
Remove Deprecated Locale Category Facets For Unicode from C++26
Document #: P2873R1
Date: 2024-04-08
Project: Programming Language C++
Audience: LEWG
Reply-to: Alisdair Meredith

<ameredith1@bloomberg.net>
Tom Honermann
<tom@honermann.net>

Contents
1 Abstract 2

2 Revision History 2
R1: April 2024 (post-Tokyo mailing) . 2
R0: May 2023 (pre-Varna mailing) . 2

3 Introduction 3

4 History 3

5 C++23 Feedback 4
5.1 Initial LEWGI review: Telecon 2020/07/13 . 4
5.2 SG16 review: Telecon 2020/07/22 . 4
5.3 LEWGI consensus . 4

6 Proposal 5
6.1 Deployment experience . 5

7 C++26 Review 6
7.1 SG16 initial review: Telecon 2023/05/24 . 6
7.2 SG16 second review: Telecon 2023/10/25 . 6

8 Wording 7
8.1 No changes to zombie names . 7
8.2 Add Annex C library wording . 7
8.3 Strike library wording from Annex D . 7
8.4 Update cross-reference for stable labels for C++23 . 8

9 Acknowledgements 9

10 References 9

1

mailto:ameredith1@bloomberg.net
mailto:tom@honermann.net

1 Abstract
Several locale facets were added to C++11 that were intended to support Unicode transcoding. The facets that
convert to and from UTF-8 were deprecated in C++20 when support for char8_t was added with the adoption
of [P0482R6] due to their use of char for UTF-8 encoded data. This paper proposes removing those facets from
the C++ Standard Library.

2 Revision History
R1: April 2024 (post-Tokyo mailing)

— Added Tom Honermann as coauthor
— Advanced to the next group for review: SG16 → LEWG
— Removed redundant subsection numbering from this section
— Revised the abstract and the “History” section

— Noted that deprecation was motivated by the introduction of char8_t
— Removed claims that deprecation was recommended by SG16; SG16 was formed after [P0482R6] was

approved by EWG and LEWG
— Modified the “History” section to include additional details regarding the motivation for deprecation and

the (incorrect) addition of char8_t-based replacements
— Added the “Deployment Experience” section with example code that would be expected to trigger a

deprecation warning and updated the current implementation status accordingly
— Tested when (or if) popular Standard Library implementations warn of deprecation
— Recorded initial review feedback, recommending removal, from SG16

— Added links to SG16 meeting summaries
— Revised wording

— Validated wording against the latest working draft, [N4971]
— Added Annex C wording
— Updated stable label cross-reference to C++23

— Applied editorial feedback

R0: May 2023 (pre-Varna mailing)
— Initial draft of this paper

2

3 Introduction
At the start of the C++23 cycle, [P2139R2] tried to review each deprecated feature of C++ to see which would
benefit us if actively removed and which might now be better undeprecated. Consolidating all this analysis into
one place was intended to ease the (L)EWG review process but in return gave the author so much feedback that
the next revision of the paper was not completed.

For the C++26 cycle, a much shorter paper, [P2863], will track the overall analysis, but for features that the
author wants to actively progress, a distinct paper will decouple progress from the larger paper so that the delays
on a single feature do not hold up progress on all.

This paper takes up the deprecated locale category facets for Unicode, D.24 [depr.locale.category].

4 History
The deprecated locale facets that convert to and from UTF-8 were added as part of the initial basic support
for Unicode types in C++11 by paper [N2238]. However, they were introduced with inconsistent behavior
relative to the corresponding wchar_t facet with respect to the encoding used for the char-typed side of the
conversion. The wchar_t specialization converts to and from the locale dependent multibyte encoding while
the (now deprecated) char16_t and char32_t facets convert to and from UTF-8. This behavior was an odd
choice, not just for consistency but because the specified behavior is not affected by the choice of locale. Further,
their addition was arguably unnecessary since the C++ Standard does not require support for streams of type
char16_t or char32_t. (A previous revision of [N2238], [N2035] had proposed adding support for such streams,
but that proposal was abandoned after the first revision based on LEWG feedback.)

At any rate, the result was two interfaces that associated different character encodings with type char. Prevention
of this kind of encoding confusion was part of the motivation for the addition of char8_t in [P0482R6]. That
paper deprecated these facets in favor of new ones that use char8_t for UTF-8.

Unfortunately, the [P0482R6] author failed to appreciate how the std::codecvt facets are actually intended
to be used. Within the C++ Standard, they are used only by std::basic_filebuf (31.10.3 [filebuf])
and the std::filesystem::path constructor that accepts an argument of type std::locale (31.12.6.5.1
[fs.path.construct]) and are used only to convert streams or sequences of wchar_t to the sequence of char
elements that are the contents or names of files. The new char8_t-based facets don’t actually function as
replacements because the existing use was fundamentally limited to use of (char-based) file streams and names.
Since the Standard doesn’t specify file streams of type char8_t, the newly added char8_t-based facets serve
no actual purpose. (std::filesystem::path uses an unspecified conversion method for char8_t, char16_t,
and char32_t; 31.12.6.3.2 [fs.path.type.cvt].) [LWG3767] now tracks their deprecation and future removal.

The status quo is thus as follows.

— The original addition of the deprecated facets was poorly motivated.
— The specified behavior of the deprecated facets is inconsistent and contrary to the purpose of such facets

to provide locale dependent behavior.
— The facets have been deprecated since C++20.
— If the Standard were to add support for streams of type char16_t or char32_t, the existing behavior

doesn’t match the desired behavior (to convert to a locale dependent encoding).

3

https://wg21.link/depr.locale.category
https://wg21.link/filebuf
https://wg21.link/fs.path.construct
https://wg21.link/fs.path.type.cvt

5 C++23 Feedback
5.1 Initial LEWGI review: Telecon 2020/07/13
Discussion was broadly in favor of removal from the C++23 specification and reliance on library vendors to
maintain source compatibility as long as needed. However, LEWGI explicitly requested the author to confer
with SG16 to determine if that study group is aware of any reason to further delay removing this deprecated
facility.

5.2 SG16 review: Telecon 2020/07/22
See https://github.com/sg16-unicode/sg16-meetings/blob/master/README-2020.md#july-22nd-2020.

SG16 is concerned that std::codecvt in general has poor error-handling facilities, especially when dealing with
encodings that may take multiple code units to express a code point and thus have more cause to report on
malformed inputs. The specific facets in D.24 [depr.locale.category] are an obstacle to putting a minimally useful
replacement into the Standard because they reserve the good names but have poor semantics. The usual safety
net of the zombie names clause does not apply since we will want code to fail to compile for at least one release to
thus introduce a replacement with the same names but more appropriate semantics. Concern was raised about
removing a feature deprecated only as recently as the current C++20 Standard.

Polling showed no consensus to recommend the removal for C++23 but no objection to that removal either.

5.3 LEWGI consensus
SG16 has no objection; remove this feature from C++23.

4

https://github.com/sg16-unicode/sg16-meetings/blob/master/README-2020.md#july-22nd-2020
https://wg21.link/depr.locale.category

6 Proposal
Remove deprecated locale category facets for Unicode from C++26.

6.1 Deployment experience
The following example suffices for a deprecation warning to be emitted from popular current implementations
when compiling in C++20 mode. See https://godbolt.org/z/5Yodo9KeW.
#include <locale>
struct user_codecvt_c16 : public std::codecvt<char16_t, char, std::mbstate_t> {};
struct user_codecvt_c32 : public std::codecvt<char32_t, char, std::mbstate_t> {};
struct user_codecvt_byname_c16 : public std::codecvt_byname<char16_t, char, std::mbstate_t> {};
struct user_codecvt_byname_c32 : public std::codecvt_byname<char32_t, char, std::mbstate_t> {};

— libc++: First warns in Clang 12 (released on 2021-04-14)
— libstdc++: Does not warn in the latest release
— MSVC: First warns with /W3 or higher in MSVC v19.22 (VS 2019 version 16.2.3 released on 2019-08-20);

does not warn by default or with /W2 or lower in the latest release

5

https://godbolt.org/z/5Yodo9KeW

7 C++26 Review
7.1 SG16 initial review: Telecon 2023/05/24
See https://github.com/sg16-unicode/sg16-meetings/blob/master/README-2023.md#may-24th-2023.

Tom Honermann explained the history and motivation behind the deprecation. SG16 then endorsed removing
these facets from C++26.

7.2 SG16 second review: Telecon 2023/10/25
See https://github.com/sg16-unicode/sg16-meetings/blob/master/README-2023.md#october-25th-2023.

The proposal was reviewed again in light of [LWG3767], which deprecates the equivalent facets that convert to
char8_t and were thought to be the intended replacement for the deprecated facets. We considered undeprecating
these original facets as their replacement had not worked out.

However, further discussion demonstrated that the whole notion of using these facets, which are supposed to
be locale dependent, to convert from one unicode encoding to another, using strict typing that ignores locale,
was flawed. It was also observed that we are missing the facet to convert from char8_t to char if we wanted to
continue maintaining these facets, and we do not want to be delving deeper.

There was a clear preference to remove these facets that are occupying the space in the library where a well
specified replacement should go; we do not feel comfortable proving a replacement in that space until at least
one Standard cycle has passed without these facets, minimizing the risk that code would silently change meaning
when users update to a future standard.

Note that all discussion is predicated on a future library proposal to support unicode types in iostreams, where
they are explicitly not supported today. Absent such a proposal, these facets serve no purpose, and are actively
harmful due to their poor semantics.

The recommendation remains to pursue this paper as proposed.

6

https://github.com/sg16-unicode/sg16-meetings/blob/master/README-2023.md#may-24th-2023
https://github.com/sg16-unicode/sg16-meetings/blob/master/README-2023.md#october-25th-2023

8 Wording
Make the following changes to the C++ Working Draft. All wording is relative to [N4971], the latest draft at
the time of writing.

8.1 No changes to zombie names
All the entities being struck are overloads of identifiers that retain their original meaning, so no new names need
to be added to 16.4.5.3.2 [zombie.names].

8.2 Add Annex C library wording
Add a new paragraph to C.1.7 [diff.cpp23.depr].

C.1.X Annex D: Compatibility features [diff.cpp23.depr]

Change: Remove std::codecvt locale facets that convert between char16_t or char32_t and char.

Rationale: The facets have been deprecated since C++ 2020 and have semantics that do not match their use
as a locale-specific character conversion facility since they are specified to always convert to and from UTF-8
rather than the locale-specific multibyte encoding. Additionally, the C++ standard does not require support for
streams of type char16_t or char32_t, so these locale facets need not be required by the C++ standard library.

Effect on original feature: A valid C++ 2023 program that uses any of the following template specializations
may become ill-formed:

— codecvt<char16_t, char, mbstate_t>,
— codecvt<char32_t, char, mbstate_t>,
— codecvt_byname<char16_t, char, mbstate_t>, or
— codecvt_byname<char32_t, char, mbstate_t>

8.3 Strike library wording from Annex D
D.24 [depr.locale.category] Deprecated locale category facets

1 The ctype locale category includes the following facets as if they were specified in Table 104 of 30.3.1.2.1
[locale.category].

codecvt<char16_t, char, mbstate_t>
codecvt<char32_t, char, mbstate_t>

2 The ctype locale category includes the following facets as if they were specified in Table 105 of 30.3.1.2.1 [lo-
cale.category].

codecvt_byname<char16_t, char, mbstate_t>
codecvt_byname<char32_t, char, mbstate_t>

3 The following class template specializations are required in addition to those specified in 30.4.2.5 [locale.codecvt].
The specialization codecvt<char16_t, char, mbstate_t> converts between the UTF-16 and UTF-8 encoding
forms, and the specialization codecvt<char32_t, char, mbstate_t> converts between the UTF-32 and UTF-8
encoding forms.

7

https://wg21.link/zombie.names
https://wg21.link/diff.cpp23.depr
https://wg21.link/depr.locale.category
https://wg21.link/locale.category
https://wg21.link/locale.category
https://wg21.link/locale.category
https://wg21.link/locale.codecvt

8.4 Update cross-reference for stable labels for C++23
Cross-references from ISO C++ 2023

All clause and subclause labels from ISO C++ 2023 (ISO/IEC 14882:2023, Programming Languages — C++)
are present in this document, with the exceptions described below.

container.gen.reqmts see
24.2.2 [container.requirements.general]

depr.arith.conv.enum removed
depr.codecvt.syn removed
depr.default.allocator removed
depr.locale.category removed
depr.locale.stdcvt removed
depr.locale.stdcvt.general removed
depr.locale.stdcvt.req removed
depr.res.on.required removed
depr.string.capacity removed

mismatch see 27.6.12 [alg.mismatch]

8

https://wg21.link/container.requirements.general
https://wg21.link/alg.mismatch

9 Acknowledgements
Thanks to Michael Park for the pandoc-based framework used to transform this document’s source from
Markdown.

Thanks to Lori Hughes for reviewing this paper and providing editorial feedback.

10 References
[LWG3767] Victor Zverovich. codecvt<charN_t, char8_t, mbstate_t> incorrectly added to locale.

https://wg21.link/lwg3767

[N2035] Matthew Austern. 2006-05-23. Minimal Unicode support for the standard library.
https://wg21.link/n2035

[N2238] Matthew Austern. 2007-04-17. Minimal Unicode support for the standard library (revision 3).
https://wg21.link/n2238

[N4971] Thomas Köppe. 2023-12-18. Working Draft, Programming Languages — C++.
https://wg21.link/n4971

[P0482R6] Tom Honermann. 2018-11-09. char8_t: A type for UTF-8 characters and strings (Revision 6).
https://wg21.link/p0482r6

[P2139R2] Alisdair Meredith. 2020-07-15. Reviewing Deprecated Facilities of C++20 for C++23.
https://wg21.link/p2139r2

[P2863] Alisdair Meredith. Review Annex D for C++26.
https://wg21.link/p2863

9

https://wg21.link/lwg3767
https://wg21.link/n2035
https://wg21.link/n2238
https://wg21.link/n4971
https://wg21.link/p0482r6
https://wg21.link/p2139r2
https://wg21.link/p2863

	Abstract
	Revision History
	R1: April 2024 (post-Tokyo mailing)r1-april-2024-post-tokyo-mailing
	R0: May 2023 (pre-Varna mailing)r0-may-2023-pre-varna-mailing

	Introduction
	History
	C++23 Feedback
	Initial LEWGI review: Telecon 2020/07/13
	SG16 review: Telecon 2020/07/22
	LEWGI consensus

	Proposal
	Deployment experience

	C++26 Review
	SG16 initial review: Telecon 2023/05/24
	SG16 second review: Telecon 2023/10/25

	Wording
	No changes to zombie names
	Add Annex C library wording
	Strike library wording from Annex D
	Update cross-reference for stable labels for C++23

	Acknowledgements
	References

