y != 0);
if (r1 != r3) {

r2 = r4;
z = 1;

} else {
r2 = r1;
z = (r2 == r4);

}

In effect, the r2 load is merged with the r1 load in executions where r1 is equal to r3
or to r4, and it is merged with the r3 load in other executions.

To demonstrate the semantic dependency in the original code, a suitable witness
would have to include a hardware realization of the abstract execution in which r1
and r2 are zero and r3 and r4 are one. But there are no hardware realizations of this
execution with the machine code indicated above! Since r1 is different from both r3
and r4, the r2 load will be merged with the r3 load and so r2 will necessarily be
one, not zero. Thus, relative to this compiler the example does not contain a semantic
dependency.

Although it is unexpected, we cannot say that this conclusion is definitely wrong,
because our intuitive notions of semantic dependency are not clear in cases where
multiple loads of the same variable are present.

Despite these outstanding issues, our definition of semantic dependency allows us
to bring to bear the real-world constraints outlined in the next section.

29

7 Real-World Constraints
The C++ standard imposes many constraints, and these have been considered in prior
work. In real-world C++ implementations, however, the standard’s abstract machine
must be mapped onto real hardware, and this imposes additional constraints stemming
from hardware architecture and design. This mapping and these constraints have been
only partially accounted for in the standard and other work. Part of the reason for this is
that accurate and executable formal descriptions of hardware memory models did not
appear until after the standard was released [1, 17]. But they do exist now.

The following sections discuss these constraints, starting with hardware constraints
and continuing with additional constraints imposed by the standard. An additional
section discusses the OOTA-cycle implications for C++ tooling.

7.1 Hardware Architecture and Design
Computer systems are expected to continue increasing their use of speculative execution.
Nevertheless, the main points of this paper will remain unaffected. To see why, keep
in mind that on real systems observable effects must eventually be committed, but no
effect can be committed while any of the computations that determine the effect remain
speculative. Combining this with the obvious fact that a machine instruction cannot
commit until it is no longer speculative, we can draw two conclusions:

• A load cannot commit until the store it reads from has committed.16

• A store cannot commit until all the loads on which it has a hardware dependency
have committed.

As an example showing what can go wrong when these principles are violated,
consider Listing 6. Suppose that the storage for x is located immediately before that
for y[], and suppose further that hardware speculation incorrectly guesses the value
of r1 will be −1, so that the speculated store of 42 on line 11 uses the address of
x.17 Then if line 13 reads from the speculative store and commits, it will load the
value 42 into r2—an observable effect since r2 is mentioned in the exists clause on
line 16—although by the rules of the C++ abstract machine the value must instead be
zero.

Applied to Listing 3 on page 8, for another example, the principles dictate that if the
load on line 8 reads from the store on line 18 and the load on line 16 reads from the store
on line 10 (as they do in the execution described by the listing’s exists clause), then
each of the stores must commit before its corresponding load. A further application says
that neither line 10 nor line 12 can commit until after the load in line 8 (and also the
conditional on line 9) has committed. Similarly, neither line 18 nor line 20 can commit

16An early ARMv8 memory model did allow loads that read from an earlier store in the same thread to
commit before the store. This apparent exception merely reflects a difference in nomenclature; in the memory
model a store was said to commit at the time when it made its new value available to other threads, whereas
we say that a store commits at the time when the CPU has irrevocably decided that it will take place with a
particular fully determined value and address.

17Yes, y[-1] is UB, but the CPU neither knows nor cares, nor should it.

30

7.1 Hardware Architecture and Design

1 C speculative-store
2 {
3 [x] = 0;
4 [y] = { 0 };
5 [z] = 0;
6 }
7
8 P0(atomic_int *x, atomic_int y[], atomic_int *z) {
9 int r1 = atomic_load_explicit(z, memory_order_relaxed);

10 // Speculatively executed store
11 atomic_store_explicit(&y[r1], 42, memory_order_relaxed);
12 // Non-speculatively executed load
13 int r2 = atomic_load_explicit(x, memory_order_relaxed);
14 }
15
16 exists(0:r2=42)

Listing 6: Speculated Store and Non-Speculated Load

until after line 16 (and 17) has committed. Taken together, these constraints imply
that the OOTA cycle in the listing cannot be realized, because to do so would require
that none of the machine instructions corresponding to lines 8, 10, 16, and 18 could
commit before the others. Furthermore, it’s not possible to circumvent this reasoning by
suggesting that some of those lines could commit at the same time, because instructions
take time to execute even when executing speculatively.

Yes, this does mean that hardware can produce OOTA cycles during speculative exe-
cution, but the hardware is required to prevent such speculative cycles from committing.
As a special case of this requirement, if a load obtains a value from a speculated store
that has not yet committed, and the store gets squelched, then the load must be restarted
before it commits even if the load and the store are executed by different CPUs.

The requirement applies within a single multithreaded core as well as between cores.
The fact that intracore communication is faster than intercore communication does not
magically give loads the ability to commit before the stores they read from, no matter
what cores they execute on.

Another feature we can expect of upcoming computer systems is the addition of new
hardware instructions. For example, one could imagine a conditional-store instruction,
similar to existing conditional-move instructions but carrying out a store to memory
rather than a move to a register. The condition would control whether or not the store
takes place. A compiler doing single-thread analysis could use a conditional-store
instruction to generate code corresponding to lines 10 and 11 of Listing 29 on page 72
without use of a conditional branch, potentially enabling more hardware optimizations
than would otherwise be permitted. Nevertheless, the conditional store could not be
committed until the instructions it depends on (lines 8 and 9) have committed. Any new
instruction will be subject to this constraint, just as the instructions in current systems
are.

A key conclusion to draw from this discussion is that regardless of how advanced a
computer system may be, it cannot commit a store having a hardware dependency on
some set of loads until after (in global time) those loads have committed.

31

7.2 Constraints of the Standard

7.2 Constraints of the Standard
Volatile atomic accesses constitute observable behavior [13, intro.abstract] and
must be executed in strict accordance with the rules of the C++ abstract machine. This
means that a volatile atomic store in the source code corresponds directly to a machine-
code store instruction, which can commit only after all loads whose values are used
to compute the store’s address and value have committed. OOTA aficionados will
recognize this as a special case of ordering relaxed loads before relaxed stores, albeit
one not requiring expensive memory-fence instructions on weakly ordered architectures.

Although C++ nonvolatile accesses to atomic objects are not observable behavior,
any compiler that restricts its code analysis to a single thread must assume (unless it
can prove otherwise) that a given relaxed atomic store can affect observable behavior in
a different thread that loads the value stored. This assumption does not constrain the
compiler to anywhere near the extent that a volatile relaxed atomic store would, but it
does add significant constraints over those related to nonvolatile non-atomic stores.

For example, nonvolatile relaxed atomic accesses are subject to the C++ memory
model. The “order-preserving” bullet point from Section 4.4 prohibits reordering of
quasi-volatile accesses when they are to the same object, but such reordering is in
any case directly forbidden by the memory model (the four coherence rules discussed
in 6.9.2.2p14–19 [intro.races]). The “onto” bullet point also largely reiterates
restrictions that follow from the standard, in particular, that compilers should not invent
atomic stores, duplicate atomic stores, or invent atomic loads. On the other hand, it is
permissible for compilers to omit redundant atomic stores or fuse nonvolatile atomic
accesses of adjacent objects under appropriate circumstances; these topics correspond
to the “total” and “one-to-one” bullet points of Section 4.4.

Invented Atomic Stores The reason that atomic stores should not be invented is
that doing so can introduce new (and almost certainly undesirable) behaviors that are
forbidden by the abstract machine. To see this, consider Listing 7, a herd7 litmus test
that demonstrates such a behavior. Without line 8, only the values 0 and 3 can be loaded
into r1 on line 13. With line 8, the additional value 42 can also be loaded into r1. The
compiler is therefore forbidden from inventing the store of 42 unless it can prove that
doing so does not negatively affect the program’s observable behaviors. For example,
the compiler might be able to prove that there are no other accesses to x at the time of
the invented store—but it’s very hard to imagine how a compiler that analyzes only a
single thread at a time could prove such a thing.

Duplicated Atomic Stores Duplicating atomic stores is a special case of inventing
them, but it is worth illustrating the fact that duplicating stores can also introduce new
and undesirable behaviors. To see this, consider Listing 8, a litmus test that demonstrates
such a behavior. Without line 9, if the value loaded into r1 is one then the final value of
x must be two. With line 9, the final value of x can be one even when the value loaded
into r1 is one. The compiler is therefore forbidden from duplicating atomic stores
unless it can prove that doing so does not negatively affect the program’s observable
behaviors. Again, the compiler might be able to prove that there are no other accesses
to x at the time of the duplicated store.

32

7.2 Constraints of the Standard

1 C invented-store
2 {
3 [x] = 0;
4 }
5
6 P0(atomic_int *x) {
7 // Invented store followed by intended store.
8 atomic_store_explicit(x, 42, memory_order_relaxed);
9 atomic_store_explicit(x, 3, memory_order_relaxed);

10 }
11
12 P1(atomic_int *x) {
13 int r1 = atomic_load_explicit(x, memory_order_relaxed);
14 }
15
16 exists(1:r1=42)

Analysis by "herd7 -c11 litmus/invented-store.litmus":

1 Test invented-store Allowed
2 States 3
3 1:r1=0;
4 1:r1=3;
5 1:r1=42;
6 Ok
7 Witnesses
8 Positive: 1 Negative: 2
9 Condition exists (1:r1=42)

10 Observation invented-store Sometimes 1 2
11 Time invented-store 0.00
12 Hash=5eb5631d90f3aa70212fcdb018817d8c

Listing 7: Example Invented Store

Invented Atomic Loads Although one can argue that it is functionally correct to
invent atomic loads as long as the loaded value is not used, doing so can result in extra
cache misses for no good purpose. And duplicating an atomic load can also lead to
incorrect results if done carelessly. To see this, consider Listing 9. Suppose that the load
on line 13 were duplicated, for example, by uncommenting line 15. Then the values of
a and b passed to line 17’s call to do_something_with() might be from different
instances of the foo structure, something that do_something_with() probably
isn’t prepared to deal with.

For these reasons, C++ compilers should avoid inventing atomic loads, and in fact
should avoid even duplicating them.

Omitted Redundant Atomic Stores In contrast, a pair of back-to-back nonvolatile
atomic stores to the same object always might be executed such that no other thread
accesses the object during the time between those two stores. This means that if the
compiler omitted the first store, the user would have no way to prove this fact short of
inspecting the assembly code. In cases where such omissions are undesirable, the user
can resort to volatile atomic stores or to inline assembly18 to prevent them.

Omitting a redundant store cannot create an OOTA cycle, because any valid execu-
tion (OOTA or not) of the program with the first of a back-to-back pair of nonvolatile

18For example, by placing the Linux-kernel barrier() macro between the two stores. This macro is an
empty GCC asm that specifies the memory clobber.

33

7.2 Constraints of the Standard

1 C duplicated-store
2 {
3 [x] = 0;
4 }
5
6 P0(atomic_int *x) {
7 atomic_store_explicit(x, 1, memory_order_relaxed);
8 // Duplicated store following intended store.
9 atomic_store_explicit(x, 1, memory_order_relaxed);

10 }
11
12 P1(atomic_int *x) {
13 int r1 = atomic_load_explicit(x, memory_order_relaxed);
14 atomic_store_explicit(x, 2, memory_order_relaxed);
15 }
16
17 exists(1:r1=1 /\ x=1)

Analysis by "herd7 -c11 litmus/duplicated-store.litmus":

1 Test duplicated-store Allowed
2 States 4
3 1:r1=0; [x]=1;
4 1:r1=0; [x]=2;
5 1:r1=1; [x]=1;
6 1:r1=1; [x]=2;
7 Ok
8 Witnesses
9 Positive: 1 Negative: 5

10 Condition exists (1:r1=1 /\ [x]=1)
11 Observation duplicated-store Sometimes 1 5
12 Time duplicated-store 0.01
13 Hash=1e3a5591a2624bee2b8493ae633198c3

Listing 8: Example Duplicated Store

1 struct foo {
2 int a;
3 int b;
4 };
5 _Atomic struct foo *globalfoop;
6
7 void bar()
8 {
9 int a;

10 int b;
11 struct foo *fp;
12
13 fp = atomic_load_explicit(&globalfoop, memory_order_acquire);
14 a = fp->a;
15 // fp = atomic_load_explicit(&globalfoop, memory_order_acquire);
16 b = fp->b;
17 do_something_with(a, b);
18 }

Listing 9: Example Duplicated Load

34

7.3 Semantic Dependencies and Tooling

Actual Execution Tooling Result
sdep sdep Ordered

¬sdep False Positive (Warning?)
¬sdep sdep False Negative (Warning?)

¬sdep Unordered

Table 1: Dependency Classification For Tools

relaxed atomic stores omitted is a valid execution of the program with the store present.

Fused Accesses of Adjacent Nonvolatile Atomic Objects Suppose a pair of adjacent
nonvolatile atomic objects, when combined, form a single machine-word aligned and
machine-word sized unit. Suppose further that the source code contains a pair of atomic
loads, one from each of these objects, with the last of the pair being a relaxed load. Then
the compiler could generate instead a single atomic load of the combined pair, with the
memory-ordering semantics of the first load. A similar fact applies to pairs of stores.

This holds even when the atomic objects are treated as quasi volatile, providing an
example of how the “one-to-one” bullet point of Section 4.4 does not apply to them.

7.3 Semantic Dependencies and Tooling
Where a C++ implementation’s primary function is to correctly execute a C++ program,
the function of tooling is often to evaluate properties of possible executions of that same
program. While implementations should avoid breaking semantic dependencies, tools
are in some cases permitted to misclassify them, as shown in Table 1.

Any misclassification will result in either a false positive or a false negative, except
that many tools give some indication of a misclassification, for example, printing a
warning message indicating that the code is too complex for it to analyze. Some projects
would choose to restructure the code in such cases, on the grounds that code that is
difficult for an automated tool to understand is also likely to be misunderstood by its
all-too-human developers.

One advantage that tools often have over C++ implementations is the ability to
devote much more computational power to the problem at hand. In fact, some tools
respond to excessive complexity by consuming all available CPU and memory, which
can also be interpreted as a good and sufficient warning message.

However, there is an important special case for tools that are closely associated with
a C++ compiler. Such tools can simply use that compiler’s classification of dependencies
as semantic on the one hand or nonsemantic on the other, whether by working with the
compiler’s intermediate representations, examining binaries produced by the compiler,
tracing the program’s execution, or, in the case of dynamic tools, actually executing the
program. Either way, this approach reduces the problem of analysis from the level of the
C++ abstract machine to a much simpler lower level of abstraction. While taking this
approach sacrifices significant generality, it also has the significant benefit of greatly
reducing the cost of dependency analysis, potentially all the way down to zero.

35

8 Future Directions
This paper focuses solely on compilers, but it should be possible to extend these results
to some classes of interpreters and JITs on the one hand and to link-time optimizations
(LTO) on the other.

This paper focuses primarily on compilers that do only local per-thread analysis.
Further explorations could consider additional classes of global analysis, for example,
analyses that demonstrate that a given expression will always evaluate to a particular
constant. JMM Causality Test Case 1 discussed in Appendix E.1 provides an example
of such a global analysis.

This paper assumes that the user defines threads, and that the C++ implementation
executes those threads unchanged. Future analyses might examine the possibility of
“flattening” optimizations that combine multiple threads into one. (Note that such
optimizations are more difficult than they might first appear.)

This paper shows that semantic dependencies are relative to specific executions of
a program and the specific compiler in use rather than being determined solely by the
source code. Future work might expand on Section 6.4.1, exploring special cases in
which absolute semantic dependencies are functions just of the source code.

This paper considers only programs whose threads communicate using shared
memory. Future work might include the effects of input and output or other operations
which can vary from one execution to another, such as those based on the current time,
process IDs, or pointer values (see Section 6.4.3).

Finally, future work might expand on Sections 6.4.2, and 6.4.4 so as to more precisely
delineate the limits of permissible behavior for quasi-volatile object accesses.

9 Conclusion
This paper has presented samples of code containing non-trivial semantic dependencies,
uncovering some shortcomings in typical definitions of “semantic dependency”. It
pointed out examples where semantic dependencies are a function of an execution rather
than of the source code, and examples where a single semantic dependency extends
from multiple loads to a store but not from any one of those loads. These complex
dependencies motivated a generalization of the definition of “OOTA cycle”, which is
shown in Section 2.2.2.

This generalization, combined with a focus on compiler-based loose C++ imple-
mentations using single-thread analysis, and a consideration of the relation between
source code and machine code, led to the formulation of the Fundamental Property of
semantic dependency shown in Section 5.3. This in turn led to a precise definition of
“semantic dependency” given in Section 6.1. This definition was used in Section 6.3
to demonstrate that these implementations are incapable of producing OOTA cycles in
UB-free programs, provided they treat all nonvolatile atomic objects as quasi volatile,
obeying the limitations outlined in Section 4.4.

A variant definition of “semantic dependency” given in Section 6.2, appropriate for
compiler-based loose C++ implementations that don’t restrict their code transformations
to those based on single-thread analysis, was used to show that such implementations

36

are incapable of producing OOTA cycles in UB-free programs provided they treat all
atomic objects as volatile.

37

x=1

Thread 0 Thread 1 Thread 2 Thread 3

x=2

x=4

x=3

coe

coe

coe

r1=x

rfe

fre

fricoe

coe

coe

Figure 1: ITC Diagram for coe, fre, and rfe

A Interthread Communications
This section more precisely defines the “coe”, “fre”, and “rfe” types of interthread
communication (also collectively called “links”) and presents information about their
temporal qualities.

First, naming. The final “e” in all three acronyms stands for “external” (that is,
between threads) as opposed to “internal” communication (within a thread: “coi”, “fri”,
and “rfi”) and also as opposed to all communication, whether interthread or intrathread
(“co”, “fr”, and “rf”).

Next, definitions:

coe Coherence-order (external), which connects a store to any other store (in a different
thread) to the same object that comes later in the object’s modification order, i.e.,
that overwrites either the first store’s value or some later value.

fre From-read (external), which connects a load to any store (in a different thread) to
the same object that overwrites either the value that the load returned or some
later value.

rfe Reads-from (external), which connects a store to any load (in a different thread)
from the same object that returns the value stored. (Note: This means that the
load retrieves the information written by the store, as opposed to retrieving the
information from a different store that happened to write the same value.)

Thirdly, Figure 1 illustrates the coe, fre, fri, and rfe links for four threads with
time advancing from the top to the bottom of the figure. Start with coe: Even though

38

Figure 2: On x86, coe Links Are Atemporal

Thread 1’s store is later in global time than that of Thread 0, the Thread 1 store comes
first in x’s modification order, then Thread 0’s store, then those of Threads 2 and 3.
There is thus a coe link from Thread 1’s store to every other store, from Thread 0’s store
to those of Threads 2 and 3, and from Thread 2’s store to that of Thread 3. This situation
can occur due to the initial placement and subsequent movement of cache lines.

Thread 3’s load reads the value written by Thread 0’s store, so there is an rfe link
from that store to that load. In addition there is an fre link from the load to Thread 2’s
earlier store and an fri link to Thread 3’s later store. Note that the fre link goes backwards
in time.

Finally, the reader might desire hard evidence that coe and fre links really can go
backwards in time. We provide this evidence on x86 to demonstrate that these effects
are not confined to weakly ordered architectures. The machine is a dual-socket system
with Intel(R) Xeon(R) Gold 6138 CPUs @ 2.00 GHz, each socket with 20 cores and
each core having a pair of hardware threads, for a grand total of 80 hardware threads.
The code generating this data may be found in the CodeSamples/cpu directory of
the git archive of the book “Is Parallel Programming Hard, And, If So, What Can You
Do About It?” [18].19 See especially the perftemporal.sh script.

Figure 2 shows that coe links really are atemporal, that is, they can go backwards
in time, and quite frequently at that, even on x86. During a run of the test, each of
the threads stores a distinct value to the same atomic integer variable (all at about the
same time), and each one records timestamps just before and just after its store. The
“winning” store is the one whose value is retained in the variable at the end of the run,

19git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git

39

0

11

9

10 13 14 1 2

3

4 5 6

7

8

Figure 3: On x86, coe Links Form a Coherent Partial Order

overwriting all the others. The store-to-store latency is measured from the beginning
of the nonwinning store that started latest to the end of the winning store. Every data
point on the negative x-axis thus represents a group of runs in which a nonwinning store
started after the winning store finished. This demonstrates that the winning store quite
commonly is not the last one, even on x86.

Figure 3 shows that the sequence of values read from the atomic variable by each
thread is consistent with a number of global orders, as required.20 Working from the far
left, one thread saw the values 0, 11, and 9, a second thread saw 3, 11, and 9, and so on.
Although different threads saw different sequences of values, there is no disagreement
on the order of the values that they could see. For example, all threads agree that the
value 9 came last. This is an example of single-variable sequential consistency, and it
meets the coherence requirements of the C++ standard.

Figure 4 plots a histogram of the elapsed time from the beginning of a load that
returned an old value to the end of the store that provided the new value. Most of the
data falls into negative time. In fact, in the most commonly occurring case the last load
of an old value executes about 60 timestamp periods (about 30 nanoseconds) after the
store which overwrote that old value. This shows that fre links can and do go backwards
in global time, corresponding to the fre link between Thread 3 and Thread 2 in Figure 1.

Figure 5 plots a histogram of the elapsed time from the store of a new value to the
first load of that new value. Here all of the data falls into positive time, indicating that
rfe links always go forward in global time, as those familiar with computer hardware,
limits on speculative execution, and the laws of physics would expect.21

Figure 6 shows how propagation delay explains the temporal properties of coe, fre,
and rfe. The upper portion of the figure shows an atemporal coe, in which CPU 0 stores
1 to x after CPU 3 stores 2 but the modification order of x is decided after the fact. In
this case, the value of 2 from CPU 3’s store overwrites the value of 1 from CPU 0’s
store, despite the fact that CPU 0’s store happened later in global time. One way this
could happen is if the cache line containing x arrived at CPU 0 before arriving at CPU 3.

20Note that this data was not measured on the 80-thread system but rather on a 16-thread x86 laptop, to
avoid an unreadable diagram containing 79 bubbles.

21Our apologies to those who might feel that this is belaboring the obvious. And please understand that
these points have proven helpful to some of those whose work has never strayed too close to hardware.

40

Figure 4: On x86, fre Links Are Atemporal

A more fanciful explanation is that both values arrived at an interconnect at the same
time, and the interconnect made an arbitrary choice between the two. Either way, the
end result is that an earlier store can overwrite a later store.

The middle portion of the figure shows an atemporal fre, in which CPU 3’s load
obtains the old value of zero from x despite having executed long after CPU 0’s store,
courtesy of the fact that the new value of x had not yet propagated to CPU 3.

The lower portion of the figure shows a temporal rfe. Because a load on CPU 3
cannot obtain the value stored by CPU 0 until after that value has propagated to CPU 3,
the fact that CPU 3 obtains the new value implies that the load was executed after the
store.

And this is exactly why the C++ memory model guarantees ordering from rfe links
but not from coe and fre links for relaxed accesses (in the absence of other ordering from
stronger atomic memory accesses or atomic_thread_fence(memory_order_
seq_cst)).

41

Figure 5: On x86, rfe Links Are Temporal

x.store(1);CPU 0

CPU 1

CPU 2

CPU 3

X =
 0

X =
 1

x.store(2);

X =
 2

Time

coe

x.store(1);CPU 0

CPU 1

CPU 2

CPU 3 r1 = x.load() == 0;

x
= 0 x

= 1

Time

fre

x.store(1);CPU 0

CPU 1

CPU 2

CPU 3 r1 = x.load();X =
 0

X =
 1

Time

rfe

Figure 6: Propagation Delay and Temporal Properties of coe, fre, and rfe

42

B User Influence Over Language Semantics
As noted earlier, the exact definition of a computer language is subject to some debate,
with standards, implementations, and users all having some degree of influence [23, 24].
It is natural to dismiss user influence when compared to the text of standards or the
code in implementations, but both of these are subject to change and do change over
time. An especially easy way for users to influence the implementation is by means
of command-line flags and switch settings. As an example, consider the following
command line used to compile the Linux kernel’s kernel/rcu/tree.c C-language
source file:

gcc -Wp,-MMD,kernel/rcu/.tree.o.d -nostdinc -I./arch/x86/include

-I./arch/x86/include/generated -I./include -I./arch/x86/include/uapi

-I./arch/x86/include/generated/uapi -I./include/uapi

-I./include/generated/uapi

-include ./include/linux/compiler-version.h

-include ./include/linux/kconfig.h

-include ./include/linux/compiler_types.h

-D__KERNEL__ -fmacro-prefix-map=./= -Werror -std=gnu11 -fshort-wchar

-funsigned-char -fno-common -fno-PIE -fno-strict-aliasing

-mno-sse -mno-mmx -mno-sse2 -mno-3dnow -mno-avx

-fcf-protection=branch -fno-jump-tables -m64 -falign-jumps=1

-falign-loops=1 -mno-80387 -mno-fp-ret-in-387

-mpreferred-stack-boundary=3 -mskip-rax-setup

-mtune=generic -mno-red-zone -mcmodel=kernel -Wno-sign-compare

-fno-asynchronous-unwind-tables -mindirect-branch=thunk-extern

-mindirect-branch-register -mindirect-branch-cs-prefix

-mfunction-return=thunk-extern -fno-jump-tables

-fpatchable-function-entry=16,16 -fno-delete-null-pointer-checks

-O2 -fno-allow-store-data-races -fstack-protector-strong

-fomit-frame-pointer -fno-stack-clash-protection -falign-functions=16

-fno-strict-overflow -fno-stack-check -fconserve-stack -Wall -Wundef

-Werror=implicit-function-declaration -Werror=implicit-int

-Werror=return-type -Werror=strict-prototypes -Wno-format-security

-Wno-trigraphs -Wno-frame-address

-Wno-address-of-packed-member -Wframe-larger-than=2048 -Wno-main

-Wno-unused-but-set-variable -Wno-unused-const-variable -Wvla

-Wno-pointer-sign -Wcast-function-type -Wno-array-bounds

-Wno-alloc-size-larger-than -Wimplicit-fallthrough=5

-Werror=date-time -Werror=incompatible-pointer-types

-Werror=designated-init -Wenum-conversion -Wno-unused-but-set-variable

-Wno-unused-const-variable -Wno-restrict -Wno-packed-not-aligned

-Wno-format-overflow -Wno-format-truncation -Wno-stringop-overflow

-Wno-stringop-truncation -Wno-missing-field-initializers

-Wno-type-limits -Wno-shift-negative-value -Wno-maybe-uninitialized

-Wno-sign-compare -DKBUILD_MODFILE=’"kernel/rcu/tree"’

43

-DKBUILD_BASENAME=’"tree"’ -DKBUILD_MODNAME=’"tree"’

-D__KBUILD_MODNAME=kmod_tree

-c -o kernel/rcu/tree.o kernel/rcu/tree.c

We do not propose to explain all of these, and sufficiently motivated readers can
avail themselves of the GCC documentation. We instead look at representative members
of several categories.

The -funsigned-char causes the char type to be unsigned, which overrides
per-architecture defaults, some of which treat char as signed and others as unsigned.
This choice prevents a class of bugs, and also allows the kernel to make reliable use of
the uppermost bit of variables of type char. It also affects the definition of “semantic
dependency” by changing the arithmetic proporties of this type. In theory, the standard
could have specified the signedness of char but the variety of existing practice in
the 1980s prevented this. Plus, optimizers were much less capable back then, so the
signedness of char was much more of a performance concern than it is today.

The -mno-sse prevents GCC from making use of the processor’s SSE hardware.
This is done for performance reasons, as it avoids the overhead of saving and restoring
the state of this hardware when switching between user and kernel contexts. Similarly,
the -mcmodel=kernel causes the kernel binary to be placed in the uppermost 2GB
of the address space, again reducing the overhead of switching between user and kernel
contexts. These are cases where the standard does not specify anything, nor should it.

The -fpatchable-function-entry=16,16 causes GCC to emit 16 nop
instructions at the beginning of each function, with the function’s entry point being just
after this string of nop instructions. The resulting buffers are used by the Linux-kernel
tracing infrastructure which is in turn used for debugging, performance measurement,
and monitoring. This is again clearly outside the scope of the standard.

The -fstack-protector-strong causes GCC to emit code that provides
some protection against some classes of attacks based on buffer overflows. One could
rightly argue code should simply avoid ever overflowing buffers, but things like memory
allocators and userspace memory accesses must use code that can be difficult to distin-
guish from buffer overflows. It is not clear that the ever-increasing variety of attacks
should affect the standard.

The -fno-strict-overflow causes GCC to act as if signed integer overflow
is defined behavior, which also affects the definition of “semantic dependency”. This
might be a controversial choice, and another option would be to add a new set of signed
integer types to the standard for which overflow is defined as wrapping, similar to the
situation with unsigned integers.

The -Werror=strict-prototypes causes GCC to warn if old-style non-
ANSI function prototypes are used. This helps avoid certain classes of bugs. Warnings
are by design outside the scope of the standard.

To sum up, user preference can exert a nontrivial influence over language semantics,
and in particular can affect some aspects of the definition of “semantic dependency”.

44

C But What About Tooling?
This paper focuses primarily on showing that, under commonly occurring constraints,
OOTA cycles cannot form in real-world C++ implementations.

But what about tooling?
One entirely reasonable reaction is that, given the issues raised in Section 2.2,

Section 4, and Section 6.4, load/store reordering is the least of the problems faced
by tooling. Nevertheless, this appendix expands on Section 7.3 by looking into the
possibility of:

• Tooling focusing on only part of the language,

• Changing the language to eliminate some aspects that are troublesome for tooling
(and potentially accepting performance and energy-efficiency shortfalls), and

• Changing the language to better delineate those portions that tooling can easily
accommodate.

But first, the next section looks at why some weakly ordered computer hardware
appears to forbid reordering of prior relaxed loads with later relaxed stores,22 despite
the architecture permitting such reordering.

C.1 Load/Store Ordering: Hardware View for Software Hackers
Both the ARM and PowerPC architectural memory models permit reordering prior
loads against subsequent stores, but actual tests on recent hardware fail to produce any
evidence of such reordering. Nevertheless, thus far neither ARM nor PowerPC hardware
architects have been willing to strengthen their memory models so as to forbid such
reordering, despite a number of requests to do so [11].

This appendix offers some possible reasons for this odd juxtaposition of negative
test results and flat refusal.

One key point is that some hardware (including ARM and PowerPC) provides
precise exceptions. For example, if a given load results in a segmentation violation
exception, that exception will occur before any instructions following that load have
committed. This means that a given load instruction’s execution must have proceeded
beyond the point where an exception might occur before any subsequent store can be
permitted to commit, even if that store is completely unrelated to that load. For example,
the later store cannot commit until all prior loads’ address translations have completed
successfully.

However, if the load suffers a cache miss, address translation will have completed
long before the load returns its value, meaning that a later store might well commit
before the load completes. In fact, that later store might commit before the store which
supplies the value returned by the load! Which explains why some hardware systems
really do reorder prior loads and later stores.

The question then becomes “Why would weakly ordered systems fail to reorder
prior loads with later stores?”

22Or, in memory-order-speak, forbid all load-buffering litmus tests.

45

C.1 Load/Store Ordering: Hardware View for Software Hackers

One explanation is ECC errors.
If correctable ECC errors were fixed up in hardware, then only uncorrectable ECC

errors would be directly visible to software. If the only possible reaction to an uncor-
rectable ECC error was to terminate the program suffering that ECC error, it would be
safe to allow subsequent stores to commit as soon as all prior loads’ address translations
had completed successfully.

However, some kernels and applications have ways of handling even uncorrectable
errors. Operating-system kernels encountering an ECC error might note that the affected
data was being used by only one user process, and might react by killing that user
process, taking care to account for memory shared with other processes. Some user
applications might note that the corrupted data affected only a particular computation,
and might react by restarting that computation. On the other hand, it is only reasonable
to react to an uncorrectable ECC error in a load from a read-only mapped file by re-
reading that data from that file, then restarting that load instruction. In such cases,
the kernel and the user application would need to continue execution, and would thus
require a precise exception.

Systems that offload processing of correctable ECC errors to software also require
precise exceptions. After all, the software is going to need to be able to correct the error
and then fix up the state to make it appear that the load had returned the fixed-up value.

ECC errors are detected near the end of their corresponding load instructions’
execution, and so any need for precise exceptions rules out committing any subsequent
stores until after the load has fetched (and possibly corrected) its value.

So why are hardware architects reluctant to tighten their memory models to forbid
reordering of earlier loads and later stores?

If you would like an authoritative answer to this question, you should of course ask
your friendly local hardware architect. In the meantime, here is some semi-informed
speculation on this topic:

• Some hardware might choose to forego ECC, for example, in order to reduce cost
for low-end systems or to improve energy efficiency for battery-powered systems.

• ECC error correction might still be done in hardware, avoiding the need for
precise software-visible exceptions.

• Some systems might prefer to immediately shut down in response to an uncor-
rectable ECC error, perhaps due to safety considerations. This would entirely
avoid the need for software-visible ECC-related exceptions.23

• Someone might come up with a clever way of correcting ECC errors in firmware,
avoiding the need for precise software-visible exceptions.

• As late as early 2024, some GPGPUs have been observed reordering earlier loads
against later stores. Other hardware architects might therefore feel the need to
keep this option open for their own systems.

23One motivation for immediate shutdown is that if there are uncorrectable errors, there might soon be
errors that change one valid bit pattern to another valid bit pattern, which could result in a lack of safety.

46

C.2 Status Quo and Focused Tooling

So although it is not unreasonable to continue asking hardware vendors to tighten
their memory models so as to prohibit reordering of earlier loads and later stores, it also
would not be too surprising for them to continue to refuse.

C.2 Status Quo and Focused Tooling
The theoretical possibility of OOTA cycles causes some tools to have difficulty identify-
ing precisely which outcomes are impossible on real-world C++ implementations. One
approach is for tooling to reject programs containing instances of memory_order_
relaxed and memory_order_consume, so that developers desiring their code to
be analyzed by such tools would avoid using these memory_order values. The is
strong precedent for this strategy, with the common prohibition against side effects in
function arguments being but one example.

However, there is a large body of existing code that uses memory_order_
relaxed, and it would be unfortunate if such tools could not be applied to this
code.

Another approach would be to add flags to C++ implementations to cause memory_
order_relaxed to be interpreted as either memory_order_acquire (for loads),
memory_order_release (for stores), or memory_order_acq_rel (for read-
modify-write operations). On TSO systems and on systems featuring precise ECC
exceptions, this would allow tooling to be brought to bear without performance or energy-
efficiency consequences beyond forgone optimizations involving memory reference
reordering.

However, this would mean that programs compiled in this way would not be guar-
anteed to run correctly on weakly ordered systems that lack ECC (or that lack precise
exceptions). In addition, this change is more strict than necessary, forbidding opti-
mizations that tooling could in fact analyze. Therefore, the next two sections look at
standardizing less severe restrictions.

C.3 Change Relaxed to Forbid Load Buffering
Tooling does not require relaxed accesses become fully acquire and/or release, but
rather only that implementations be forbidden from reordering prior relaxed loads with
subsequent relaxed stores, as has been suggested many times over the years [7, 6, 14].

This preserves portability while enabling tooling to handle all members of the
memory_order enumeration, but inflicts some performance and energy-efficiency
penalties [9] in code not requiring these ordering restrictions [19].

C.4 Add Load-Store Memory Order that Forbids Load Buffering
The addition of a memory_order_load_store member to the memory_order
enumeration has been suggested starting many years ago [6, 16]. This does not resolve
all shortcomings in the C++ memory model [22, 16], but it would provide a portable
memory_order that minimally restricted compiler and hardware optimizations while
still permitting full analyzability by current software tools.

47

C.4 Add Load-Store Memory Order that Forbids Load Buffering

This change would also leave memory_order_relaxed in place, allowing
minimal-overhead accesses in fastpaths. These fastpaths would not be analyzable
by generic tools, but could be handled by special-case tools that analyze the binaries
to verify that required orderings are enforced by machine-language properties such
as dependencies. And a tool that checks control dependencies has in fact been proto-
typed [12].

This suggests a combined strategy of adding memory_order members as needed
to extend the reach of general-purpose tooling, while also identifying memory_order_
relaxed idioms that are checked at the machine level using special-purpose tooling.24

24Kudos to Peter Sewell for clearly articulating this possibility as part of an overall strategy.

48

1 atomic<int> x, y;
2
3 void thread1()
4 {
5 int r1 = x.load(memory_order_relaxed);
6 y.store(r1, memory_order_relaxed);
7 }

Listing 10: Non-Volatile Accesses and Dependencies

1 volatile atomic<int> x, y;
2
3 void thread1()
4 {
5 int r1 = x.load(memory_order_relaxed);
6 y.store(r1, memory_order_relaxed);
7 }

Listing 11: Volatile Accesses and Dependencies

D Illustrative Litmus Tests
These litmus tests helped illuminate important aspects of the problem of defining sdep
and identifying OOTA cycles. This appendix presents these tests in roughly decreasing
order of importance, surprise, and illumination. It evaluates them using the herd7 tool
and also using manual analysis.

D.1 Semantic Dependencies and volatile
The Linux kernel uses volatile accesses to constrain the compiler, and it is worth looking
at the example shown in Listing 10 to see how this works.

Because both x and y are nonvolatile, a C++ compiler is free to assume that the
value loaded by line 5 will be either some value stored to x or its initial value. And
because there are no stores to x, the only remaining possibility is the default-initialized
value of zero. Therefore, the compiler is within its rights to substitute the constant zero
for r1 on line 6, eliminating the semantic dependency that would otherwise extend
from line 5 to line 6.

One way to preserve this dependency is use of volatile, as shown in Listing 11.
Now the compiler is forbidden from assuming that the value loaded by line 5 has any
relation to any stores to or initialization of x.

In this case, the volatile keyword alerts the compiler to the possibility of inter-
fering changes to x from outside the program, for example, due to x being:

• Allocated in an MMIO region of the address space.

• Modified by an unknown-to-the-compiler thread or signal handler.

49

D.2 Non-Trivial Semantic Dependencies

• Subject to I/O-device DMA operations.

• Modified by debugger commands.

• Modified using facilities such as /dev/mem.

• Modified by as-yet-unwritten dynamically linked libraries.

• Modified by some other mechanism of the reader’s choosing.

These possibilities force the compiler to preserve the semantic dependency from line 4
to line 5, and this preserved dependency helps prevent the formation of OOTA cycles in
environments where there is no interference.25

The developer is free to arrange for x to be free of any interference, thus obtaining
predictable behavior along with the preserved semantic dependency. However, this
example invalidates the rough definition of semantic dependency from Section 1.1.1
because the value loaded from x will always be the initial value of zero, so that it is at
best dubious to talk about any changes in the value loaded.

One way forward is to assume that interference could happen when determining
which dependencies are semantic, and then do further analysis using that determination.
This forms the basis for the volatile approach presented in Section 6.4.2.

D.2 Non-Trivial Semantic Dependencies
Most of the examples in this paper involve simple semantic dependencies connecting a
single load to a single store. One exception appears in Appendix D.6, but this section
will present a more difficult example.

Listing 12 shows an example that builds on the multiplication-by-zero discussion
in Section 2.2.1 on page 12. Line 11 of P0() stores to z the product of the values
loaded from x and y on lines 9 and 10, respectively. Similarly, lines 16 and 17 store to
x and y, respectively, the value that line 15 loads from z. Because all three variables
are initialized to zero, and because loads can be ordered before any store, there is an
execution in which all three loads return the value zero, in which case all three stores
will of course store the value zero. In any related execution where the value loaded from
y remains zero, nonzero values loaded from x cannot affect the value stored by line 11
to z. Only executions which load different (that is, nonzero) values from both x and y
can cause the value stored to z to change from zero to a nonzero value.

Therefore, as noted in Section 2.2.1, in an execution where the loads from both x
and y return zero, there is no semantic dependency from the load from x to the store to
z, nor is there a semantic dependency from the load from y to the store to z. However,
there is a semantic dependency from the combination of the loads from x and y to the
store to z. An example is given by the execution that satisfies the exists clause on
line 20, which would be an OOTA cycle.

For further evidence that there is no semantic dependency from y to z in executions
where the load from x is zero, see the equivalent26 program shown in Listing 13. Here,

25When there is interference, the definition of “OOTA cycle” does not apply.
26But equivalent only because the atomics are all nonvolatile!

50

D.2 Non-Trivial Semantic Dependencies

1 C oota-mult-0
2 {
3 [x] = 0;
4 [y] = 0;
5 [z] = 0;
6 }
7
8 P0(atomic_int *x, atomic_int *y, atomic_int *z) {
9 int r1 = atomic_load_explicit(x, memory_order_relaxed);

10 int r2 = atomic_load_explicit(y, memory_order_relaxed);
11 atomic_store_explicit(z, r1 * r2, memory_order_relaxed);
12 }
13
14 P1(atomic_int *x, atomic_int *y, atomic_int *z) {
15 int r3 = atomic_load_explicit(z, memory_order_relaxed);
16 atomic_store_explicit(x, r3, memory_order_relaxed);
17 atomic_store_explicit(y, r3, memory_order_relaxed);
18 }
19
20 exists(0:r1=1 /\ 0:r2=1 /\ 1:r3=1)

Analysis by "herd7 -c11 litmus/oota-mult-0.litmus":

1 Test oota-mult-0 Allowed
2 States 1
3 0:r1=0; 0:r2=0; 1:r3=0;
4 No
5 Witnesses
6 Positive: 0 Negative: 5
7 Condition exists (0:r1=1 /\ 0:r2=1 /\ 1:r3=1)
8 Observation oota-mult-0 Never 0 5
9 Time oota-mult-0 0.00

10 Hash=dc0cd2d300923fdda699b77d8cab9b88

Listing 12: OOTA Multiplication Example, Initial Value Zero

51

D.2 Non-Trivial Semantic Dependencies

1 C oota-mult-0-cond
2 {
3 [x] = 0;
4 [y] = 0;
5 [z] = 0;
6 }
7
8 P0(atomic_int *x, atomic_int *y, atomic_int *z) {
9 int r1 = atomic_load_explicit(x, memory_order_relaxed);

10 int r2;
11 if (r1)
12 r2 = atomic_load_explicit(y, memory_order_relaxed);
13 else
14 r2 = 0;
15 atomic_store_explicit(z, r1 * r2, memory_order_relaxed);
16 }
17
18 P1(atomic_int *x, atomic_int *y, atomic_int *z) {
19 int r3 = atomic_load_explicit(z, memory_order_relaxed);
20 atomic_store_explicit(x, r3, memory_order_relaxed);
21 atomic_store_explicit(y, r3, memory_order_relaxed);
22 }
23
24 exists(0:r1=1 /\ 0:r2=1 /\ 1:r3=1)

Analysis by "herd7 -c11 litmus/oota-mult-0-cond.litmus":

1 Test oota-mult-0-cond Allowed
2 States 1
3 0:r1=0; 0:r2=0; 1:r3=0;
4 No
5 Witnesses
6 Positive: 0 Negative: 3
7 Condition exists (0:r1=1 /\ 0:r2=1 /\ 1:r3=1)
8 Observation oota-mult-0-cond Never 0 3
9 Time oota-mult-0-cond 0.00

10 Hash=41de4a0ad40a252f3a665e913e10b265

Listing 13: OOTA Conditional Multiplication Example, Initial Value Zero

52

D.2 Non-Trivial Semantic Dependencies

1 C oota-mult-1
2 {
3 [x] = 1;
4 [y] = 1;
5 [z] = 1;
6 }
7
8 P0(atomic_int *x, atomic_int *y, atomic_int *z) {
9 int r1 = atomic_load_explicit(x, memory_order_relaxed);

10 int r2 = atomic_load_explicit(y, memory_order_relaxed);
11 atomic_store_explicit(z, r1 * r2, memory_order_relaxed);
12 }
13
14 P1(atomic_int *x, atomic_int *y, atomic_int *z) {
15 int r3 = atomic_load_explicit(z, memory_order_relaxed);
16 atomic_store_explicit(x, r3, memory_order_relaxed);
17 atomic_store_explicit(y, r3, memory_order_relaxed);
18 }
19
20 exists(0:r1=0 /\ 0:r2=0 /\ 1:r3=0)

Analysis by "herd7 -c11 litmus/oota-mult-1.litmus":

1 Test oota-mult-1 Allowed
2 States 1
3 0:r1=1; 0:r2=1; 1:r3=1;
4 No
5 Witnesses
6 Positive: 0 Negative: 5
7 Condition exists (0:r1=0 /\ 0:r2=0 /\ 1:r3=0)
8 Observation oota-mult-1 Never 0 5
9 Time oota-mult-1 0.00

10 Hash=1d4226b931b416aec475704b1c92d27b

Listing 14: OOTA Multiplication Example, Initial Value 1

there is not even a load from y in executions where the load from x returns zero, so
there cannot possibly be a semantic dependency involving this non-existent load. A
similar transformation would load x only in executions where the load from y returned
nonzero, which similarly illustrates the lack of a semantic dependency between x and z.

In both Listings 12 and 13, an OOTA cycle having non-zero values (such as those
indicated by their respective exists clauses) would need to affect both the x and the
y components of this compound semantic dependency. This situation poses a challenge
to current work on semantic dependencies, which are typically restricted to a single load
and store.

In contrast, consider Listing 14, which differs from Listing 12 only in the initial
values (1 instead of 0) and the exists clause (0 instead of 1). Note that an execution
satisfying the updated exists clause is again an OOTA cycle.

Starting with the intuitive execution where the values loaded from x and y on lines 9
and 10 are the value 1 (that is, nonzero), executions that differ only in the value loaded
from either x or y will now affect the value stored to z by line 11. There is therefore
one semantic dependency from the load from x to the store to z and another separate
semantic dependency from the load from y to the store to z, which matches typical
definitions of semantic dependency. Yet if the initial values were instead obtained as
input, Listing 12 and Listing 14 could be thought of as being two different executions of
the exact same program.

53

D.2 Non-Trivial Semantic Dependencies

1 C oota-mult3-1
2 {
3 [w] = 2;
4 [x] = 2;
5 [y] = 2;
6 [z] = 2;
7 }
8
9 P0(atomic_int *w, atomic_int *x, atomic_int *y, atomic_int *z) {

10 int r1 = atomic_load_explicit(w, memory_order_relaxed);
11 int r2 = atomic_load_explicit(x, memory_order_relaxed);
12 int r3 = atomic_load_explicit(y, memory_order_relaxed);
13 atomic_store_explicit(z, r1 * r2 * r3, memory_order_relaxed);
14 }
15
16 P1(atomic_int *w, atomic_int *x, atomic_int *y, atomic_int *z) {
17 int r4 = atomic_load_explicit(z, memory_order_relaxed);
18 atomic_store_explicit(w, r4, memory_order_relaxed);
19 atomic_store_explicit(x, r4, memory_order_relaxed);
20 atomic_store_explicit(y, r4, memory_order_relaxed);
21 }
22
23 exists(0:r1=1 /\ 0:r2=1 /\ 0:r3=1 /\ 1:r4=1)

Analysis by "herd7 -c11 litmus/oota-mult3-0.litmus":

1 Test oota-mult3-1 Allowed
2 States 2
3 0:r1=2; 0:r2=2; 0:r3=2; 1:r4=2;
4 0:r1=2; 0:r2=2; 0:r3=2; 1:r4=8;
5 No
6 Witnesses
7 Positive: 0 Negative: 9
8 Condition exists (0:r1=1 /\ 0:r2=1 /\ 0:r3=1 /\ 1:r4=1)
9 Observation oota-mult3-1 Never 0 9

10 Time oota-mult3-1 0.01
11 Hash=175b736e7d4b4e5db15f171333472c9f

Listing 15: OOTA Three-Factor Multiplication Example, Initial Value Zero

54

D.3 Why rfe Instead of Tried-And-True rf?

Because the only two solutions to x2 = x are the values zero and one, Listings 12
and 14 each have only two OOTA cycles. Note well that although software cannot
distinguish the initial values from those of an OOTA cycle having those same values,
there is a very real difference in the corresponding executions. To wit, an execution not
corresponding to an OOTA cycle will read at least one initialization value, while an
execution corresponding to an OOTA cycle with those same values will read only from
that cycle’s stores. On the other hand, in a similar program having initial values of (say)
two, both executions containing OOTA cycles would be distinguishable from the initial
values.

Listing 15 goes one step further by multiplying the values obtained from three
different loads. Because x3 = x has three solutions ({−1,0,1}), this execution could
have up to three OOTA cycles.

Much more elaborate examples can be constructed, which raises the question of
how to determine the set of semantic dependencies in a given execution of a given
fragment of code. The short answer is that when running on a real-world system, any
C++ program is a finite-state machine, which, unlike Turing-complete systems, can be
analyzed, as demonstrated in Section 5.

One might ask why semantic dependencies can be so complicated when hardware
dependencies are much more straightforward. The reason is that, unlike compilers,
hardware:

• Respects dependencies even when they reduce to a constant,

• Optimizes much less aggressively, if at all, and

• Lacks undefined behavior.

This situation further underscores the per-execution nature of semantic dependencies
as well as the need for an improved definition of “semantic dependency”. In Section 6,
we expand the traditional definition to include dependencies extending from groups of
loads to a single store.

D.3 Why rfe Instead of Tried-And-True rf?
Listings 16 and 17 show the examples from Section 2.1 on page 11 in the form of litmus
tests. A compiler is allowed to transform the program in Listing 16 to the form of
Listing 17, which demonstrates that intrathread reads-from (rfi) links may be eliminated
by the compiler and therefore should not be used in a definition of OOTA. This section
provides a more involved example to drive the point home.

The first step in this direction is Listing 18, which expands Listing 31 (discussed in
Appendix E.4) from two threads to three. The herd7 tool reports OOTA values, and
all threads have straightforward semantic dependencies from their loads to their stores.

Listing 19 revises Listing 18 so that the value stored to y is forced to be at most
17 and the value stored to z is forced to be at least 17. This of course means that the
value stored to z must always be 17, as can be seen in the herd7 output. (However, a
single-thread analysis could not prove this fact.)

Listing 20 further revises the litmus test to flatten P0() and P1() into a single
thread, so that the resulting P0() has an rfi link connecting the store to and load from

55

D.3 Why rfe Instead of Tried-And-True rf?

1 C oota-3-2-proc
2 {
3 [x] = 0;
4 [y] = 0;
5 [z] = 0;
6 }
7
8 P0(atomic_int *x, atomic_int *y, atomic_int *z) {
9 int r1 = atomic_load_explicit(x, memory_order_relaxed);

10 atomic_store_explicit(y, r1, memory_order_relaxed);
11 }
12
13 P1(atomic_int *x, atomic_int *y, atomic_int *z) {
14 int r2 = atomic_load_explicit(y, memory_order_relaxed);
15 atomic_store_explicit(z, r2, memory_order_relaxed);
16 int r3 = atomic_load_explicit(z, memory_order_relaxed);
17 atomic_store_explicit(x, r3, memory_order_relaxed);
18 }
19
20 locations [x;y;z]
21 exists(0:r1=17 /\ 1:r2=17 /\ 1:r3=17)

Analysis by "herd7 -c11 litmus/oota-3-2-proc.litmus":

1 Test oota-3-2-proc Allowed
2 States 2
3 0:r1=S12; 1:r2=S12; 1:r3=S12; [x]=S12; [y]=S12; [z]=S12;
4 0:r1=0; 1:r2=0; 1:r3=0; [x]=0; [y]=0; [z]=0;
5 No
6 Witnesses
7 Positive: 0 Negative: 4
8 Condition exists (0:r1=17 /\ 1:r2=17 /\ 1:r3=17)
9 Observation oota-3-2-proc Never 0 4

10 Time oota-3-2-proc 0.01
11 Hash=be011d398f752228fa778c7ed9b3f0fc

Listing 16: OOTA With an Intrathread Store-Load Link

56

D.3 Why rfe Instead of Tried-And-True rf?

1 C oota-3-2-proc-opt
2 {
3 [x] = 0;
4 [y] = 0;
5 [z] = 0;
6 }
7
8 P0(atomic_int *x, atomic_int *y, atomic_int *z) {
9 int r1 = atomic_load_explicit(x, memory_order_relaxed);

10 atomic_store_explicit(y, r1, memory_order_relaxed);
11 }
12
13 P1(atomic_int *x, atomic_int *y, atomic_int *z) {
14 int r2 = atomic_load_explicit(y, memory_order_relaxed);
15 atomic_store_explicit(z, r2, memory_order_relaxed);
16 // int r3 = atomic_load_explicit(z, memory_order_relaxed);
17 atomic_store_explicit(x, r2, memory_order_relaxed);
18 }
19
20 locations [x;y;z]
21 exists(0:r1=17 /\ 1:r2=17 /\ 1:r3=17)

Analysis by "herd7 -c11 litmus/oota-3-2-proc-opt.litmus":

1 Test oota-3-2-proc-opt Allowed
2 States 2
3 0:r1=S10; 1:r2=S10; 1:r3=0; [x]=S10; [y]=S10; [z]=S10;
4 0:r1=0; 1:r2=0; 1:r3=0; [x]=0; [y]=0; [z]=0;
5 No
6 Witnesses
7 Positive: 0 Negative: 4
8 Condition exists (0:r1=17 /\ 1:r2=17 /\ 1:r3=17)
9 Observation oota-3-2-proc-opt Never 0 4

10 Time oota-3-2-proc-opt 0.00
11 Hash=216c3aae839fa4152ca602f6f41739a6

Listing 17: OOTA With an Intrathread Store-Load Link, Optimized

57

D.3 Why rfe Instead of Tried-And-True rf?

1 C oota-3proc
2 {
3 [x] = 0;
4 [y] = 0;
5 [z] = 0;
6 }
7
8 P0(atomic_int *x, atomic_int *y, atomic_int *z) {
9 int r1 = atomic_load_explicit(x, memory_order_relaxed);

10 atomic_store_explicit(y, r1, memory_order_relaxed);
11 }
12
13 P1(atomic_int *x, atomic_int *y, atomic_int *z) {
14 int r2 = atomic_load_explicit(y, memory_order_relaxed);
15 atomic_store_explicit(z, r2, memory_order_relaxed);
16 }
17
18 P2(atomic_int *x, atomic_int *y, atomic_int *z) {
19 int r3 = atomic_load_explicit(z, memory_order_relaxed);
20 atomic_store_explicit(x, r3, memory_order_relaxed);
21 }
22
23 locations [x;y;z]
24 exists(0:r1=17 /\ 1:r2=17 /\ 2:r3=17)

Analysis by "herd7 -c11 litmus/oota-3proc.litmus":

1 Test oota-3proc Allowed
2 States 2
3 0:r1=S12; 1:r2=S12; 2:r3=S12; [x]=S12; [y]=S12; [z]=S12;
4 0:r1=0; 1:r2=0; 2:r3=0; [x]=0; [y]=0; [z]=0;
5 No
6 Witnesses
7 Positive: 0 Negative: 8
8 Condition exists (0:r1=17 /\ 1:r2=17 /\ 2:r3=17)
9 Observation oota-3proc Never 0 8

10 Time oota-3proc 0.01
11 Hash=fab7159e60865f712a5844fbf5b1a7e7

Listing 18: Three-Process Version of JMM Causality Test Case 4

58

D.3 Why rfe Instead of Tried-And-True rf?

1 C oota-whyrfe-3
2 {
3 [x] = 0;
4 [y] = 0;
5 [z] = 0;
6 }
7
8 P0(atomic_int *x, atomic_int *y, atomic_int *z) {
9 int r1 = atomic_load_explicit(x, memory_order_relaxed);

10 int r2 = r1;
11 if (r2 > 17)
12 r2 = 17;
13 atomic_store_explicit(y, r2, memory_order_relaxed);
14 }
15
16 P1(atomic_int *x, atomic_int *y, atomic_int *z) {
17 int r3 = atomic_load_explicit(y, memory_order_relaxed);
18 int r4 = r3;
19 if (r4 < 17)
20 r4 = 17;
21 atomic_store_explicit(z, r4, memory_order_relaxed);
22 }
23
24 P2(atomic_int *x, atomic_int *y, atomic_int *z) {
25 int r5 = atomic_load_explicit(z, memory_order_relaxed);
26 atomic_store_explicit(x, r5, memory_order_relaxed);
27 }
28
29 locations [x;y;z]
30 exists(0:r1=17 /\ 1:r3=17 /\ 2:r5=17)

Analysis by "herd7 -c11 litmus/oota-whyrfe-3.litmus":

1 Test oota-whyrfe-3 Allowed
2 States 3
3 0:r1=0; 1:r3=0; 2:r5=0; [x]=0; [y]=0; [z]=17;
4 0:r1=0; 1:r3=0; 2:r5=17; [x]=17; [y]=0; [z]=17;
5 0:r1=17; 1:r3=0; 2:r5=17; [x]=17; [y]=17; [z]=17;
6 No
7 Witnesses
8 Positive: 0 Negative: 7
9 Condition exists (0:r1=17 /\ 1:r3=17 /\ 2:r5=17)

10 Observation oota-whyrfe-3 Never 0 7
11 Time oota-whyrfe-3 0.01
12 Hash=8fe42ada73440acb408eab0981627c29

Listing 19: Three-Process Version of JMM Causality Test Case 4 With Max and Min

59

D.3 Why rfe Instead of Tried-And-True rf?

1 C oota-whyrfe
2 {
3 [x] = 0;
4 [y] = 0;
5 [z] = 0;
6 }
7
8 P0(atomic_int *x, atomic_int *y, atomic_int *z) {
9 int r1 = atomic_load_explicit(x, memory_order_relaxed);

10 int r2 = r1;
11 if (r2 > 17)
12 r2 = 17;
13 atomic_store_explicit(y, r2, memory_order_relaxed);
14 int r3 = atomic_load_explicit(y, memory_order_relaxed);
15 int r4 = r3;
16 if (r4 < 17)
17 r4 = 17;
18 atomic_store_explicit(z, r4, memory_order_relaxed);
19 }
20
21 P1(atomic_int *x, atomic_int *y, atomic_int *z) {
22 int r5 = atomic_load_explicit(z, memory_order_relaxed);
23 atomic_store_explicit(x, r5, memory_order_relaxed);
24 }
25
26 locations [x;y;z]
27 exists(0:r1=17 /\ 0:r3=17 /\ 1:r5=17)

Analysis by "herd7 -c11 litmus/oota-whyrfe.litmus":

1 Test oota-whyrfe Allowed
2 States 2
3 0:r1=0; 0:r3=0; 1:r5=0; [x]=0; [y]=0; [z]=17;
4 0:r1=0; 0:r3=0; 1:r5=17; [x]=17; [y]=0; [z]=17;
5 No
6 Witnesses
7 Positive: 0 Negative: 3
8 Condition exists (0:r1=17 /\ 0:r3=17 /\ 1:r5=17)
9 Observation oota-whyrfe Never 0 3

10 Time oota-whyrfe 0.01
11 Hash=89aad1d6fb7f77eae05ac3f0cc73bcf8

Listing 20: Why rfe Instead of Tried-And-True rf?

y, rather than the rfe link in Listing 19. As a result, even a single-thread analysis could
conclude that the value stored to z will always be 17, by examining P0() in isolation
and using the fact that it is valid for a C++ compiler to assume the value loaded from y
will always be the value just stored and so to omit the load.27

If a compiler makes this observation and optimizes the program by storing a constant
17 to z rather than going through the computations on lines 15–17 of Listing 20, it
will generate an executable which could produce the all-17’s result described by the
exists clause. (See Listing 21, where the store to z has been moved up to line 9.28)
This would not be an OOTA cycle, because in either form of the program the store to z in
P0 is not semantically dependent on the load from x, so there is no cycle in (sdep ∪ rfe).
A different compiler that does not make this optimization will generate an executable

27This is not an option in C because in that language, atomic accesses are volatile and hence must be
preserved in the machine code.

28The load from y on line 15 is retained even though it is not used, because r3 appears in the exists
clause and hence its final value is considered observable behavior.

60

D.3 Why rfe Instead of Tried-And-True rf?

1 C oota-whyrfe-z17
2 {
3 [x] = 0;
4 [y] = 0;
5 [z] = 0;
6 }
7
8 P0(atomic_int *x, atomic_int *y, atomic_int *z) {
9 atomic_store_explicit(z, 17, memory_order_relaxed);

10 int r1 = atomic_load_explicit(x, memory_order_relaxed);
11 int r2 = r1;
12 if (r2 > 17)
13 r2 = 17;
14 atomic_store_explicit(y, r2, memory_order_relaxed);
15 int r3 = atomic_load_explicit(y, memory_order_relaxed);
16 }
17
18 P1(atomic_int *x, atomic_int *y, atomic_int *z) {
19 int r5 = atomic_load_explicit(z, memory_order_relaxed);
20 atomic_store_explicit(x, r5, memory_order_relaxed);
21 }
22
23 locations [x;y;z]
24 exists(0:r1=17 /\ 0:r3=17 /\ 1:r5=17)

Analysis by "herd7 -c11 litmus/oota-whyrfe-z17.litmus":

1 Test oota-whyrfe-z17 Allowed
2 States 3
3 0:r1=0; 0:r3=0; 1:r5=0; [x]=0; [y]=0; [z]=17;
4 0:r1=0; 0:r3=0; 1:r5=17; [x]=17; [y]=0; [z]=17;
5 0:r1=17; 0:r3=17; 1:r5=17; [x]=17; [y]=17; [z]=17;
6 Ok
7 Witnesses
8 Positive: 1 Negative: 3
9 Condition exists (0:r1=17 /\ 0:r3=17 /\ 1:r5=17)

10 Observation oota-whyrfe-z17 Sometimes 1 3
11 Time oota-whyrfe-z17 0.01
12 Hash=0ac1705891c439cf09b4d06a27690eb6

Listing 21: Why rfe Instead of Tried-And-True rf When z=17?

which cannot produce the all-17’s result at all, because of hardware dependencies and
consequent instruction ordering in the machine code.

Either way, no OOTA cycle can occur. But what if we chose to define an OOTA
cycle with (sdep ∪ rf) instead of (sdep ∪ rfe)?

In that case, it would be necessary to consider separately the dependency in List-
ing 20 connecting P0()’s load from x to its store to y, and that connecting its load
from y to its store to z. The first is a genuine semantic dependency; the second might
or might not be, depending on the implementation. A compiler that uses single-thread
analysis and does not omit the load from y would conclude that it is, because of the
possibility that the value loaded from y might be larger than 17. From this point of view,
the all-17’s result would be considered an OOTA cycle.

This example demonstrates another reason why defining OOTA cycles in terms of
(sdep ∪ rf) is problematic. Doing so can lead to classifying a cycle as OOTA even
though there is no genuine semantic dependency in one of the participating threads.

61

D.4 Inventing Atomic Loads

1 C oota-no-invented-load
2 {
3 [x] = 0;
4 [y] = 0;
5 [z] = 0;
6 }
7
8 P0(atomic_int *x, atomic_int *y, atomic_int *z) {
9 int r1 = atomic_load_explicit(x, memory_order_relaxed) != 0;

10 int r2 = atomic_load_explicit(y, memory_order_relaxed) != 0;
11 atomic_store_explicit(z, r1 == r2, memory_order_relaxed);
12 }
13
14 P1(atomic_int *x, atomic_int *y, atomic_int *z) {
15 int r3 = atomic_load_explicit(z, memory_order_relaxed);
16 atomic_store_explicit(y, r3, memory_order_relaxed);
17 }
18
19 P2(atomic_int *x, atomic_int *y, atomic_int *z) {
20 atomic_store_explicit(x, 1, memory_order_relaxed);
21 }
22
23 locations [x;y;z]
24 exists(0:r1=1 /\ 0:r2=1)

Analysis by "herd7 -c11 litmus/oota-no-invented-load.litmus":

1 Test oota-no-invented-load Allowed
2 States 3
3 0:r1=0; 0:r2=0; [x]=1; [y]=0; [z]=1;
4 0:r1=0; 0:r2=0; [x]=1; [y]=1; [z]=1;
5 0:r1=1; 0:r2=0; [x]=1; [y]=0; [z]=0;
6 No
7 Witnesses
8 Positive: 0 Negative: 6
9 Condition exists (0:r1=1 /\ 0:r2=1)

10 Observation oota-no-invented-load Never 0 6
11 Time oota-no-invented-load 0.01
12 Hash=a7b618b70ecf436570edce45bc5ffeec

Listing 22: No Invented Atomic Loads

D.4 Inventing Atomic Loads
This section contains several example litmus tests expanding on the material presented
in Section 4.3. on page 19.

Consider Listing 22. At first glance, it might appear straightforward. P0()’s store
to z clearly depends on its load from y, and P1()’s store to y clearly depends on its
load from z. If both dependencies are semantic, the OOTA cycle cannot be realized.

But is P0()’s dependency truly semantic? Imagine what might happen if a C++
compiler is permitted to duplicate P0()’s load from x and then make use of both loads’
values. This would allow a compiler to transform Listing 22 into Listing 23.

Because of the comparisons against zero on lines 9 and 10 of Listing 22, the values
of r1 and r2 are known to be either zero or one. Hence if the values of r1a and r1b
on lines 9 and 10 of Listing 23 differ (say because P2() changes the value of x during
the time between the two loads) then one of them must be equal to the value that would
be obtained for r2. If the compiler is further permitted to make a choice at runtime
between the two values loaded from x, it could always choose to use for r1 the one that

62

D.4 Inventing Atomic Loads

1 C oota-load-invented
2 {
3 [x] = 0;
4 [y] = 0;
5 [z] = 0;
6 }
7
8 P0(atomic_int *x, atomic_int *y, atomic_int *z) {
9 int r1a = atomic_load_explicit(x, memory_order_relaxed) != 0;

10 int r1b = atomic_load_explicit(x, memory_order_relaxed) != 0;
11 int r1;
12 int r2;
13 if (r1a != r1b) {
14 atomic_store_explicit(z, 1, memory_order_relaxed);
15 r2 = atomic_load_explicit(y, memory_order_relaxed) != 0;
16 r1 = r2;
17 } else {
18 r1 = r1b;
19 r2 = atomic_load_explicit(y, memory_order_relaxed) != 0;
20 atomic_store_explicit(z, r1 == r2, memory_order_relaxed);
21 }
22 }
23
24 P1(atomic_int *x, atomic_int *y, atomic_int *z) {
25 int r3 = atomic_load_explicit(z, memory_order_relaxed);
26 atomic_store_explicit(y, r3, memory_order_relaxed);
27 }
28
29 P2(atomic_int *x, atomic_int *y, atomic_int *z) {
30 atomic_store_explicit(x, 1, memory_order_relaxed);
31 }
32
33 locations [0:r1a;0:r1b;1:r3;x;y;z]
34 exists(0:r1=1 /\ 0:r2=1)

Analysis by "herd7 -c11 litmus/oota-load-invented.litmus":

1 Test oota-load-invented Allowed
2 States 6
3 0:r1=0; 0:r1a=0; 0:r1b=0; 0:r2=0; 1:r3=0; [x]=1; [y]=0; [z]=1;
4 0:r1=0; 0:r1a=0; 0:r1b=0; 0:r2=0; 1:r3=1; [x]=1; [y]=1; [z]=1;
5 0:r1=0; 0:r1a=0; 0:r1b=1; 0:r2=0; 1:r3=0; [x]=1; [y]=0; [z]=1;
6 0:r1=0; 0:r1a=0; 0:r1b=1; 0:r2=0; 1:r3=1; [x]=1; [y]=1; [z]=1;
7 0:r1=1; 0:r1a=0; 0:r1b=1; 0:r2=1; 1:r3=1; [x]=1; [y]=1; [z]=1;
8 0:r1=1; 0:r1a=1; 0:r1b=1; 0:r2=0; 1:r3=0; [x]=1; [y]=0; [z]=0;
9 Ok

10 Witnesses
11 Positive: 1 Negative: 9
12 Condition exists (0:r1=1 /\ 0:r2=1)
13 Observation oota-load-invented Sometimes 1 9
14 Time oota-load-invented 0.01
15 Hash=51dd34ec0d2ed28f0cafc304e1e6336c

Listing 23: Atomic Loads Invented

63

D.4 Inventing Atomic Loads

would be equal to r2 (see line 16). Then the value stored to z would always be one, as
shown on line 14, where the store has been moved before the load from y on line 15
to emphasize the fact that it does not depend on that load. The dependency from y
to z would not be semantic after all, and the outcome r1 == r2 == 1 would indeed
be possible (although it would not be an example of OOTA because of the lack of a
semantic dependency).

This is a simple example of a more general phenomenon. Suppose z is given by
some function f of x and y. Under what conditions can we say that the value of z doesn’t
depend on y? The standard answer is that this happens when there are values z0 and x0
such that for any y, we have z0 = f (x0,y). But if we are allowed to choose from among
multiple values of x, the situation gets more complicated. Then the answer would be
that there is a value z0 and a set X of values for x such that for any y, there is some x ∈ X
with z0 = f (x,y). In Listing 23, f is the equality function and X is simply the set {0,1};
however, the reasoning applies in any situation where x ranges over a finite collection
of possible values. And as the example shows, the more general condition can hold in
situations where the simpler condition does not, indicating that our intuitive notions of
semantic dependency are not adequate when there can be multiple loads of the same
variable.

Clearly something has gone wrong if a valid (in loose C++) transformation like
this one is capable of destroying what should be an obvious semantic dependency.
One possible reaction is to declare that useful C++ compilers should never invent or
duplicate nonvolatile relaxed atomic loads. But what if the initial code was as shown in
Listing 24?29 In this case, the transformation to Listing 23 would not require inventing
or duplicating a load, but instead merely inventing a use for the previously discarded
value in r0.

Let us drop the single-thread-analysis constraint for the moment, and suppose that
the compiler is able to prove that the only modification of a given atomic variable is to
atomically increment it, as is the case for y in Listing 25. Is it okay for a C++ compiler
to transform this program into Listing 26? An argument in favor is that the value of
y must have passed through the value 42 if r0 and r1 bracket that value. Arguments
against might cite the added overhead of the invented load, or the possibility that the
check for the value 42 is intended for statistical sampling.

There are a number of possible reactions to these situations:

1. Listing 22 looks like it has an OOTA cycle, but there is in fact no semantic
dependency.

2. Attempts to use real-world constraints to prevent OOTA cycles are futile.

3. Compilers should not invent uses for values from nonvolatile relaxed atomic loads.
If it turns out that there are useful optimizations that invent such uses, then such
optimizations must be applied only with careful attention to the as-if rule. Some
might argue that inventing comparisons between a pair of nonvolatile relaxed
atomic loads from the same object should be permitted only if the two loads could
be reordered to be adjacent to each other.

29Unused loads can easily be generated by complex macros or template metaprograms. Typically compilers
then remove them, but they are not obliged to.

64

D.4 Inventing Atomic Loads

1 C oota-unused-load
2 {
3 [x] = 0;
4 [y] = 0;
5 [z] = 0;
6 }
7
8 P0(atomic_int *x, atomic_int *y, atomic_int *z) {
9 int r0 = atomic_load_explicit(x, memory_order_relaxed) != 0;

10 int r1 = atomic_load_explicit(x, memory_order_relaxed) != 0;
11 int r2 = atomic_load_explicit(y, memory_order_relaxed) != 0;
12 atomic_store_explicit(z, r1 == r2, memory_order_relaxed);
13 }
14
15 P1(atomic_int *x, atomic_int *y, atomic_int *z) {
16 int r3 = atomic_load_explicit(z, memory_order_relaxed);
17 atomic_store_explicit(y, r3, memory_order_relaxed);
18 }
19
20 P2(atomic_int *x, atomic_int *y, atomic_int *z) {
21 atomic_store_explicit(x, 1, memory_order_relaxed);
22 }
23
24 locations [x;y;z]
25 exists(0:r1=1 /\ 0:r2=1)

Analysis by "herd7 -c11 litmus/oota-unused-load.litmus":

1 Test oota-unused-load Allowed
2 States 3
3 0:r1=0; 0:r2=0; [x]=1; [y]=0; [z]=1;
4 0:r1=0; 0:r2=0; [x]=1; [y]=1; [z]=1;
5 0:r1=1; 0:r2=0; [x]=1; [y]=0; [z]=0;
6 No
7 Witnesses
8 Positive: 0 Negative: 9
9 Condition exists (0:r1=1 /\ 0:r2=1)

10 Observation oota-unused-load Never 0 9
11 Time oota-unused-load 0.01
12 Hash=d4779ac32c1b526e80e585491fa63fe8

Listing 24: Unused Extra Atomic Load

65

D.4 Inventing Atomic Loads

1 C inc
2 {
3 [x] = 0;
4 [y] = 41;
5 }
6
7 P0(atomic_int *x, atomic_int *y) {
8 int r0 = atomic_load_explicit(y, memory_order_relaxed);
9 if (r0 == 42)

10 atomic_store_explicit(x, 1, memory_order_relaxed);
11 }
12
13 P1(atomic_int *x, atomic_int *y) {
14 atomic_fetch_add_explicit(y, 1, memory_order_relaxed);
15 atomic_fetch_add_explicit(y, 1, memory_order_relaxed);
16 }
17
18 locations [0:r0]
19 exists(x=1)

Analysis by "herd7 -c11 litmus/inc.litmus":

1 Test inc Allowed
2 States 3
3 0:r0=41; [x]=0;
4 0:r0=42; [x]=1;
5 0:r0=43; [x]=0;
6 Ok
7 Witnesses
8 Positive: 1 Negative: 2
9 Condition exists ([x]=1)

10 Observation inc Sometimes 1 2
11 Time inc 0.00
12 Hash=20a9539cadd844faec01b1b57ed8890d

Listing 25: Only Atomic Increment

66

D.4 Inventing Atomic Loads

1 C inc-range
2 {
3 [x] = 0;
4 [y] = 41;
5 }
6
7 P0(atomic_int *x, atomic_int *y) {
8 int r0 = atomic_load_explicit(y, memory_order_relaxed);
9 int r1 = atomic_load_explicit(y, memory_order_relaxed);

10 if (r0 <= 42)
11 if (r1 >= 42)
12 atomic_store_explicit(x, 1, memory_order_relaxed);
13 }
14
15 P1(atomic_int *x, atomic_int *y) {
16 atomic_fetch_add_explicit(y, 1, memory_order_relaxed);
17 atomic_fetch_add_explicit(y, 1, memory_order_relaxed);
18 }
19
20 locations [0:r0;0:r1]
21 exists(x=1)

Analysis by "herd7 -c11 litmus/inc-range.litmus":

1 Test inc-range Allowed
2 States 6
3 0:r0=41; 0:r1=41; [x]=0;
4 0:r0=41; 0:r1=42; [x]=1;
5 0:r0=41; 0:r1=43; [x]=1;
6 0:r0=42; 0:r1=42; [x]=1;
7 0:r0=42; 0:r1=43; [x]=1;
8 0:r0=43; 0:r1=43; [x]=0;
9 Ok

10 Witnesses
11 Positive: 4 Negative: 2
12 Condition exists ([x]=1)
13 Observation inc-range Sometimes 4 2
14 Time inc-range 0.01
15 Hash=3ef212d27b7b7e5e3eccf84e0c583af4

Listing 26: Only Atomic Increment, Extended

67

D.5 Undefined Behavior and Unwise Optimization

4. Any time a compiler might be tempted to invent uses for values of nonvolatile
relaxed atomic loads from the same object, the loads should instead be merged
into a single load. This reaction might be attractive to those who carefully consider
the pointlessness of keeping two loads that return the same value on the one hand
or the cache-miss overhead incurred when closely spaced loads return different
values on the other.

5. Compilers that invent nonvolatile atomic loads or invent new uses for nonvolatile
atomic loads can adversely affect observed behavior, for example, by introducing
error into code attempting to do statistical sampling.

6. What other interesting situations might come to light?

There are situations where inventing loads from non-atomic objects is customary,
for example, when hoisting a load out of a loop. In this case, compilers might hoist the
load from x out of the loop:

do_something_with(x);
for (i = 0; i < limit; i++)

y[i] += x;

A compiler might act as if the program had instead been this:

r1 = x;
do_something_with(r1);
for (i = 0; i < limit; i++)

y[i] += r1;

Note that passing x to do_something_with() is important when x is not atomic,
because this allows the compiler to assume that inventing additional accesses to x will
not result in a data race. Without this assumption, the above transformation might
introduce a data race when limit is less than or equal to zero.

But when x is a nonvolatile atomic, there are no worries about data races. In theory,
if the do_something_with() call was not present the compiler could still make
the transformation above with no qualms, especially given that the value loaded from x
is discarded in the case where limit is less than or equal to zero. Except that now the
data-race worry is replaced by a cache-miss worry; after all, optimizations are supposed
to speed things up, not slow them down. A compiler might be wise to adhere to the
same restriction that avoids data races for loads from non-atomic variables in order to
avoid potentially expensive cache misses.

D.5 Undefined Behavior and Unwise Optimization
Many compilers carry out optimizations based on the assumption that undefined behavior
(UB) cannot happen, and if not performed carefully, these optimizations may be invalid
because of OOTA-like interactions. A simple example is shown in Listing 27.

On line 14 of this listing, the computation 1 / (r2 <= 0) will yield one if r2
is not positive and will result in UB otherwise (a divide-by-zero error). It may not be

68

D.5 Undefined Behavior and Unwise Optimization

1 C oota-div-ub
2 {
3 [x] = 0;
4 [y] = 0;
5 }
6
7 P0(atomic_int *x, atomic_int *y) {
8 int r1 = atomic_load_explicit(y, memory_order_relaxed);
9 atomic_store_explicit(x, r1, memory_order_relaxed);

10 }
11
12 P1(atomic_int *x, atomic_int *y) {
13 int r2 = atomic_load_explicit(x, memory_order_relaxed);
14 atomic_store_explicit(y, 1 / (r2 <= 0), memory_order_relaxed);
15 }
16
17 exists(0:r1=1 /\ 1:r2=1)

Analysis by "herd7 -c11 litmus/oota-div-ub.litmus":

1 Test oota-div-ub Allowed
2 States 2
3 0:r1=0; 1:r2=0;
4 0:r1=1; 1:r2=0;
5 No
6 Witnesses
7 Positive: 0 Negative: 3
8 Condition exists (0:r1=1 /\ 1:r2=1)
9 Observation oota-div-ub Never 0 3

10 Time oota-div-ub 0.00
11 Hash=d16ec1f23db801f79588fc940db3207d

Listing 27: OOTA-Like Behavior Due To Divide-By-Zero UB

obvious, but the program is in fact UB-free—there are no abstract executions in which
r2 is greater than zero. To see why not, consider that in any such execution P1()
would not store anything to y; it certainly would not store a positive value. This means
that the value loaded on line 8 would have to be y’s initial value of zero, and so would
the value stored to x on line 9, and hence it would not be possible for the load on line 13
to get a positive value for r2 in the first place.

Even for a compiler analyzing P1() in isolation, it is clear that either line 14 will
store one to y or else the division by zero will cause UB. This allows the compiler to
assume that the store will always take place, on the grounds that UB cannot happen,
and so the compiler may optimize the comparison and division by replacing the whole
expression with a constant 1. There will then be no dependency from the load on line 13
to the store and thus nothing forcing the store to execute after the load.

When the resulting program runs on a weakly ordered architecture, the execution
could go as follows:

1. Line 14 executes out of order, storing the constant 1 to y.

2. Line 8 loads one from y, setting r1 to one.

3. Line 9 stores one to x.

4. Line 13 loads one from x, setting r2 to one.

69

D.6 Additional Litmus Tests

The final result would satisfy the exists clause, exhibiting observable behavior (r2 is
one at the end) that no abstract execution of the original program could produce. (This
could happen even if all of the atomic objects in Listing 27 were converted to volatile.)

This result shows that the proposed optimization was invalid. To prevent the un-
wanted behavior, the compiler would have to take an extra step to force the optimized
store on line 14 to be ordered after the load on line 13, possibly by changing the load to
a load-acquire or changing the store to a store-release. Hans Boehm has proposed this
store-release alternative as his Interpretation B’ [5].

In other words, the compiler would have to preserve the dependency-induced order-
ing that the UB-based optimization would otherwise destroy. It is tempting to consider
using techniques that prevent back-propagation of UB, but these are ineffective in
this case because the compiler can detect and exploit UB when considering line 14 in
isolation.

D.6 Additional Litmus Tests
This section lists a few other litmus tests of interest:

• The litmus test at https://github.com/paulmckrcu/oota/blob/master/
litmus/oota-two-source.litmus shows multiple overlapping OOTA
cycles.

• The litmus test at https://github.com/paulmckrcu/oota/blob/master/
litmus/oota-non-lb.litmus shows that OOTA cycles are not confined
to the load-buffering (LB) pattern.

• The litmus test at https://github.com/paulmckrcu/oota/blob/master/
litmus/oota-invent-int-load.litmus shows another invented-load
scenario loosely based on Figure 3 on page 8. See Appendix D.4 for more
discussion on this topic.

70

https://github.com/paulmckrcu/oota/blob/master/litmus/oota-two-source.litmus
https://github.com/paulmckrcu/oota/blob/master/litmus/oota-two-source.litmus
https://github.com/paulmckrcu/oota/blob/master/litmus/oota-non-lb.litmus
https://github.com/paulmckrcu/oota/blob/master/litmus/oota-non-lb.litmus
https://github.com/paulmckrcu/oota/blob/master/litmus/oota-invent-int-load.litmus
https://github.com/paulmckrcu/oota/blob/master/litmus/oota-invent-int-load.litmus

1 C oota-causality-1
2 {
3 [x] = 0;
4 [y] = 0;
5 }
6
7 P0(atomic_int *x, atomic_int *y) {
8 int r1 = atomic_load_explicit(x, memory_order_relaxed);
9 if (r1 >= 0)

10 atomic_store_explicit(y, 1, memory_order_relaxed);
11 }
12
13 P1(atomic_int *x, atomic_int *y) {
14 int r2 = atomic_load_explicit(y, memory_order_relaxed);
15 atomic_store_explicit(x, r2, memory_order_relaxed);
16 }
17
18 exists(0:r1=1 /\ 1:r2=1)

Analysis by "herd7 -c11 litmus/oota-causality-1.litmus":

1 Test oota-causality-1 Allowed
2 States 3
3 0:r1=0; 1:r2=0;
4 0:r1=0; 1:r2=1;
5 0:r1=1; 1:r2=1;
6 Ok
7 Witnesses
8 Positive: 1 Negative: 3
9 Condition exists (0:r1=1 /\ 1:r2=1)

10 Observation oota-causality-1 Sometimes 1 3
11 Time oota-causality-1 0.00
12 Hash=6be662cf3bb39460321974142224a214

Listing 28: Causality Test Case 1

E Litmus Tests from “Causality Test Cases"
These tests might be two decades old, but they are still quite relevant.30 We have
translated them from Java to C++, and we evaluate them using the herd7 tool and
also using manual analysis. Please note that differences in the semantics of the two
languages result in changes in verdict for some litmus tests.

E.1 Causality Test Case 1
Listing 28 shows causality test case 1, for which the r1 == r2 == 1 result is to be
allowed. And indeed, this result does show up in the output from the herd7 tool.

Compilers that can prove the value of x is always nonnegative can also determine
that there is no semantic dependency between P0()’s load from x on line 8 and its
store to y on line 10, that is, no matter which of the possible values is loaded from x,
the value 1 will always be stored to y. Relative to less-omniscient compilers, however,
including those using single-thread analysis or treating atomic objects as volatile, there
is a semantic dependency.

30http://www.cs.umd.edu/~pugh/java/memoryModel/unifiedProposal/
testcases.html.

71

http://www.cs.umd.edu/~pugh/java/memoryModel/unifiedProposal/testcases.html
http://www.cs.umd.edu/~pugh/java/memoryModel/unifiedProposal/testcases.html

E.2 Causality Test Case 2

1 C oota-causality-2
2 {
3 [x] = 0;
4 [y] = 0;
5 }
6
7 P0(atomic_int *x, atomic_int *y) {
8 int r1 = atomic_load_explicit(x, memory_order_relaxed);
9 int r2 = atomic_load_explicit(x, memory_order_relaxed);

10 if (r1 == r2)
11 atomic_store_explicit(y, 1, memory_order_relaxed);
12 }
13
14 P1(atomic_int *x, atomic_int *y) {
15 int r3 = atomic_load_explicit(y, memory_order_relaxed);
16 atomic_store_explicit(x, r3, memory_order_relaxed);
17 }
18
19 exists(0:r1=1 /\ 0:r2=1 /\ 1:r3=1)

Analysis by "herd7 -c11 litmus/oota-causality-2.litmus":

1 Test oota-causality-2 Allowed
2 States 3
3 0:r1=0; 0:r2=0; 1:r3=0;
4 0:r1=0; 0:r2=0; 1:r3=1;
5 0:r1=1; 0:r2=1; 1:r3=1;
6 Ok
7 Witnesses
8 Positive: 1 Negative: 4
9 Condition exists (0:r1=1 /\ 0:r2=1 /\ 1:r3=1)

10 Observation oota-causality-2 Sometimes 1 4
11 Time oota-causality-2 0.01
12 Hash=f74880e1a73b0fd96f460486985778df

Listing 29: Causality Test Case 2

Even omniscient compilers will observe a semantic dependency from P1()’s load
from y on line 14 to its store to x on line 15.

Either way no OOTA cycle will occur, with omniscient compilers having no cycle
at all because of the lack of an sdep link in P0(), and other compilers prevented by
hardware dependency ordering from realizing the cycle.

E.2 Causality Test Case 2
Listing 29 shows causality test case 2, for which the r1 == r2 == r3 == 1 result
is to be allowed. This result appears in the herd7 output.

Because P0()’s loads from x on lines 8 and 9 are unordered, a C++ compiler that
treats atomics as quasi volatile can act as if the source code loaded from x only once
and assigned the returned value to both r1 and r2, merging the loads.31 The compiler
could then prove that the condition on line 10 would always true, and act as if the source
code had unconditionally executed the relaxed store to y on line 11 independent of the
value loaded from x. Without this dependency there would then be no OOTA cycle.

31But not in C, where relaxed atomic operations are volatile, and thus are observable behavior not subject
to merging.

72

E.3 Causality Test Case 3

1 C oota-causality-3
2 {
3 [x] = 0;
4 [y] = 0;
5 }
6
7 P0(atomic_int *x, atomic_int *y) {
8 int r1 = atomic_load_explicit(x, memory_order_relaxed);
9 int r2 = atomic_load_explicit(x, memory_order_relaxed);

10 if (r1 == r2)
11 atomic_store_explicit(y, 1, memory_order_relaxed);
12 }
13
14 P1(atomic_int *x, atomic_int *y) {
15 int r3 = atomic_load_explicit(y, memory_order_relaxed);
16 atomic_store_explicit(x, r3, memory_order_relaxed);
17 }
18
19 P2(atomic_int *x, atomic_int *y) {
20 atomic_store_explicit(x, 2, memory_order_relaxed);
21 }
22
23 exists(0:r1=1 /\ 0:r2=1 /\ 1:r3=1)

Analysis by "herd7 -c11 litmus/oota-causality-3.litmus":

1 Test oota-causality-3 Allowed
2 States 7
3 0:r1=0; 0:r2=0; 1:r3=0;
4 0:r1=0; 0:r2=0; 1:r3=1;
5 0:r1=0; 0:r2=2; 1:r3=0;
6 0:r1=1; 0:r2=1; 1:r3=1;
7 0:r1=2; 0:r2=0; 1:r3=0;
8 0:r1=2; 0:r2=2; 1:r3=0;
9 0:r1=2; 0:r2=2; 1:r3=1;

10 Ok
11 Witnesses
12 Positive: 2 Negative: 16
13 Condition exists (0:r1=1 /\ 0:r2=1 /\ 1:r3=1)
14 Observation oota-causality-3 Sometimes 2 16
15 Time oota-causality-3 0.01
16 Hash=6f5e2952498167dd10179059501aff8f

Listing 30: Causality Test Case 3

For compilers that do not merge the two loads, the hardware dependency ordering
arising from the conditional test on line 10 will prevent the realization of an OOTA
cycle.

E.3 Causality Test Case 3
Listing 30 shows causality test case 3, for which the r1 == r2 == r3 == 1 result
is to be allowed. The herd7 tool reports this result.

The analysis from the previous section applies here. Although the addition of P2()
allows sequentially consistent executions in which P0()’s two loads from x return
different values, it does not change the fact that those two loads can be merged.

73

E.4 Causality Test Case 4

1 C oota-causality-4
2 {
3 [x] = 0;
4 [y] = 0;
5 }
6
7 P0(atomic_int *x, atomic_int *y) {
8 int r1 = atomic_load_explicit(x, memory_order_relaxed);
9 atomic_store_explicit(y, r1, memory_order_relaxed);

10 }
11
12 P1(atomic_int *x, atomic_int *y) {
13 int r2 = atomic_load_explicit(y, memory_order_relaxed);
14 atomic_store_explicit(x, r2, memory_order_relaxed);
15 }
16
17 exists(0:r1=1 /\ 1:r2=1)

Analysis by "herd7 -c11 litmus/oota-causality-4.litmus":

1 Test oota-causality-4 Allowed
2 States 2
3 0:r1=S8; 1:r2=S8;
4 0:r1=0; 1:r2=0;
5 No
6 Witnesses
7 Positive: 0 Negative: 4
8 Condition exists (0:r1=1 /\ 1:r2=1)
9 Observation oota-causality-4 Never 0 4

10 Time oota-causality-4 0.00
11 Hash=422eed0591553d8682af4d914c32f7d7

Listing 31: Causality Test Case 4

E.4 Causality Test Case 4
Listing 31 shows causality test case 4, for which the r1 == r2 == 1 result is to be
forbidden. The herd7 tool finds this OOTA result; the S8 values given on line 3 of its
output indicate that in the execution it describes, the variables r1 and r2 were never
assigned any specific value, so they could just as well be equal to one as to anything
else.

This test case is virtually the same as the Simple OOTA cycle discussed in Sec-
tion 1.1.1 on page 5, the only difference being the final values of the variables.

E.5 Causality Test Case 5
Listing 32 shows causality test case 5, for which the r1 == r2 == 1 and r3 == 0
result is to be forbidden. The herd7 tool reports this OOTA result in line 3 of its
output.

This is the same as causality test case 4 with P2() and P3() added, but those
routines play no role in the OOTA cycle. P2() has no loads and so cannot participate
in an OOTA cycle in any case.

74

E.5 Causality Test Case 5

1 C oota-causality-5
2 {
3 [x] = 0;
4 [y] = 0;
5 [z] = 0;
6 }
7
8 P0(atomic_int *x, atomic_int *y, atomic_int *z) {
9 int r1 = atomic_load_explicit(x, memory_order_relaxed);

10 atomic_store_explicit(y, r1, memory_order_relaxed);
11 }
12
13 P1(atomic_int *x, atomic_int *y, atomic_int *z) {
14 int r2 = atomic_load_explicit(y, memory_order_relaxed);
15 atomic_store_explicit(x, r2, memory_order_relaxed);
16 }
17
18 P2(atomic_int *x, atomic_int *y, atomic_int *z) {
19 atomic_store_explicit(z, 1, memory_order_relaxed);
20 }
21
22 P3(atomic_int *x, atomic_int *y, atomic_int *z) {
23 int r3 = atomic_load_explicit(z, memory_order_relaxed);
24 atomic_store_explicit(x, r3, memory_order_relaxed);
25 }
26
27 exists(0:r1=1 /\ 1:r2=1 /\ 3:r3=0)

Analysis by "herd7 -c11 litmus/oota-causality-5.litmus":

1 Test oota-causality-5 Allowed
2 States 6
3 0:r1=S8; 1:r2=S8; 3:r3=0;
4 0:r1=S8; 1:r2=S8; 3:r3=1;
5 0:r1=0; 1:r2=0; 3:r3=0;
6 0:r1=0; 1:r2=0; 3:r3=1;
7 0:r1=1; 1:r2=0; 3:r3=1;
8 0:r1=1; 1:r2=1; 3:r3=1;
9 No

10 Witnesses
11 Positive: 0 Negative: 24
12 Condition exists (0:r1=1 /\ 1:r2=1 /\ 3:r3=0)
13 Observation oota-causality-5 Never 0 24
14 Time oota-causality-5 0.01
15 Hash=8dbd66c410a8f5f93ae61df6689a435a

Listing 32: Causality Test Case 5

75

E.6 Causality Test Case 6

1 C oota-causality-6
2 {
3 [x] = 0;
4 [y] = 0;
5 }
6
7 P0(atomic_int *x, atomic_int *y) {
8 int r1 = atomic_load_explicit(x, memory_order_relaxed);
9 if (r1 == 1)

10 atomic_store_explicit(y, r1, memory_order_relaxed);
11 }
12
13 P1(atomic_int *x, atomic_int *y) {
14 int r2 = atomic_load_explicit(y, memory_order_relaxed);
15 if (r2 == 1) {
16 atomic_store_explicit(x, 1, memory_order_relaxed);
17 }
18 if (r2 == 0) {
19 atomic_store_explicit(x, 1, memory_order_relaxed);
20 }
21 }
22
23 exists(0:r1=1 /\ 1:r2=1)

Analysis by "herd7 -c11 litmus/oota-causality-6.litmus":

1 Test oota-causality-6 Allowed
2 States 3
3 0:r1=0; 1:r2=0;
4 0:r1=1; 1:r2=0;
5 0:r1=1; 1:r2=1;
6 Ok
7 Witnesses
8 Positive: 1 Negative: 2
9 Condition exists (0:r1=1 /\ 1:r2=1)

10 Observation oota-causality-6 Sometimes 1 2
11 Time oota-causality-6 0.00
12 Hash=e43632b24cc50595250670702a452ed5

Listing 33: Causality Test Case 6

E.6 Causality Test Case 6
Listing 33 shows causality test case 6, for which the r1 == r2 == 1 result is to be
allowed. The herd7 tool reports this result.

A compiler that can prove y is always either zero or one can also prove that there is
no semantic dependency from P1()’s load on line 14 to its stores on lines 16 and 19.
Such a compiler could act as if lines 15–20 had been replaced by a single store to x,
showing that the dependency isn’t semantic.

Less-omniscient compilers will preserve the dependency, and then hardware depen-
dency ordering will prevent the OOTA cycle from being realized.

E.7 Causality Test Case 7
Listing 34 shows causality test case 7, for which the r1 == r2 == r3 == 1 result
is to be allowed. The herd7 tool finds this result.

This test case has everything to do with reordering and nothing to do with OOTA
cycles. The r1 == r2 == r3 == 1 outcome happens when lines 17, 10, 11, 15,

76

E.7 Causality Test Case 7

1 C oota-causality-7
2 {
3 [x] = 0;
4 [y] = 0;
5 [z] = 0;
6 }
7
8 P0(atomic_int *x, atomic_int *y, atomic_int *z) {
9 int r1 = atomic_load_explicit(z, memory_order_relaxed);

10 int r2 = atomic_load_explicit(x, memory_order_relaxed);
11 atomic_store_explicit(y, r2, memory_order_relaxed);
12 }
13
14 P1(atomic_int *x, atomic_int *y, atomic_int *z) {
15 int r3 = atomic_load_explicit(y, memory_order_relaxed);
16 atomic_store_explicit(z, r3, memory_order_relaxed);
17 atomic_store_explicit(x, 1, memory_order_relaxed);
18 }
19
20 exists(0:r1=1 /\ 0:r2=1 /\ 1:r3=1)

Analysis by "herd7 -c11 litmus/oota-causality-7.litmus":

1 Test oota-causality-7 Allowed
2 States 4
3 0:r1=0; 0:r2=0; 1:r3=0;
4 0:r1=0; 0:r2=1; 1:r3=0;
5 0:r1=0; 0:r2=1; 1:r3=1;
6 0:r1=1; 0:r2=1; 1:r3=1;
7 Ok
8 Witnesses
9 Positive: 1 Negative: 7

10 Condition exists (0:r1=1 /\ 0:r2=1 /\ 1:r3=1)
11 Observation oota-causality-7 Sometimes 1 7
12 Time oota-causality-7 0.01
13 Hash=1dbef429cffcfc46cc318e1d8cbdf2c0

Listing 34: Causality Test Case 7

77

E.8 Causality Test Case 8

1 C oota-causality-8
2 {
3 [x] = 0;
4 [y] = 0;
5 }
6
7 P0(atomic_int *x, atomic_int *y) {
8 int r1 = atomic_load_explicit(x, memory_order_relaxed);
9 int r2 = 1 + r1 * r1 - r1;

10 atomic_store_explicit(y, r2, memory_order_relaxed);
11 }
12
13 P1(atomic_int *x, atomic_int *y) {
14 int r3 = atomic_load_explicit(y, memory_order_relaxed);
15 atomic_store_explicit(x, r3, memory_order_relaxed);
16 }
17
18 locations [1:r3]
19 exists(0:r1=1 /\ 0:r2=1)

Analysis by "herd7 -c11 litmus/oota-causality-8.litmus":

1 Test oota-causality-8 Allowed
2 States 2
3 0:r1=0; 0:r2=1; 1:r3=0;
4 0:r1=0; 0:r2=1; 1:r3=1;
5 No
6 Witnesses
7 Positive: 0 Negative: 3
8 Condition exists (0:r1=1 /\ 0:r2=1)
9 Observation oota-causality-8 Never 0 3

10 Time oota-causality-8 0.00
11 Hash=ca5a44808a0bb9a3da519f93553afcc2

Listing 35: Causality Test Case 8

16 and 9 execute in that order. Note that this execution order respects the semantic de-
pendencies in lines 10–11 and 15–16, and thus is not ruled out by hardware dependency
ordering. It could have been ruled out if some of the accesses were acquire or release,
but here they are all relaxed.

E.8 Causality Test Case 8
Listing 35 shows causality test case 8, for which the r1 == r2 == 1 result is to be
allowed. The herd7 tool does not report this result, but it does if r2 is initialized to
one before being set to 1 + r1 * r1 - r1.

Omniscient compilers might note that the computation on line 9 will have the value
one when the load from x returns either zero or one, which are the only values x
and y can take. Such a compiler could then realize that line 9 always sets r2 to one,
independent of the value loaded in line 8. Then there would be no semantic dependency
between P0()’s load and store, and thus no OOTA cycle relative to this compiler.

A less-capable compiler would leave the dependency in place, and the resulting
hardware dependency ordering would prevent the OOTA cycle from being realized.

78

E.9 Causality Test Case 9

1 C oota-causality-9
2 {
3 [x] = 0;
4 [y] = 0;
5 }
6
7 P0(atomic_int *x, atomic_int *y) {
8 int r1 = atomic_load_explicit(x, memory_order_relaxed);
9 int r2 = 1 + r1 * r1 - r1;

10 atomic_store_explicit(y, r2, memory_order_relaxed);
11 }
12
13 P1(atomic_int *x, atomic_int *y) {
14 int r3 = atomic_load_explicit(y, memory_order_relaxed);
15 atomic_store_explicit(x, r3, memory_order_relaxed);
16 }
17
18 P2(atomic_int *x, atomic_int *y) {
19 atomic_store_explicit(x, 2, memory_order_relaxed);
20 }
21
22 locations [1:r3]
23 exists(0:r1=1 /\ 0:r2=1)

Analysis by "herd7 -c11 litmus/oota-causality-9.litmus":

1 Test oota-causality-9 Allowed
2 States 4
3 0:r1=0; 0:r2=1; 1:r3=0;
4 0:r1=0; 0:r2=1; 1:r3=1;
5 0:r1=2; 0:r2=3; 1:r3=0;
6 0:r1=2; 0:r2=3; 1:r3=3;
7 No
8 Witnesses
9 Positive: 0 Negative: 10

10 Condition exists (0:r1=1 /\ 0:r2=1)
11 Observation oota-causality-9 Never 0 10
12 Time oota-causality-9 0.01
13 Hash=15d5fd5b06059a43b192e68ac04d6115

Listing 36: Causality Test Case 9

E.9 Causality Test Case 9
Listing 36 shows causality test case 9, for which the r1 == r2 == 1 result is to be
allowed. The herd7 tool does not report this result.

This is the same as causality test case 8 but with P2() added; the store to x in P2
can interfere with the formation of the OOTA cycle.

Unlike in causality test case 8, the computation on line 9 must be carried out because
now the load on line 8 might return two. Consequently P0 and P1 both have semantic
dependencies, and hardware dependency ordering will prevent the OOTA cycle from
being realized.

E.10 Causality Test Case 9a
Listing 37 shows causality test case 9a, for which the r1 == r2 == 1 result is to be
allowed. The herd7 tool does not report this result.

This is the same as causality test case 9 except that here P2() sets x to zero instead

79

E.10 Causality Test Case 9a

1 C oota-causality-9a
2 {
3 [x] = 2;
4 [y] = 0;
5 }
6
7 P0(atomic_int *x, atomic_int *y) {
8 int r1 = atomic_load_explicit(x, memory_order_relaxed);
9 int r2 = 1 + r1 * r1 - r1;

10 atomic_store_explicit(y, r2, memory_order_relaxed);
11 }
12
13 P1(atomic_int *x, atomic_int *y) {
14 int r3 = atomic_load_explicit(y, memory_order_relaxed);
15 atomic_store_explicit(x, r3, memory_order_relaxed);
16 }
17
18 P2(atomic_int *x, atomic_int *y) {
19 atomic_store_explicit(x, 0, memory_order_relaxed);
20 }
21
22 locations [1:r3]
23 exists(0:r1=1 /\ 0:r2=1)

Analysis by "herd7 -c11 litmus/oota-causality-9a.litmus":

1 Test oota-causality-9a Allowed
2 States 4
3 0:r1=0; 0:r2=1; 1:r3=0;
4 0:r1=0; 0:r2=1; 1:r3=1;
5 0:r1=2; 0:r2=3; 1:r3=0;
6 0:r1=2; 0:r2=3; 1:r3=3;
7 No
8 Witnesses
9 Positive: 0 Negative: 10

10 Condition exists (0:r1=1 /\ 0:r2=1)
11 Observation oota-causality-9a Never 0 10
12 Time oota-causality-9a 0.01
13 Hash=a2cbf5d7bfcd5ebd996c381edc8e4928

Listing 37: Causality Test Case 9a

80

E.11 Causality Test Case 10

of two. As as result the computation on line 9 is once again independent of the value
loaded on line 8, which makes the analysis nearly the same as that of causality test
case 8.

E.11 Causality Test Case 10
Listing 38 shows causality test case 10, for which the r1 == r2 == 1 and r3 == 0
result is to be forbidden. The herd7 tool reports this result.

P0() and P1() have straightforward semantic dependencies between their respec-
tive loads and stores, and so hardware dependency ordering will prevent an OOTA cycle
from being realized. P2() has no semantic dependency, and P3()’s store does not
occur in this execution (i.e., the one described by the exists clause) because r3 is
zero. Thus neither of them contributes to an OOTA cycle.

E.12 Causality Test Case 11
Listing 39 shows causality test case 11, for which the r1 == r2 == r3 == r4 == 1
result is to be allowed. The herd7 tool reports this result.

Like causality test case 7, this test case has nothing to do with OOTA cycles. The
result may be obtained by executing lines 20, 12, 13, 18, 19, 10, 11, and 17 in that order.

E.13 Causality Test Case 12
Causality Test Case 12 in Listing 40 uses arrays, which are not yet supported by the
herd7 tool.

An omniscient compiler could note that only P0() accesses array a[] and act as if
the code was simpler, but there would still be semantic dependencies between P0()’s
and P1()s relaxed atomic loads and stores involving x and y. The resulting hardware
dependency ordering will prevent an OOTA cycle from being realized, whether the
compiler is omniscient or not.

E.14 Causality Test Case 13
Listing 41 shows causality test case 13, for which the r1 == r2 == 1 result is to be
forbidden. The herd7 tool reports this result.

This is the same as causality test case 10 without the confounding influence of P2()
and P3().

E.15 Causality Test Case 14
Listing 42 shows causality test case 14, for which the r1 == r3 == 1 and r2 == 0
result is to be forbidden. The herd7 tool reports this result.

In the execution described by the exists clause, P0() has a semantic dependency
from line 9 to line 13 and P1() has a semantic dependency from line 18 to line 21.
(There’s also a semantic dependency from line 17 to line 21 but it doesn’t enter into
this OOTA cycle, which involves only x and y.) The memory_order_seq_cst

81

E.15 Causality Test Case 14

1 C oota-causality-10
2 {
3 [x] = 0;
4 [y] = 0;
5 [z] = 0;
6 }
7
8 P0(atomic_int *x, atomic_int *y, atomic_int *z) {
9 int r1 = atomic_load_explicit(x, memory_order_relaxed);

10 if (r1 == 1) {
11 atomic_store_explicit(y, 1, memory_order_relaxed);
12 }
13 }
14
15 P1(atomic_int *x, atomic_int *y, atomic_int *z) {
16 int r2 = atomic_load_explicit(y, memory_order_relaxed);
17 if (r2 == 1) {
18 atomic_store_explicit(x, 1, memory_order_relaxed);
19 }
20 }
21
22 P2(atomic_int *x, atomic_int *y, atomic_int *z) {
23 atomic_store_explicit(z, 1, memory_order_relaxed);
24 }
25
26 P3(atomic_int *x, atomic_int *y, atomic_int *z) {
27 int r3 = atomic_load_explicit(z, memory_order_relaxed);
28 if (r3 == 1) {
29 atomic_store_explicit(x, 1, memory_order_relaxed);
30 }
31 }
32
33 exists(0:r1=1 /\ 1:r2=1 /\ 3:r3=0)

Analysis by "herd7 -c11 litmus/oota-causality-10.litmus":

1 Test oota-causality-10 Allowed
2 States 5
3 0:r1=0; 1:r2=0; 3:r3=0;
4 0:r1=0; 1:r2=0; 3:r3=1;
5 0:r1=1; 1:r2=0; 3:r3=1;
6 0:r1=1; 1:r2=1; 3:r3=0;
7 0:r1=1; 1:r2=1; 3:r3=1;
8 Ok
9 Witnesses

10 Positive: 1 Negative: 7
11 Condition exists (0:r1=1 /\ 1:r2=1 /\ 3:r3=0)
12 Observation oota-causality-10 Sometimes 1 7
13 Time oota-causality-10 0.01
14 Hash=5a1f0ffe94e24aca297e3a00a718798f

Listing 38: Causality Test Case 10

82

E.15 Causality Test Case 14

1 C oota-causality-11
2 {
3 [w] = 0;
4 [x] = 0;
5 [y] = 0;
6 [z] = 0;
7 }
8
9 P0(atomic_int *w, atomic_int *x, atomic_int *y, atomic_int *z) {

10 int r1 = atomic_load_explicit(z, memory_order_relaxed);
11 atomic_store_explicit(w, r1, memory_order_relaxed);
12 int r2 = atomic_load_explicit(x, memory_order_relaxed);
13 atomic_store_explicit(y, r2, memory_order_relaxed);
14 }
15
16 P1(atomic_int *w, atomic_int *x, atomic_int *y, atomic_int *z) {
17 int r4 = atomic_load_explicit(w, memory_order_relaxed);
18 int r3 = atomic_load_explicit(y, memory_order_relaxed);
19 atomic_store_explicit(z, r3, memory_order_relaxed);
20 atomic_store_explicit(x, 1, memory_order_relaxed);
21 }
22
23 locations [w;x;y;z]
24 exists(0:r1=1 /\ 0:r2=1 /\ 1:r3=1 /\ 1:r4=1)

Analysis by "herd7 -c11 litmus/oota-causality-11.litmus":

1 Test oota-causality-11 Allowed
2 States 5
3 0:r1=0; 0:r2=0; 1:r3=0; 1:r4=0; [w]=0; [x]=1; [y]=0; [z]=0;
4 0:r1=0; 0:r2=1; 1:r3=0; 1:r4=0; [w]=0; [x]=1; [y]=1; [z]=0;
5 0:r1=0; 0:r2=1; 1:r3=1; 1:r4=0; [w]=0; [x]=1; [y]=1; [z]=1;
6 0:r1=1; 0:r2=1; 1:r3=1; 1:r4=0; [w]=1; [x]=1; [y]=1; [z]=1;
7 0:r1=1; 0:r2=1; 1:r3=1; 1:r4=1; [w]=1; [x]=1; [y]=1; [z]=1;
8 Ok
9 Witnesses

10 Positive: 1 Negative: 15
11 Condition exists (0:r1=1 /\ 0:r2=1 /\ 1:r3=1 /\ 1:r4=1)
12 Observation oota-causality-11 Sometimes 1 15
13 Time oota-causality-11 0.02
14 Hash=e80e124e0701dd2726eb79ba97a4bf3c

Listing 39: Causality Test Case 11

83

E.15 Causality Test Case 14

1 C oota-causality-12
2 {
3 [x] = 0;
4 [y] = 0;
5 [a[0]] = 1;
6 [a[1]] = 2;
7 }
8
9 P0(atomic_int a[], atomic_int *x, atomic_int *y) {

10 int r1 = atomic_load_explicit(x, memory_order_relaxed);
11 atomic_store_explicit(a[r1], 0, memory_order_relaxed);
12 int r2 = atomic_load_explicit(a[0], memory_order_relaxed);
13 atomic_store_explicit(y, r2, memory_order_relaxed);
14 }
15
16 P1(atomic_int a[], atomic_int *x, atomic_int *y) {
17 int r3 = atomic_load_explicit(y, memory_order_relaxed);
18 atomic_store_explicit(x, r3, memory_order_relaxed);
19 }
20
21 exists(0:r1=1 /\ 0:r2=1 /\ 1:r3=1)

Listing 40: Causality Test Case 12

1 C oota-causality-13
2 {
3 [x] = 0;
4 [y] = 0;
5 }
6
7 P0(atomic_int *x, atomic_int *y) {
8 int r1 = atomic_load_explicit(x, memory_order_relaxed);
9 if (r1 == 1)

10 atomic_store_explicit(y, 1, memory_order_relaxed);
11 }
12
13 P1(atomic_int *x, atomic_int *y) {
14 int r2 = atomic_load_explicit(y, memory_order_relaxed);
15 if (r2 == 1)
16 atomic_store_explicit(x, 1, memory_order_relaxed);
17 }
18
19 exists(0:r1=1 /\ 1:r2=1)

Analysis by "herd7 -c11 litmus/oota-causality-13.litmus":

1 Test oota-causality-13 Allowed
2 States 2
3 0:r1=0; 1:r2=0;
4 0:r1=1; 1:r2=1;
5 Ok
6 Witnesses
7 Positive: 1 Negative: 1
8 Condition exists (0:r1=1 /\ 1:r2=1)
9 Observation oota-causality-13 Sometimes 1 1

10 Time oota-causality-13 0.00
11 Hash=82dfdeefc1038a6b032706834feeedd9

Listing 41: Causality Test Case 13

84

E.15 Causality Test Case 14

1 C oota-causality-14
2 {
3 [x] = 0;
4 [y] = 0;
5 [z] = 0;
6 }
7
8 P0(atomic_int *x, atomic_int *y, atomic_int *z) {
9 int r1 = atomic_load_explicit(x, memory_order_relaxed);

10 if (r1 == 0)
11 atomic_store_explicit(z, 1, memory_order_seq_cst);
12 else
13 atomic_store_explicit(y, 1, memory_order_relaxed);
14 }
15
16 P1(atomic_int *x, atomic_int *y, atomic_int *z) {
17 int r2 = atomic_load_explicit(z, memory_order_seq_cst);
18 int r3 = atomic_load_explicit(y, memory_order_relaxed);
19 int r4 = r2 + r3;
20 if (r4)
21 atomic_store_explicit(x, 1, memory_order_relaxed);
22 }
23
24 exists(0:r1=1 /\ 1:r2=0 /\ 1:r3=1 /\ ~1:r4=0)

Analysis by "herd7 -c11 litmus/oota-causality-14.litmus":

1 Test oota-causality-14 Allowed
2 States 3
3 0:r1=0; 1:r2=0; 1:r3=0; 1:r4=0;
4 0:r1=0; 1:r2=1; 1:r3=0; 1:r4=1;
5 0:r1=1; 1:r2=0; 1:r3=1; 1:r4=1;
6 Ok
7 Witnesses
8 Positive: 1 Negative: 2
9 Condition exists (0:r1=1 /\ 1:r2=0 /\ 1:r3=1 /\ not (1:r4=0))

10 Observation oota-causality-14 Sometimes 1 2
11 Time oota-causality-14 0.00
12 Hash=a662e071a6b2bba313609f96082d5610

Listing 42: Causality Test Case 14

85

E.16 Causality Test Case 15

specification on line 17 has no important effect; hardware dependency ordering will
prevent the cycle from being realized.

E.16 Causality Test Case 15
Listing 43 shows causality test case 15, for which the r0 == r1 == r3 == 1 and
r2 == 0 result is to be forbidden. The herd7 tool reports this result.

The execution described by the exists clause has an OOTA cycle involving u
and v. The dependency in P0() from line 13 to line 19 and the dependency in P1()
from line 24 to line 27 are both semantic. The resulting hardware dependency ordering
prevents the cycle from being realized.

Having no load, P2() cannot participate in an OOTA cycle.

E.17 Causality Test Case 16
Listing 44 shows causality test case 16, for which the r1 == 2 and r2 == 1 result
is to be allowed. The herd7 tool does not report this result, which is to be expected
because it would violate the C++ memory model’s read-write coherence rule regarding
the modification order of an atomic object (6.9.2.2p17 [intro.races]). Because no
abstract execution can obtain r1 == 2 and r2 == 1, no valid realization will either.

E.18 Causality Test Case 17
Listing 45 shows causality test case 17, for which the r1 == r2 == r3 == 42
result is to be allowed. The herd7 tool does not report this result, although it does
report a different OOTA cycle involving lines 11, 12, 16, and 17 (the S17 value on
line 3 of the herd7 output).

A compiler that treats atomics as quasi volatile could reason as follows: Suppose
that P0()’s load from x on line 8 returns the value 42. In that case, the second load on
line 11 can be merged with the first, so that it also returns the value 42. On the other
hand, if the load on line 8 returns some other value then line 10 will store the value 42
to x, and then the load on line 11 can be omitted in favor of using the value 42 stored by
line 10.

Either way, the value of r1 will be 42. Therefore the loads from x cannot affect
the store on line 17, so there is no semantic dependency. This allows the cycle to be
realized, but because the dependency in P0() is not semantic, the cycle is not OOTA.

E.19 Causality Test Case 18
Listing 46 shows causality test case 18, for which the r1 == r2 == r3 == 42
result is to be allowed. The herd7 tool does not report this result.

This is the same as causality test case 17, even to the alternate OOTA cycle reported
by herd7, except that line 9 tests r3 for equality to zero rather than non-equality to 42.
Perhaps surprisingly, this makes a difference.

A compiler that treats atomic objects as volatile or uses single-thread analysis cannot
assume that x will necessarily be equal to 42 following lines 9 and 10; it might have

86

E.19 Causality Test Case 18

1 C oota-causality-15
2 {
3 [u] = 0;
4 [v] = 0;
5 [x] = 0;
6 [y] = 0;
7 }
8
9 P0(atomic_int *u, atomic_int *v, atomic_int *x, atomic_int *y) {

10 int r0 = atomic_load_explicit(x, memory_order_seq_cst);
11 int r1;
12 if (r0 == 1)
13 r1 = atomic_load_explicit(u, memory_order_relaxed);
14 else
15 r1 = 0;
16 if (r1 == 0)
17 atomic_store_explicit(y, 1, memory_order_seq_cst);
18 else
19 atomic_store_explicit(v, 1, memory_order_relaxed);
20 }
21
22 P1(atomic_int *u, atomic_int *v, atomic_int *x, atomic_int *y) {
23 int r2 = atomic_load_explicit(y, memory_order_seq_cst);
24 int r3 = atomic_load_explicit(v, memory_order_relaxed);
25 int r4 = r2 + r3;
26 if (r4)
27 atomic_store_explicit(u, 1, memory_order_relaxed);
28 }
29
30 P2(atomic_int *u, atomic_int *v, atomic_int *x, atomic_int *y) {
31 atomic_store_explicit(x, 1, memory_order_seq_cst);
32 }
33
34 exists(0:r0=1 /\ 0:r1=1 /\ 1:r2=0 /\ 1:r3=1 /\ ~1:r4=0)

Analysis by "herd7 -c11 litmus/oota-causality-15.litmus":

1 Test oota-causality-15 Allowed
2 States 5
3 0:r0=0; 0:r1=0; 1:r2=0; 1:r3=0; 1:r4=0;
4 0:r0=0; 0:r1=0; 1:r2=1; 1:r3=0; 1:r4=1;
5 0:r0=1; 0:r1=0; 1:r2=0; 1:r3=0; 1:r4=0;
6 0:r0=1; 0:r1=0; 1:r2=1; 1:r3=0; 1:r4=1;
7 0:r0=1; 0:r1=1; 1:r2=0; 1:r3=1; 1:r4=1;
8 Ok
9 Witnesses

10 Positive: 1 Negative: 4
11 Condition exists (0:r0=1 /\ 0:r1=1 /\ 1:r2=0 /\ 1:r3=1 /\ not (1:r4=0))
12 Observation oota-causality-15 Sometimes 1 4
13 Time oota-causality-15 0.01
14 Hash=40c8856db50fe44f850390851a61a4ba

Listing 43: Causality Test Case 15

87

E.20 Causality Test Case 19

1 C oota-causality-16
2 {
3 [x] = 0;
4 }
5
6 P0(atomic_int *x) {
7 int r1 = atomic_load_explicit(x, memory_order_relaxed);
8 atomic_store_explicit(x, 1, memory_order_relaxed);
9 }

10
11 P1(atomic_int *x) {
12 int r2 = atomic_load_explicit(x, memory_order_relaxed);
13 atomic_store_explicit(x, 2, memory_order_relaxed);
14 }
15
16 exists(0:r1=2 /\ 1:r2=1)

Analysis by "herd7 -c11 litmus/oota-causality-16.litmus":

1 Test oota-causality-16 Allowed
2 States 3
3 0:r1=0; 1:r2=0;
4 0:r1=0; 1:r2=1;
5 0:r1=2; 1:r2=0;
6 No
7 Witnesses
8 Positive: 0 Negative: 4
9 Condition exists (0:r1=2 /\ 1:r2=1)

10 Observation oota-causality-16 Never 0 4
11 Time oota-causality-16 0.00
12 Hash=511e9d0dd5696cc530c9476d5a541cb7

Listing 44: Causality Test Case 16

some other value such as 1. Therefore the compiler cannot conclude that r1 will always
be 42 and must leave the semantic dependency between lines 11 and 12 intact. Of
course, the resulting OOTA cycle will not be realized, because of hardware dependency
ordering.

E.20 Causality Test Case 19
Listing 47 shows causality test case 19, for which the r1 == r2 == r3 == 42
result is to be allowed. The herd7 tool does not report this result but it does report the
OOTA cycle in line 3 of its output.

This is nearly the same as the Simple OOTA cycle and causality test case 4, with
the addition of P2(). Just as in those examples, the OOTA cycle cannot be realized by
compilers that treat atomic objects as volatile or that do single-thread analysis and treat
atomic objects as quasi volatile.

E.21 Causality Test Case 20
Listing 48 shows causality test case 20, for which the r1 == r2 == r3 == 42
result is to be allowed. The herd7 tool does not report this result.

This is the same as causality test case 19, even to the OOTA cycle reported by
herd7, except that line 19 tests r3 for equality to zero rather than non-equality to 42.

88

E.21 Causality Test Case 20

1 C oota-causality-17
2 {
3 [x] = 0;
4 [y] = 0;
5 }
6
7 P0(atomic_int *x, atomic_int *y) {
8 int r3 = atomic_load_explicit(x, memory_order_relaxed);
9 if (r3 != 42)

10 atomic_store_explicit(x, 42, memory_order_relaxed);
11 int r1 = atomic_load_explicit(x, memory_order_relaxed);
12 atomic_store_explicit(y, r1, memory_order_relaxed);
13 }
14
15 P1(atomic_int *x, atomic_int *y) {
16 int r2 = atomic_load_explicit(y, memory_order_relaxed);
17 atomic_store_explicit(x, r2, memory_order_relaxed);
18 }
19
20 exists(0:r1=42 /\ 1:r2=42 /\ 0:r3=42)

Analysis by "herd7 -c11 litmus/oota-causality-17.litmus":

1 Test oota-causality-17 Allowed
2 States 4
3 0:r1=S17; 0:r3=0; 1:r2=S17;
4 0:r1=0; 0:r3=0; 1:r2=0;
5 0:r1=42; 0:r3=0; 1:r2=0;
6 0:r1=42; 0:r3=0; 1:r2=42;
7 No
8 Witnesses
9 Positive: 0 Negative: 7

10 Condition exists (0:r1=42 /\ 1:r2=42 /\ 0:r3=42)
11 Observation oota-causality-17 Never 0 7
12 Time oota-causality-17 0.01
13 Hash=2a23fb056b6cef48296f421deb01bf20

Listing 45: Causality Test Case 17

89

E.21 Causality Test Case 20

1 C oota-causality-18
2 {
3 [x] = 0;
4 [y] = 0;
5 }
6
7 P0(atomic_int *x, atomic_int *y) {
8 int r3 = atomic_load_explicit(x, memory_order_relaxed);
9 if (r3 == 0)

10 atomic_store_explicit(x, 42, memory_order_relaxed);
11 int r1 = atomic_load_explicit(x, memory_order_relaxed);
12 atomic_store_explicit(y, r1, memory_order_relaxed);
13 }
14
15 P1(atomic_int *x, atomic_int *y) {
16 int r2 = atomic_load_explicit(y, memory_order_relaxed);
17 atomic_store_explicit(x, r2, memory_order_relaxed);
18 }
19
20 exists(0:r1=42 /\ 1:r2=42 /\ 0:r3=42)

Analysis by "herd7 -c11 litmus/oota-causality-18.litmus":

1 Test oota-causality-18 Allowed
2 States 4
3 0:r1=S17; 0:r3=0; 1:r2=S17;
4 0:r1=0; 0:r3=0; 1:r2=0;
5 0:r1=42; 0:r3=0; 1:r2=0;
6 0:r1=42; 0:r3=0; 1:r2=42;
7 No
8 Witnesses
9 Positive: 0 Negative: 7

10 Condition exists (0:r1=42 /\ 1:r2=42 /\ 0:r3=42)
11 Observation oota-causality-18 Never 0 7
12 Time oota-causality-18 0.01
13 Hash=84e6c90bdd080bb17f6fb08f893dfc56

Listing 46: Causality Test Case 18

90

E.21 Causality Test Case 20

1 C oota-causality-19
2 {
3 [x] = 0;
4 [y] = 0;
5 }
6
7 P0(atomic_int *x, atomic_int *y) {
8 int r1 = atomic_load_explicit(x, memory_order_relaxed);
9 atomic_store_explicit(y, r1, memory_order_relaxed);

10 }
11
12 P1(atomic_int *x, atomic_int *y) {
13 int r2 = atomic_load_explicit(y, memory_order_relaxed);
14 atomic_store_explicit(x, r2, memory_order_relaxed);
15 }
16
17 P2(atomic_int *x, atomic_int *y) {
18 int r3 = atomic_load_explicit(x, memory_order_relaxed);
19 if (r3 != 42)
20 atomic_store_explicit(x, 42, memory_order_relaxed);
21 }
22
23 exists(0:r1=42 /\ 1:r2=42 /\ 2:r3=42)

Analysis by "herd7 -c11 litmus/oota-causality-19.litmus":

1 Test oota-causality-19 Allowed
2 States 4
3 0:r1=S8; 1:r2=S8; 2:r3=0;
4 0:r1=0; 1:r2=0; 2:r3=0;
5 0:r1=42; 1:r2=0; 2:r3=0;
6 0:r1=42; 1:r2=42; 2:r3=0;
7 No
8 Witnesses
9 Positive: 0 Negative: 16

10 Condition exists (0:r1=42 /\ 1:r2=42 /\ 2:r3=42)
11 Observation oota-causality-19 Never 0 16
12 Time oota-causality-19 0.01
13 Hash=1931891a93f192d9a672e1d755611c9d

Listing 47: Causality Test Case 19

91

E.21 Causality Test Case 20

1 C oota-causality-20
2 {
3 [x] = 0;
4 [y] = 0;
5 }
6
7 P0(atomic_int *x, atomic_int *y) {
8 int r1 = atomic_load_explicit(x, memory_order_relaxed);
9 atomic_store_explicit(y, r1, memory_order_relaxed);

10 }
11
12 P1(atomic_int *x, atomic_int *y) {
13 int r2 = atomic_load_explicit(y, memory_order_relaxed);
14 atomic_store_explicit(x, r2, memory_order_relaxed);
15 }
16
17 P2(atomic_int *x, atomic_int *y) {
18 int r3 = atomic_load_explicit(x, memory_order_relaxed);
19 if (r3 == 0)
20 atomic_store_explicit(x, 42, memory_order_relaxed);
21 }
22
23 exists(0:r1=42 /\ 1:r2=42 /\ 2:r3=42)

Analysis by "herd7 -c11 litmus/oota-causality-20.litmus":

1 Test oota-causality-20 Allowed
2 States 4
3 0:r1=S8; 1:r2=S8; 2:r3=0;
4 0:r1=0; 1:r2=0; 2:r3=0;
5 0:r1=42; 1:r2=0; 2:r3=0;
6 0:r1=42; 1:r2=42; 2:r3=0;
7 No
8 Witnesses
9 Positive: 0 Negative: 16

10 Condition exists (0:r1=42 /\ 1:r2=42 /\ 2:r3=42)
11 Observation oota-causality-20 Never 0 16
12 Time oota-causality-20 0.01
13 Hash=b08a75dbf03d1d9caa8c2830d1c4b235

Listing 48: Causality Test Case 20

92

E.21 Causality Test Case 20

The same analysis applies.

93

F Acknowledgments
We are grateful to David Goldblatt, Jade Alglave, and Peter Sewell for their careful
review of an early draft of this paper and to John Wickerson for asking Paul for a
rant and taking the proffered rant seriously. We also owe David Goldblatt a debt of
gratitude for his having asked an insightful question at the right time, his insights on
combinations of OOTA and UB, and for his “Deathstation 9000” demonic CPU. Martin
Uecker contributed valuable insights on backwards-propagating UB. Gonzalo Brito
Gadeschi shared an alternative way of handling nonvolatile atomic operations. Richard
Grisenthwaite patiently explained the architectural constraints that prevent hardware
OOTA. Mark Batty encouraged our work on new OOTA-related litmus tests.

Nonetheless, all errors and omissions in this paper are the sole property of the
authors, and the appearance of a name in this appendix does not in any way constitute
agreement with anything in this paper.

References
[1] Jade Alglave, Luc Maranget, Pankaj Pawan, Susmit Sarkar, Peter Sewell, Derek

Williams, and Francesco Zappa Nardelli. PPCMEM/ARMMEM: A tool for ex-
ploring the POWER and ARM memory models. https://www.cl.cam.ac.
uk/~pes20/ppc-supplemental/pldi105-sarkar.pdf, June 2011.

[2] Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: Modelling,
simulation, testing, and data mining for weak memory. ACM Trans. Program.
Lang. Syst., 36(2), jul 2014.

[3] Mark Batty, Simon Cooksey, Scott Owens, Anouk Paradis, Marco Paviotti, and
Daniel Wright. D1780R0: Modular relaxed dependencies: A new approach to
the out-of-thin-air problem. http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2019/p1780r0.html, June 2019.

[4] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. Mathe-
matizing C++ concurrency. In POPL ’11: Proceedings of the 38th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages
55–66, Austin, TX, January 2011. http://svr-pes20-cppmem.cl.cam.
ac.uk/cppmem/help.html.

[5] Hans Boehm. “Undefined behavior” and the concurrency memory model.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2020/p2215r0.pdf, August 2020.

[6] Hans-J. Boehm. P1217R2: Out-of-thin-air, revisited, again. http:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/
p1217r2.html, June 2019.

[7] Hans-J. Boehm and Brian Demsky. Outlawing ghosts: Avoiding out-of-thin-air
results. In Proceedings of the Workshop on Memory Systems Performance and
Correctness, MSPC ’14, pages 7:1–7:6, New York, NY, USA, 2014. ACM.

94

https://www.cl.cam.ac.uk/~pes20/ppc-supplemental/pldi105-sarkar.pdf
https://www.cl.cam.ac.uk/~pes20/ppc-supplemental/pldi105-sarkar.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1780r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1780r0.html
http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/help.html
http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/help.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2215r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2215r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1217r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1217r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1217r2.html

REFERENCES

[8] Alex Celeste. Strict order of expression evaluation. https://www.open-std.
org/jtc1/sc22/wg14/www/docs/n3203.htm, December 2023.

[9] Luke Geeson. A proposal fix for c/c++ relaxed atom-
ics in practice. http://lukegeeson.com/blog/
2023-10-17-A-Proposal-For-Relaxed-Atomics/, November
2023.

[10] David Goldblatt. There might not be an elegant OOTA fix. http:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/
p1916r0.pdf, October 2019.

[11] Richard Grisenthwaite. Views on relaxed atomics in
C++ from Arm’s technical leadership team. https:
//community.arm.com/arm-community-blogs/b/
architectures-and-processors-blog/posts/
arm-technical-view-on-relaxed-atomics, November 2023.

[12] Paul Heidekrüger. Status report: Broken dependency orderings in the Linux
kernel. https://lpc.events/event/16/contributions/1174/,
September 2022.

[13] Thomas Köppe. Working draft, standard for programming language C++.
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2023/n4950.pdf, May 2023.

[14] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer.
Repairing sequential consistency in C/C++11. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2017, pages 618–632, New York, NY, USA, 2017. ACM.

[15] Sung-Hwan Lee, Minki Cho, Anton Podkopaev, Soham Chakraborty, Chung-
Kil Hur, Ori Lahav, and Viktor Vafeiadis. Promising 2.0: Global optimizations
in relaxed memory concurrency. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2020,
page 362–376, New York, NY, USA, 2020. Association for Computing Machinery.

[16] Daniel Lustig. P1239r0: Placed before. https://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2018/p1239r0.html, October
2018.

[17] Luc Maranget, Susmit Sarkar, and Peter Sewell. A tutorial introduction to the
ARM and POWER relaxed memory models. https://www.cl.cam.ac.
uk/~pes20/ppc-supplemental/test7.pdf, October 2012.

[18] Paul E. McKenney. Is Parallel Programming Hard, And, If So, What Can You Do
About It? (2018.12.08a Release). kernel.org, Corvallis, OR, USA, 2018.

95

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3203.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3203.htm
http://lukegeeson.com/blog/2023-10-17-A-Proposal-For-Relaxed-Atomics/
http://lukegeeson.com/blog/2023-10-17-A-Proposal-For-Relaxed-Atomics/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1916r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1916r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1916r0.pdf
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/arm-technical-view-on-relaxed-atomics
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/arm-technical-view-on-relaxed-atomics
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/arm-technical-view-on-relaxed-atomics
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/arm-technical-view-on-relaxed-atomics
https://lpc.events/event/16/contributions/1174/
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/n4950.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/n4950.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1239r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1239r0.html
https://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
https://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf

REFERENCES

[19] Paul E. McKenney and Hans Boehm. P2055R0: A relaxed guide to mem-
ory_order_relaxed. http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2020/p2055r0.pdf, January 2020.

[20] Paul E. McKenney, Alan Jeffrey, and Ali Sezgin. N4323: Out-of-thin-air execution
is vacuous. https://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2014/n4323.html, November 2014.

[21] Paul E. McKenney, Alan Jeffrey, Ali Sezgin, and Tony Tye. P0422r0: Out-of-
thin-air execution is vacuous. http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2016/p0422r0.html, July 2016.

[22] Paul E. McKenney, Ulrich Weigand, Andrea Parri, and Boqun Feng. Linux-
kernel memory model. https://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2023/p0124r8.html, August 2023.

[23] Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndylan Nienhuis, David
Chisnall, Robert N. M. Watson, and Peter Sewell. Into the depths of C: Elaborating
the de facto standards. SIGPLAN Not., 51(6):1–15, jun 2016.

[24] Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndylan Nienhuis, David
Chisnall, Robert N. M. Watson, and Peter Sewell. Into the depths of C: Elaborating
the de facto standards. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’16, page 1–15, New
York, NY, USA, 2016. Association for Computing Machinery.

[25] Gabriel Dos Reis, Herb Sutter, and Jonathan Caves. Refining expression evaluation
order for idiomatic C++. Available: https://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2016/p0145r3.pdf [Viewed: February 13,
2024], June 2016.

[26] Matthew D. Sinclair, Johnathan Alsop, and Sarita V. Adve. Chasing away RAts:
Semantics and evaluation for relaxed atomics on heterogeneous systems. In Pro-
ceedings of the 44th Annual International Symposium on Computer Architecture,
ISCA ’17, pages 161–174, New York, NY, USA, 2017. ACM.

96

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2055r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2055r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4323.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4323.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0422r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0422r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p0124r8.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p0124r8.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0145r3.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0145r3.pdf

	1 Introduction and Background
	1.1 Brief OOTA Overview
	1.1.1 Simple OOTA Cycle
	1.1.2 Simple Reordering

	1.2 Prior Work
	1.3 Code-Analysis Tool

	2 OOTA and Semantic Dependencies
	2.1 OOTA: rf versus rfe
	2.2 Properties of Semantic Dependencies
	2.2.1 Semantic Dependencies and Source Code
	2.2.2 Semantic Dependencies Can Be Many-To-One
	2.2.3 Semantic Dependencies Affected by Cross-Thread Optimizations
	2.2.4 Semantic Dependencies Affected by [breaklines=yes,breakatwhitespace=yes]if Statements
	2.2.5 Semantic Dependencies Not Affected by [breaklines=yes,breakatwhitespace=yes]if Statements
	2.2.6 Semantic Dependencies and Matching Up Stores

	3 What is an Execution?
	3.1 Abstract Executions
	3.2 Hardware Executions
	3.3 Relation Between Abstract and Hardware Executions

	4 C++ Compilers
	4.1 Users Influence the Behavior of Compilers
	4.2 Global Optimization Can Destroy Dependencies
	4.3 Inventing Atomic Loads Can Destroy Semantic Dependencies
	4.4 Volatile and Quasi Volatile Accesses

	5 Hardware Dependencies, Instruction Ordering, and the Fundamental Property
	5.1 Dependencies at the Hardware Level
	5.2 Instruction Ordering
	5.3 The Fundamental Property of Semantic Dependencies

	6 A Definition of Semantic Dependency
	6.1 For Compilers Using Single-Thread Analysis
	6.2 For Compilers Using Global Analysis
	6.3 Verifying the Fundamental Property
	6.4 Outstanding Issues
	6.4.1 Relative versus Absolute Dependency
	6.4.2 Global Analysis and Volatile versus Quasi Volatile
	6.4.3 Effect of Memory Layout
	6.4.4 Merging Quasi-Volatile Loads

	7 Real-World Constraints
	7.1 Hardware Architecture and Design
	7.2 Constraints of the Standard
	7.3 Semantic Dependencies and Tooling

	8 Future Directions
	9 Conclusion
	A Interthread Communications
	B User Influence Over Language Semantics
	C But What About Tooling?
	C.1 Load/Store Ordering: Hardware View for Software Hackers
	C.2 Status Quo and Focused Tooling
	C.3 Change Relaxed to Forbid Load Buffering
	C.4 Add Load-Store Memory Order that Forbids Load Buffering

	D Illustrative Litmus Tests
	D.1 Semantic Dependencies and [breaklines=yes,breakatwhitespace=yes]volatile
	D.2 Non-Trivial Semantic Dependencies
	D.3 Why rfe Instead of Tried-And-True rf?
	D.4 Inventing Atomic Loads
	D.5 Undefined Behavior and Unwise Optimization
	D.6 Additional Litmus Tests

	E Litmus Tests from “Causality Test Cases"
	E.1 Causality Test Case 1
	E.2 Causality Test Case 2
	E.3 Causality Test Case 3
	E.4 Causality Test Case 4
	E.5 Causality Test Case 5
	E.6 Causality Test Case 6
	E.7 Causality Test Case 7
	E.8 Causality Test Case 8
	E.9 Causality Test Case 9
	E.10 Causality Test Case 9a
	E.11 Causality Test Case 10
	E.12 Causality Test Case 11
	E.13 Causality Test Case 12
	E.14 Causality Test Case 13
	E.15 Causality Test Case 14
	E.16 Causality Test Case 15
	E.17 Causality Test Case 16
	E.18 Causality Test Case 17
	E.19 Causality Test Case 18
	E.20 Causality Test Case 19
	E.21 Causality Test Case 20

	F Acknowledgments
	References

