Undeprecate polymorphic_allocator: :destroy for C++26

Document #: P2875R4

Date: 2024-03-20

Project: Programming Language C++
Audience: LWG

Reply-to: Alisdair Meredith

<ameredithl@bloomberg.net>

Contents

1

2

9

Abstract

[

Revision History

R4: March 2024 (Tokyo meeting)
R3: February 2024 (pre-Tokyo mailing)
R2: September 2023 (midterm mailing) Lo
RI1: August 2023 (midterm mailing)
RO: May 2023 (pre-Varna mailing) L

NN NN

W

Introduction

Issue History

4.1 LWG Poll, 2019 Kona meeting e
4.2 2020-10-11 Reflector poll e
4.3 November 2020 Virtual Plenary

w w w W

Analysis

5.1 CH+417: Issuefiled o e
5.2 C++20: Support transient constexpr (de)allocation L L.
5.3 (C+4+423: Deprecate polymorphic_allocator::destroy
5.4 Directing towards a bad user experience L Lo e

= =S BTN

=]

Review: C++426
6.1 LEWG telecon: 2024/01/23 L

[=p}

Proposal 6

Proposed Wording

8.1 Update the library specification
8.2 Strike Annex D wording
8.3 Update cross-reference for stable labels for C++23 L.

© o 3N

Acknowledgements 10

10 References 10

mailto:ameredith1@bloomberg.net

1 Abstract

The member function polymorphic_allocator: :destroy was deprecated by C++23 as it defines the same
semantics that would be synthesized automatically by std::allocator_traits. However, some common use
cases for std::pmr::polymorphic_allocator do not involve generic code and thus do not necessarily use
std::allocator_traits to call on the services of such allocators. This paper recommends undeprecating that
function and restoring its wording to the main Standard clause.

2 Revision History

R4: March 2024 (Tokyo meeting)

— Wording updates following LWG review
— removed stable label cross reference: change from removed to see undeprecated clause

— fixed some odd whitespacing issues
— “Effects: as if by” modernized to “Effects: equivalent to”

R3: February 2024 (pre-Tokyo mailing)

— Applied an editorial review, fixing grammar and typos

— Then totally rewrote the analysis, reflecting a subtle change of semantics
— Confirmed wording against latest working draft, [N4971]

— Record results of LEWG telecon, January 23, 2024

— Add requested code examples of what migration would look like

R2: September 2023 (midterm mailing)

— Removed revision history’s redundant subsection numbering
— Added comparison with effects of removing a typedef member instead
— Wording updates
— Confirm wording against latest working draft, N4958
— Updated stable label cross-reference to C++23
— Applied numerous editorial corrections

R1: August 2023 (midterm mailing)

— Confirmed wording for latest working draft, N4950

— Removed syntax highlighting from standardese to avoid markup conflicts
— Removed use of allocator_traits in delete_object

— Improved rationale following initial reflector review — thanks, Pablo!

RO: May 2023 (pre-Varna mailing)
— Initial draft of this paper.

3 Introduction

At the start of the C++23 cycle, [P2139R2] tried to review each deprecated feature of C++ to see which we
would benefit from actively removing and which might now be better undeprecated. Consolidating all this
analysis into one place was intended to ease the (L)EWG review process but in return gave the author so much
feedback that the next revision of that paper was not completed.

For the C++426 cycle, a concise paper will track the overall review process, [P2863], but all changes to the
Standard will be pursued through specific papers, decoupling progress from the larger paper so that delays on
a single feature do not hold up progress on all.

This paper takes up the deprecated member function std::polymorphic_allocator::destroy, D.15
[depr.mem.poly.allocator.mem).
4 Issue History

This feature was deprecated by [LWG3036].

4.1 LWG Poll, 2019 Kona meeting

Q: Are we in favor of deprecation, pending on paper [P0339R6]?

Il F I N | A |
5 | 3 | 2 |

4.2 2020-10-11 Reflector poll

Moved to Tentatively Ready after seven votes in favour.

4.3 November 2020 Virtual Plenary
Adopted for C++423 by omnibus issues paper [P2236R0)].

https://wg21.link/depr.mem.poly.allocator.mem

5 Analysis

When the original LWG issue was opened on November 15, 2017, the issue claimed that the code for destroy
was identical to that which would be synthesized automatically by allocator_traits if the member function
were missing. That part was accurate. It further claimed that this member was therefore redundant and should
be removed. We claim that part was misunderstood and taken at face value, as there is no record of controversy
in the issue. However, just because two functions have an identical implementation at one point in time does
not mean they have an identical contract, or rather, that as designs and contracts evolve they would remain
synchronized unless that synchronization itself were an explicit part of the contract. In this case, the destroy
member is specified to be the appropriate way to destroy an object created by the corresponding construct
call, where the allocator_traits member is a default pattern to use in the absence of a specific destroy for a
given allocator type. There is no guarantee that those two functions with an identical implementation in 2017
would retain an identical definition into the future. Indeed, the adoption of [P0784R7] at the July 2019 meeting
in Cologne changed the specification of the allocator_traits::destroy formula to call the std: :destroy_at
free function, rather than call the destructor directly. That function has a different behavior for array types
than non-array types. There is no acknowledgement of this functionality divergence in the LWG issue when it
is voted into Ready status. std::destroy_at is seen as the natural undo for std: : construct_at, which is also
incorporated as part of the default formula for allocator_traits::construct, and that is not the formula
used by std::pmr::polymorphic_allocator<T>::construct. All of this extra complexity does not provide
any benefit to polymorphic_allocator as it is largely to support constexpr allocation, that is not supportable
by polymorphic_allocator without further language extensions in the domain of compile-time dynamic objects
that have not yet been proposed; if polymorphic_allocator were to be extended in that way in the future, it
is likely that the destoy member function would be specified very differently to calling std: :destroy_at. I say
this as feedback from experiments supporting compile-time allocation through polymorphic_allocator in the
past, which showed a need for if consteval logic in the implementation.

Meanwhile, the motivation of removing a redundancy that is not a redundancy is flawed from the perspective of
why the function exists in the first place. The natural undo for an a.construct call is an a.destroy call. When
using a polymorphic allocator as a means of wrapping a std: :pmr: :memory_resource, it is intended to use the
allocator directly, rather than channel all allocator functionality through allocator_traits when there is no
genericity swapping out other allocator types to support; the whole point of memory resources is to move the
selection of allocator from compile-time to runtime, and polymorphic_allocator is the vocabulary for runtime
allocator customization in the same way that allocator_traits is the vocabulary for compile-time allocator
customization. The intent of the issue (assuming the functionality of allocator_traits::destroy had kept in
sync) is that there is no loss of functionality, but that users should now write

std::allocator_traits<std::pmr::polymorphic_allocator<MyType>>::destroy(a, p);

rather than

a.destroy(p);

for exactly the same functionality. It is purely a loss of expressiveness, for no clear purpose.

Meanwhile, resolving the issue was deferred for C++420 until paper [P0339R6] landed, further promoting use
of polymorphic_allocator<> as the vocabulary type for runtime customization of allocators. It is not clear
how this furthered the case for deprecation. On its surface it appears equivalent to saying “we should deprecate
comparison operators on containers, as users can call the standard algorithms directly”

5.1 C++17: Issue filed

The implementation of the destroy functions can be seen to have equivalent code when called through
allocator_traits.

polymorphic_allocator allocator_traits

template <class E> template <class A>
template <class T> template <class T>
void polymorphic_allocator<E>::destroy(T* p) { void allocator_traits<A>::destroy(A& a, T* p) {
if constexpr(__has_delete_member<A>()) {
a.destroy(p);

}

else {
p—>~TO; p—>~TO;

}

Observe that calling through allocator_traits puts more work on the compiler, but both branches of the
if constexpr produce exactly the same destructor call at the end of the call chain — that is the whole rationale
for deprecating, and ultimately removing, the polymorphic_allocator: :destroy function.

However, the case for the destroy member function is different to the case for removing a typedef member, such as
in [depr.default.allocator] and approved for removal in [P2868R2]. The formula produced by allocator_traits
for a missing typedef member is to compute a type based upon other typedef names in allocator_traits.
When a typedef member from a base class provides the exact same result as the formula would produce for
the base class, that typedef member will inhibit allocator_traits from computing the correct typedef name
for the derived class, forcing the user to explicitly provide that member themselves; this situation is often a
bug by omission. In the case of a destroy function matching the functionality that would be provided by
allocator_traits, nothing in that functionality actually depends upon the class itself, so calling that function
instead for a derived class would still have identical behavior; there is no risk of introducing a bug by error of
omission.

5.2 C++20: Support transient constexpr (de)allocation

The contract of allocator_traits continued to evolve in C+-+20 in order to support transient allocation and
deallocation during constant evaluation. In particular, the path taken by the destroy function is no longer the
same as that specified for polymorphic_allocator: :destroy. Rather than invoking the destructor directly, it is
deferred through another level of indirection to std: :destroy_at, which typically invokes the destructor for the
pointed-to object, unless it is an array. From the perspective of the optimizer, it can see that the destructor for
T (typically) does not throw from its exception specification, allowing elimination of any conservative exception
unwinding code; as the destroy_at function is not a noexcept function, the optimizer must do more work
through inlining the call to make that same optimization.

polymorphic_allocator allocator_traits
template <class E> template <class A>
template <class T> template <class T>
constexpr

void polymorphic_allocator<E>::destroy(T* p) { void allocator_traits<A>::destroy(A& a, T* p) {
if constexpr(requires(A& a, T* p){a.destroy(p);}) {
a.destroy(p);

}
else {
p—>-TQ; // “noexzcept ™ function call std: :destroy_at(p); // potentially throwing
// can eliminate overhead ¥

https://wg21.link/depr.default.allocator

5.3 C++423: Deprecate polymorphic_allocator: :destroy

For C++23, we finally deprecate the polymorphic_allocator::destroy member function, despite the func-
tionality no longer being a precise match for the default formula supplied by allocator_traits; however,
there is no change of functionality yet, as the allocator_traits function must still dispatch to the deprecated
polymorphic_allocator: :destroy function.

5.4 Directing towards a bad user experience

Note, however, that the direct call through a polymorphic_allocator object does not need any type names as
the interface is deliberately designed to be type agnostic through type deduction on the pointer, whereas the
allocator type — including the object type that it allocates for — must be known to invoke the allocator_traits
functionality.

polymorphic_allocator allocator_traits

a.destroy(p); std::allocator_traits<decltype(a)>::destroy(a, p);

As the allocator_traits: :destroy function takes its allocator argument by reference to non-const allocator,
it is ill-formed to pass a polymorphic allocator bound to a different type — while a temporary of the right type
of allocator could be produced by a single conversion sequence, the temporary will not bind to the by-reference
parameter, requiring the exact type of allocator to be supplied.

6 Review: C++26
6.1 LEWG telecon: 2024/01/23

Presented R1 of this paper, as R2 in the September mailing was missed — possibly as it does not get shown
that https://wg21.link/p2875 unless you explicitly request https://wg21.link/p2875r2. It is thought this is due
to R1 being a html document, but R2 was published as a prd, changing the file extension.

Oral argument of much of the analysis above without presenting this paper

Suggestions that users updating their code is not onerous, based on experience with removing functions from
std::allocator.

Concerns that std: :allocator is not a primary interface for non-generic code, where std: :pmr: : polymorphic_allocator
is designed as vocabulary for custom allocation in non-generic code.

Suggestion that best practice is that even non-generic code should always use std: :allocator_traits to request
allocator services. Disagreement from paper authors, and this specific best-practice is never polled for the room.

Consensus of the meeting was to add an example (5.4) of how code would migrate if the deprecated API were
removed, and then forward for electronic polling with the paper’s preferred recommendation to undeprecate, per
the supplied wording.

7 Proposal

std: :pmr: :polymorphic_allocator is an allocator that will often be used in nongeneric circumstances
unlike, for example, std::allocator. This member function that could otherwise be synthesized by
std::allocator_traits should still be part of its pubic interface for direct use.

Hence, this paper recommends undeprecating the destroy member function as the natural and expected analog
paired with construct.

8 Proposed Wording

Make the following changes to the C++ Working Draft. All wording is relative to [N4971], the latest draft at
the time of writing.

8.1 Update the library specification
20.4.3.1 [mem.poly.allocator.class.general] General

2 A specialization of class template pmr: : polymorphic_allocator meets the allocator completeness requirements
(16.4.4.6.2 [allocator.requirements.completeness]) if its template argument is a cv-unqualified object type.

namespace std::pmr {
template<class Tp = byte> class polymorphic_allocator {
memory_resource* mMemory_rsrc; // exposition only

public:
using value_type = Tp;

// 20.4.3.2[mem.poly.allocator.ctor], constructors
polymorphic_allocator() noexcept;
polymorphic_allocator (memory_resource* r);

polymorphic_allocator(const polymorphic_allocator& other) = default;

template<class U>
polymorphic_allocator (const polymorphic_allocator<U>& other) noexcept;

polymorphic_allocator& operator=(const polymorphic_allocator&) = delete;

// 20.4.3.3[mem.poly.allocator.mem], member functions
[[nodiscard]] Tp* allocate(size_t n);
void deallocate(Tp* p, size_t n);

[[nodiscard]] void* allocate_bytes(size_t nbytes, size_t alignment = alignof(max_align_t));
void deallocate_bytes(void* p, size_t nbytes, size_t alignment = alignof (max_align_t));
template<class T> [[nodiscard]] T* allocate_object(size_t n = 1);

template<class T> void deallocate_object(T* p, size_t n = 1);

template<class T, class... CtorArgs> [[nodiscard]] T* new_object(CtorArgs&&... ctor_args);
template<class T> void delete_object(T* p);

template<class T, class... Args>
void construct(T* p, Args&&... args);

template< class T>
void destroy(T* p);

polymorphic_allocator select_on_container_copy_construction() const;
memory_resource* resource() const;

// friends
friend bool operator==(const polymorphic_allocator& a,
const polymorphic_allocator& b) noexcept {
return *a.resource() == *xb.resource();

https://wg21.link/mem.poly.allocator.class.general
https://wg21.link/allocator.requirements.completeness
https://wg21.link/mem.poly.allocator.ctor
https://wg21.link/mem.poly.allocator.mem

13

14

15

16

17

18

2

20.4.3.3 [mem.poly.allocator.mem] Member functions

template<class T>
void delete_object(T* p);

Effects: Equivalent to:

atteocator—traits<polymorphic—allecator>+destroy (xthis;p);
deallocate_object(p);

template<class T, class... Args>
void construct(T* p, Args&&... args);

Mandates: Uses-allocator construction of T with allocator *this (see 20.2.8.2 [allocator.uses.construction]) and
constructor arguments std: : forward<Args>(args) ... is well-formed.

Effects: Construct a T object in the storage whose address is represented by p by uses-allocator construction
with allocator *this and constructor arguments std: : forward<Args>(args)....

Throws: Nothing unless the constructor for T throws.

template<class T>
void destroy(T* p);

Effects: Equivalent to p=>~T().

polymorphic_allocator select_on_container_copy_construction() const;

Returns: polymorphic_allocator().

[Note 4: The memory resource is not propagated. —end note]

8.2 Strike Annex D wording
D.15 [depr.mem.poly.allocator.mem] Deprecated polymorphic_allocator member function

The following member is declared in addition to those members specified in 20.4.3.3 [mem.poly.allocator.mem]:

namespace std::pmr {
template<class Tp = byte>
class polymorphic_allocator {
public:
template <class T>
void destroy(T* p);
};
b

template<class T>
void destroy(T* p);

Effects: As if by p->~TQ).

https://wg21.link/mem.poly.allocator.mem
https://wg21.link/allocator.uses.construction
https://wg21.link/depr.mem.poly.allocator.mem
https://wg21.link/mem.poly.allocator.mem

8.3 Update cross-reference for stable labels for C++23
Cross-references from ISO C++ 2023

All clause and subclause labels from ISO C++ 2023 (ISO/IEC 14882:2023, Programming Languages — C++)
are present in this document, with the exceptions described below.

container.gen.reqmts see
container.requirements.general

depr.arith.conv.enum removed
depr.codecvt.syn removed
depr.default.allocator removed
depr.locale.stdcvt removed
depr.locale.stdcvt.general removed
depr.locale.stdcvt.req removed
depr.mem.poly.allocator.mem see

mem.poly.allocator.mem
depr.res.on.required removed
depr.string.capacity removed

mismatch see alg.mismatch

9 Acknowledgements

Thanks to Michael Park for the pandoc-based framework used to transform this document’s source from
Markdown.

Thanks to Pablo Halpern for good reviews and helping to organize the rationale.

Thanks to Lori Hughes for reviewing this paper and providing editorial feedback.

10 References

[LWG3036] Casey Carter. polymorphic_ allocator::destroy is extraneous.
https://wg21.link /lwg3036

[N4971] Thomas Képpe. 2023-12-18. Working Draft, Programming Languages — C++.
https://wg21.link /n4971

[P0339R6] Pablo Halpern, Dietmar Kiihl. 2019-02-22. polymorphic_ allocator<> as a vocabulary type.
https://wg21.link /p0339r6

[PO784R 7] Daveed Vandevoorde, Peter Dimov,Louis Dionne, Nina Ranns, Richard Smith, Daveed Vandevoorde.
2019-07-22. More constexpr containers.
https://wg21.link /p0784r7

[P2139R2] Alisdair Meredith. 2020-07-15. Reviewing Deprecated Facilities of C++20 for C++23.
https://wg21.link /p2139r2

[P2236R0] Jonathan Wakely. 2020-10-15. C++ Standard Library Issues to be moved in Virtual Plenary, Nov.
2020.
https://wg21.link /p2236r0

[P2863] Alisdair Meredith. Review Annex D for C++26.
https://wg21.link /p2863

[P2868R2] Alisdair Meredith. 2023-09-14. Remove Deprecated ‘std::allocator’ Typedef From C++26.
https://wg21.link /p2868r2

10

https://wg21.link/lwg3036
https://wg21.link/n4971
https://wg21.link/p0339r6
https://wg21.link/p0784r7
https://wg21.link/p2139r2
https://wg21.link/p2236r0
https://wg21.link/p2863
https://wg21.link/p2868r2

	Abstract
	Revision History
	R4: March 2024 (Tokyo meeting)r4-march-2024-tokyo-meeting
	R3: February 2024 (pre-Tokyo mailing)r3-february-2024-pre-tokyo-mailing
	R2: September 2023 (midterm mailing)r2-september-2023-midterm-mailing
	R1: August 2023 (midterm mailing)r1-august-2023-midterm-mailing
	R0: May 2023 (pre-Varna mailing)r0-may-2023-pre-varna-mailing

	Introduction
	Issue History
	LWG Poll, 2019 Kona meeting
	2020-10-11 Reflector poll
	November 2020 Virtual Plenary

	Analysis
	C++17: Issue filed
	C++20: Support transient constexpr (de)allocation
	C++23: Deprecate polymorphic_allocator::destroy
	Directing towards a bad user experience

	Review: C++26
	LEWG telecon: 2024/01/23

	Proposal
	Proposed Wording
	Update the library specification
	Strike Annex D wording
	Update cross-reference for stable labels for C++23

	Acknowledgements
	References

