
constexpr structured bindings

and

references to constexpr variables
Document #: P2686R3
Date: 2024-02-15
Programming Language C++
Audience: EWG, CWG
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Brian Bi <bbi10@bloomberg.net>

Abstract

P1481R0 [2] proposed allowing references to constant expressions to be themselves con-
stant expressions, as a means to support constexpr structured bindings. This paper reports
implementation experience on this proposal and provides updated wording.

Revisions

Revision 3

CWG pointed out that the restrictions on volatile variables and mutable subobjects in the defi-
nition of “usable in constant expressions” have undesirable consequences. Those restrictions
have therefore been moved to [basic.def.odr]. An unintentional omission in R2 has also been
fixed: a local static constexpr reference shall not refer to a variable with automatic storage
duration. Examples have also been added to the wording section.

Following discussion in EWG and on the reflector, we have also refined our explanation for
why the proposed changes do not allow constexpr references declared inside lambdas to
bind to variables with automatic storage duration declared in an enclosing function.

Revision 2

We provide wording for option 3 (symbolic addressing), which is the direction chosen by EWG
in Varna. We also allow constinit structured bindings, mostly because we could not find a
good reason not to, and we think it’s best to avoid too many exceptions and inconsistencies.

Revision 1

After core expressed implementability concerns of the original design as it pertains to const-
expr references to automatic storage duration variables, we provide different options.

1

mailto:corentin.jabot@gmail.com
mailto:bbi10@bloomberg.net
https://wg21.link/P1481R0

Revision 0

Design and wording similar to that of P1481R0 [2].

Issues with R0 and possible solutions

The previous revision of this paper, (P2686R0 [1]), was approved by the EWG in Issaquah
and was subsequently reviewed by CWG, which found the proposed wording to be quite
insufficient.

No issue arises with allowing constexpr structured binding in general, except for the case of
an automatic storage duration structured binding initialized by a tuple, i.e.,

void f() {
constexpr auto [a] = std::tuple(1);
static_assert(a == 1);

}

which translates to

void f() {
constexpr auto __sb = std::tuple(1); // __sb has automatic storage scenario.
constexpr const int& a = get<0>(__sb);

}

When the structured binding is over an array or a class type, it doesn’t create actual references,
so we have no issue. When the structured binding is not at function scope, the underlying
tuple object has static storage duration, and its address is a permitted result of a constant
expression.

So the problematic case occurs when we are creating an automatic storage duration (i.e., at
block scope) structured binding of a tuple (or tuple-like) object. This specific situation, though,
is not uncommon.

The initial wording simply allowed references initialized by a constant expression to be usable
in constant expressions. This phrasing failed to observe that the address of a constexpr
variable with automatic storage duration may be different for each evaluation of a function
and, therefore, cannot be a permitted result of a constant expression.

The CWG asks that the EWG consider and pick one direction to resolve these concerns. Some
options are explored below.

Possible solutions

0. Allowing static and non-tuple constexpr structured binding

We should be clear that nothing prevents constexpr structured bindings from just working
when binding an aggregate or an array since those are modeled by special magic aliases that
are not quite references (which allows them to work with bitfields).

2

https://wg21.link/P1481R0
https://wg21.link/P2686R0

A constexpr structured binding of a tuple with static storage duration, i.e.,

static constexpr auto [a, b] = std::tuple{1, 2};

would also simply work as it would be equivalent to

static constexpr auto __t = std::tuple{1, 2};
static constexpr auto & a = std::get<0>(__t);
static constexpr auto & b = std::get<1>(__t);

Supporting this solution requires no further changes to the language than basically allowing
the compiler to parse and apply the constexpr specifier. Independently of the other solutions
presented here, this option would be useful and should be done.

The problematic scenario is an automatic storage duration binding to a tuple.

We could stop there, not try to solve this problem, and force users to use static. We would,
however, have to ensure that expansion statements work with static variables since that was
one of the motivations for this paper.

1. Making constexpr implicitly static

We could make constexpr variables implicitly static, but doing so would most certainly break
existing code, in addition to being inconsistent with the meaning of constexpr:

int f() {
constexpr struct S {

mutable int m ;
} s{0};
return ++s.m;

}

int main() {
assert(f() + f() == 2); // currently 2. Becomes 3 if 's' is made implicitly static

}

So this solution is impractical. We could make constexpr static only in some cases to alleviate
some of the breakages or even make only constexpr bindings static, not other variables, but
this option feels like a hack rather than an actual solution.

2. Always re-evaluate a call to get?

We could conceive that during constant evaluation, tuple structured bindings are replaced by
a call to get every time they are constant-evaluated. This would help with constexpr structured
binding but would still disallow generic cases:

constexpr in not_a_sb =1;
constexpr const int& a = sb;

Additionally, this would be observable in scenarios in which get would perform some kind of
compile-time i/o such as proposed by P2758R0 [4].

3

https://wg21.link/P2758R0

3. Symbolic addressing

The most promising option — the one we think should be pursued — is for constexpr refer-
ences to designate a specific object, rather than an address, and to retain that information
across constant evaluation contexts. This is how constant evaluation of references works,
but this information is not currently persisted across constant evaluation, which is why we
do not permit constexpr references to refer to objects with automatic storage duration (or
subobjects thereof).

To quote a discussion on the reflector:

This would also resolve a longstanding complaint that the following is in-
valid:

void f() {
constexpr int a = 1;
constexpr auto *p = &a;

}

It seems like a lot of C++ developers expect the declaration of p to be valid,
even though it’s potentially initialized to a different address each time f is
invoked.

This solution has the benefit of not being structured-binding specific and would arguably meet
user expectations better than the current rule. Interestingly andmaybe counter-intuitively, the
constexprness of pointers and references is completely orthogonal to that of their underlying
object:

int main() {
static int i = 0;
static constexpr int & r = i; // currently valid

int j = 0;
constexpr int & s = j; // could be valid under the "symbolic addressing" model

}

References can be constant expressions because we can track during constant evaluation
which objects they refer to, independently of whether the value of that object is or isn’t a
constant expression.

We would have to be careful about several things. Pointers and references to variables with
automatic storage duration cannot be used outside of the lifetime of their underlying objects,
so they could not appear

• in template arguments

• as the initializer of a variable with static storage duration

Similarly, we can construct an automatic storage duration constexpr reference to a static
variable but not a static constexpr reference bound to an automatic storage duration object.

4

https://lists.isocpp.org/core/2023/04/14163.php

Thread-local variables

Taking the address of a thread-local variable may initialize the variable, and that initialization
may not be a constant expression. Supporting references/pointers to thread-local variables
would therefore require additional consideration, and we would probably want to allow it
only if it were already initialized on declaration.

We could exclude thread locals from the design entirely as we’re not sure a compelling use
case exists for constexpr references to thread-local objects.

Lambdas that reference automatic storage duration objects from the enclosing
function

constexpr references are not ODR-used. Therefore, a constexpr reference used in a lambda
does not trigger a capture. This would be problematic for references bound to automatic
storage duration objects:

auto f() {
int i = 0;
constexpr const int & ref = i;
return [] {

return ref;
});

}
f();

The current rules never require odr-use of constexpr references because any use of a constexpr
reference can always be evaluated as if it were replaced by its initializer. However, in the
above example, such a transformation is not desirable since it would require i to be captured.
Instead, we need to modify [basic.def.odr]/p5.1 so that constexpr references to automatic
storage duration variables (or subobjects thereof) are ODR-used. In the above example, ref
therefore needs to be captured.

Because lambdas can name variables declared in an enclosing function, they also present
other questions about the scope of this proposal. During EWG review in Kona (November
2023), examples similar to the following were discussed:

auto f1() {
int i = 0;
constexpr const int & ref = i;
return [&] {

constexpr const int & ref2 = i;
return ref2;

}();
}
auto f2() {

int i = 0;
constexpr const int & ref = i;
return [&] {

constexpr const int & ref2 = i;
return ref2;

5

http://eel.is/c++draft/basic.def.odr#5.1

};
}

In such examples, the relationship between the lifetime of the reference and that of the
variable it refers to is not obvious, and we initially viewed this as a rationale to forbid such
examples. However, further discussion on the reflector revealed that there are currently two
different rules in the language that make the above examples ill-formed:

1. A constexpr reference may not refer to i because i has automatic storage duration. This
restriction is found in [expr.const]/p14 and it is the one that we propose to relax in order
to support constexpr structured bindings at block scope.

2. In a lambda-expression, any expression that names a variable with automatic storage
duration declared in an enclosing function and that odr-uses that variable is not a
constant expression. This restriction is found in [expr.const]/p5.13.

The second restriction follows from the fact that the use of an automatic variable from an
enclosing function has the same semantics as if it referred to a member of the closure type,
e.g.,

auto f1() {
int i = 0;
constexpr const int & ref = i;
class __lambda {

int& __i;
__lambda(int& i) : __i(i) {}
auto operator()() const {

constexpr const int & ref2 = *this.__i;
return ref2;

}
};
return __lambda(i)();

}
auto f2() {

int i = 0;
constexpr const int & ref = i;
class __lambda {

int& __i;
__lambda(int& i) : __i(i) {}
auto operator()() const {

constexpr const int & ref2 = *this.__i;
return ref2;

}
};
return __lambda(i);

}

In the above ””desugared lambdas””, the *this always refers to an object of type __lambda
whose lifetime begins before that of ref2. Consequently, [expr.const]/p9 applies: during the
checking of whether ref2’s initializer is a constant expression, *this is treated as referring to
an unspecified object, and so is *this.__i. Since P2280R4 [3], a reference to an unspecified

6

http://eel.is/c++draft/expr.const#14
http://eel.is/c++draft/expr.const#5.13
http://eel.is/c++draft/expr.const#9
https://wg21.link/P2280R4

object can participate in constant evaluation in limited ways, but cannot, of course, be the
final result of a constant expression.

In the desugared forms, it is clear why the ref2 cannot be constexpr in f1 and f2. In current
C++, the validity of a constexpr variable declaration (or any expression that is manifestly
constant-evaluated) cannot depend on a control flow analysis that determines all paths by
which that construct is reached; therefore, *this.__imust be rejected as the initializer of a
constexpr variable as it cannot be locally verified that it refers to an entity known at compile
time. We do not propose to introduce such control flow analysis to C++ as would be necessary
to lift the restrictions in [expr.const]/p9 and [expr.const]/p5.13.

Other cases that are not allowed

We also do not propose to make the following code well-formed:

int& foo(int x) { return x; }
int bar() {

constexpr int& r = foo(1);
}

On a callee-destroy implementation, the lvalue result of foo(1) is dangling because the
parameter object x is destroyed immediately after foo returns to its caller. On a caller-destroy
implementation, the parameter object x is not destroyed until after r is initialized. Therefore,
on a callee-destroy implementation, the initialization of r has undefined behavior and is, for
that reason, not a constant expression, while on a caller-destroy implementation, the only
reason why this code is currently ill-formed is that foo(1) does not have static storage duration.
Although we propose to allow constexpr references to refer to objects with automatic storage
duration, which includes parameter objects, we do not think it is desirable for the above code
to be well-formed only on caller-destroy implementations, as it would create a new portability
issue with no known upside. Therefore we propose the restriction that when the referent
of a constexpr reference has automatic storage duration, the referent must have the same
innermost enclosing function parameter scope as the reference.

Teachability of the relaxed restrictions

Concerns were raised on the reflector about how to explain the changes proposed by this
paper to the broader C++ community. In a few sentences, the changes could be explained as
follows:

You can now declare structured bindings constexpr. Because structured bindings
behave like references, constexpr structured bindings are subject to similar re-
strictions as constexpr references, and supporting this feature required relaxing
the previous rule that a constexpr reference must bind to a variable with static
storage duration. Now, constexpr references and structured bindings may also
bind to a variable with automatic storage duration, but only when that variable
has an address that is constant relative to the stack frame in which the reference
or structured binding lives.

7

For a C++ programmer who is curious about the rationale for the “constant relative to the
stack frame” restriction as it disallows a constexpr reference in a lambda from binding to a
local variable in an enclosing function, we suggest the following brief explanation:

In a lambda, when you refer to a local variable x from an enclosing function,
the compiler transforms that access into something like (*this).__x, where __x
represents the captured address of x. The expression (*this).__x is not a constant
expression because it isn’t known at compile time what object this points to.

Wording for Option 3a (symbolic addressingwith the same-function
restriction)

�? One-definition rule [basic.def.odr]

[Editor’s note: Modify p5 as follows:]

A variable is named by an expression if the expression is an id-expression that denotes it. A
variable x that is named by a potentially-evaluated expression E N that appears at a point P
is odr-used by E N unless N is an element of the set of potential results of an expression E,
where

• x is a reference that is usable in constant expressions [expr.const], or

• x is a variable of non-reference type that is usable in constant expressions and has no
mutable subobjects, andE is an element of the set of potential results of an expression of
non-volatile-qualified non-class type to which the lvalue-to-rvalue conversion [conv.lval]
is applied, or

• x is a variable of non-reference type, and E is an element of the set of potential results
of a discarded-value expression [expr.context] to which the lvalue-to-rvalue conversion
is not applied.

Drafting note: Ideally, x should be allowed to have mutable subobjects as long as we don’t
touch themutable parts of x. This would probably only require slightly more complex wording,
but isn’t in scope for this paper because the status quo also doesn’t allow it.

• x is a reference that is usable in constant expressions at P ,

• x is a non-volatile object that is usable in constant expressions at Pand has no mutable
subobjects, and E is a class member access expression ([expr.ref]) naming a non-static
data member of reference type,

• x is a non-volatile object that is usable in constant expressions at Pand has no mutable
subobjects, and the lvalue-to-rvalue conversion ([conv.lval]) is applied to E, or

• E is a discarded-value expression ([expr.context]) to which the lvalue-to-rvalue conver-
sion is not applied.

[Example:

8

int f(int);
int g(int&);
struct A {

int x;
};
struct B {

int& r;
};
int h(bool cond) {

constexpr A a = {1};
constexpr volatile A& r = a; // odr-uses a
int _ = f(cond ? a.x : r.x); // does not odr-use a or r
int x, y;
constexpr B b1 = {x}, b2 = {y}; // odr-uses x and y
int _ = g(cond ? b1.r : b2.r); // does not odr-use b1 or b2
int _ = (cond ? x : y), 0; // does not odr-use x or y
return [] {

return b1.r; // error: b1 is odr-used here because the object
// referred to by b1.r is not constexpr-referenceable
// here

};
}

—end example]

�? Static initialization [basic.start.static]

Drafting note: The constant initialization of a variable implicitly includes the constant initial-
ization of any temporary objects whose lifetimes are extended to that of the variable. All
references to constant initialization from elsewhere in the standard currently refer only to
variables with constant initialization. Removing the words ”or temporary object” from this
paragraph simplifies the wording elsewhere by avoiding the need to define when an object
(as opposed to variable) is constant-initialized.

[Editor’s note: Modify p2 as follows:]

Constant initialization is performed if a variable or temporary object with static or thread stor-
age duration is constant-initialized[expr.const]. If constant initialization is not performed, a
variablewith static storageduration[basic.stc.static] or thread storageduration[basic.stc.thread]
is zero-initialized[dcl.init]. Together, zero-initialization and constant initialization are called
static initialization; all other initialization is dynamic initialization. All static initialization strongly
happens before[intro.races] any dynamic initialization. [Note: The dynamic initialization
of non-block variables is described in [basic.start.dynamic]; that of static block variables is
described in [stmt.dcl]. —end note]

9

�? Constant expressions [expr.const]

Drafting note: P0784R7 [6] abolished the previous restriction that constexpr constructors of
non-literal class types may not be invoked during constant evaluation. The current wording of
[expr.const]/2 still contains a special exception that allows a variable to be considered constant-
initialized even though the initialization would invoke such a constructor; that wording is
unnecessary since P0784R7 [6] was accepted.

Drafting note: A structured binding is a named lvalue, but is not a reference in the non-tuple-
like cases; therefore, the current rules regarding references that are not usable in constant
expressions ([expr.const]/8) do not always apply to structured bindings. The intent of the
below wording is that structured bindings should be subject to the same restrictions during
constant evaluation that would apply if they were references.

Drafting note: The definition of ”constexpr-referenceable” below is written under the assump-
tion that temporary objects are considered to have the storage duration described in CWG1634
[5], namely, that a temporary object whose lifetime is extended inherits the storage duration
of the reference that is bound to it, and any other temproary object has a distinct storage
duration.

Certain contexts require expressions that satisfy additional requirements as detailed in this
subclause; other contexts have different semantics depending on whether or not an expres-
sion satisfies these requirements. Expressions that satisfy these requirements, assuming
that copy elision[class.copy.elision] is not performed, are called constant expressions. [Note:
Constant expressions can be evaluated during translation. —end note]

constant-expression:
conditional-expression

[Editor’s note: Insert a paragraph after p1:]

The constituent values of an object o are the value of o if it has scalar type and the values of any
of o’s subobjects of scalar type, other than inactive union members and subobjects thereof.
The constituent references of an object o are the non-static data members of reference type of
o and of any of o’s subobjects that are neither inactive union members nor subobjects thereof.

[Editor’s note: Insert a paragraph after p1:]

The constituent values and constituent references of a variable x are defined as follows:

• If xdeclares an object, the constituent values and references of that object are constituent
values and references of x.

• If x declares a reference, that reference is a constituent reference of x.

For any constituent reference r of a variable x, if r is bound to a temporary object or subobject
thereof whose lifetime is extended to that of r, the constituent values and references of that
temporary object are also constituent values and references of x. This rule applies recursively.

10

https://wg21.link/P0784R7
https://wg21.link/P0784R7
https://wg21.link/CWG1634

[Editor’s note: Insert a paragraph after p1:]

An object o is constexpr-referenceable from a point P if

• o has static storage duration, or

• o has automatic storage duration, and, letting v denote the variable corresponding to
o’s complete object, or the variable to whose lifetime that of o is extended, v’s smallest
enclosing non-block scope and P ’s smallest enclosing non-block scope are the same
function parameter scope.

[Example:

struct A {
int m;
const int& r;

};
void f() {

static int sx;
thread_local int tx;
int ax;
A aa = {1, 2};
static A sa = {3, 4};
// The objects sx, ax, and aa.m, sa.m, and
// the temporaries to which aa.r and sa.r are bound, are
// constexpr-referenceable.
auto lambda = [] {

int ay;
// The objects sx, sa.m, and ay, and the
// temporary to which sa.r is bound, are constexpr-referenceable.

};
}

—end example]

[Editor’s note: Insert a paragraph after p1:]

An object or reference x is constexpr-representable at a point P if, for each constituent value of
x that points to or past an object o, and for each constituent reference of x that refers to an
object o, o is constexpr-referenceable from P .

[Editor’s note: Modify p2 as follows:]

A variable or temporary object o v is constant-initialized if

• either it has an initializer or its default-initialization results in some initialization being
performed, and

• the full-expression of its initialization is a constant expression when interpreted as a
constant-expression , except that if o is an object, that full-expression may also invoke
constexpr constructors for o and its subobjects even if those objects are of non-literal
class types. [Note: Such a class can have a non-trivial destructor. Within this evaluation
std::is_constant_evaluated() [meta.const.eval] returns true. —end note] , and

11

• immediately after the initializing declaration of v, the object or reference declared by v
is constexpr-representable, and if v has static or thread storage duration, the object or
reference declared by v is constexpr-representable at a point that follows the initializing
declaration of v and whose immediate scope is a namespace scope.

[Example:

void f() {
int ax; // ax is not constant-initialized
thread_local int tx; // tx is constant-initialized
static int sx; // sx is constant-initialized
static int& rss = sx; // rss is constant-initialized
static int& rst = tx; // rst is not constant-initialized
static int& rsa = ax; // rsa is not constant-initialized
thread_local int& rts = sx; // rts is constant-initialized
thread_local int& rtt = tx; // rtt is not constant-initialized
thread_local int& rta = ax; // rta is not constant-initialized
int& ras = sx; // ras is constant-initialized
int& rat = tx; // rat is not constant-initialized
int& raa = ax; // raa is constant-initialized

}

—end example]

A variable is potentially-constant if it is constexpr or it has reference or non-volatile const-
qualified integral or enumeration type.

[Editor’s note: Modify p4 as follows:]

A constant-initialized potentially-constant variable V is usable in constant expressions at a point
P if V ’s initializing declaration D is reachable from P and

• V is constexpr,

• V is not initialized to a TU-local value, or

• P is in the same translation unit as D.

An object or reference x is usable in constant expressions at point P if it is

• a variable that is usable in constant expressions, or

• a template parameter object [temp.param] or subobject thereof, or

• a string literal object [lex.string] or subobject thereof, or

• a temporary object of non-volatile const-qualified literal type whose lifetime is extended
[class.temporary] to that of a variable that is usable in constant expressions, or

• a non-mutable subobject or reference member of any of the above.

• one of the following:

– a variable that is usable in constant expressions at P ,

12

– a temporary object of non-volatile const-qualified literal type whose lifetime is ex-
tended ([class.temporary]) to that of a variable that is usable in constant expressions
at P ,

– a non-mutable subobject of any of the above, or

– a reference member of any of the above

that is constexpr-representable at P .

[Example:

struct A {
int* const & r;

};
void f(int x) {

constexpr A a = {&x};
static_assert(a.r == &x); // OK
[&] {

static_assert(a.r != nullptr); // error: a.r is not usable in
// constant expressions at this point

}();
}

—end example]

[Editor’s note: Add after p8:]

For the purposes of determining whether an expression is a core constant expression, the
evaluation of an id-expression that names a structured binding v ([dcl.struct.bind]) has the
following semantics:

• If v is an lvalue referring to the object bound to an invented reference r, the behavior is
as if r were nominated.

• Otherwise, if v names an array member or class member, the behavior is that of evalu-
ating e[i] or e.m, respectively, where e is the name of the variable initialized from the
initializer of the structured binding declaration, and i is the index of the element referred
to or m is the name of the member referred to by v, respectively.

[Example:

#include <tuple>
struct A {

virtual int g() const;
};
void f(std::tuple<A&> a) {

auto [r] = a;
static_assert(r.g() >= 0); // error: dynamic type is constexpr-unknown

}

—end example]

[Editor’s note: Modify p13 as follows:]

13

A constant expression is either a glvalue core constant expression that refers to an entity that is
a permitted result of a constant expression (as defined below) an object or a non-immediate
function, or a prvalue core constant expression whose value satisfies the following constraints:

• if the value is an object of class type, each non-static data member of reference type
refers to an entity that is a permitted result of a constant expression,

• if the value is an object of scalar type, it does not have an indeterminate value[basic.in-
det],

• if the value is of pointer type, it contains the address of an object with static storage
duration, the address past the end of such an object[expr.add], the address of a non-
immediate function, or a null pointer value,

• if the value is of pointer-to-member-function type, it does not designate an immediate
function, and

• if the value is an object of class or array type, each subobject satisfies these constraints
for the value.

• each constituent reference refers to an object or a non-immediate function,

• no constituent value of scalar type is an indeterminate value ([basic.indet]),

• no constituent value of pointer type is a pointer to an immediate function or an invalid
pointer value ([basic.compound]), and

• no constituent value of pointer-to-member type designates an immediate function.

An entity is a permitted result of a constant expression if it is an object with static storage
duration that either is not a temporary object or is a temporary object whose value satisfies
the above constraints, or if it is a non-immediate function. [Note: A glvalue core constant
expression that either refers to or points to an unspecified object is not a constant expression.
—end note]

�? Declarations [dcl.dcl]

�? Preamble [dcl.pre]

[Editor’s note: Change p6 as follows:]

A simple-declarationwith an identifier-list is called a structured binding declaration [dcl.struct.bind].
Each decl-specifier in the decl-specifier-seq shall be constexpr, constinit, static, thread_local,
auto [dcl.spec.auto], or a cv-qualifier. [Example:

template<class T> concept C = true;
C auto [x, y] = std::pair{1, 2}; // error: constrained placeholder-type-specifier
// not permitted for structured bindings

—end example]

14

�? Structured binding declarations [dcl.struct.bind]

[Editor’s note: Change p1 as follows:]

A structured binding declaration introduces the identifiers v0, v1, v2, . . . of the identifier-list
as names of structured bindings. Let cv denote the cv-qualifiers in the decl-specifier-seq and S
consist of the storage-class-specifiers of the decl-specifier-seq (if any) each decl-specifier of the
decl-specifier-seq that is constexpr, constinit, or a storage-class-specifier . A cv that includes
volatile is deprecated; see [depr.volatile.type]. First, a variable with a unique name e is in-
troduced. If the assignment-expression in the initializer has array type cv1 A and no ref-qualifier is
present, e is definedby attribute-specifier-seqopt S cv A e ;

and each element is copy-initialized or direct-initialized from the corresponding element of
the assignment-expression as specified by the form of the initializer. Otherwise, e is defined as-
if by attribute-specifier-seqopt decl-specifier-seq ref-qualifieropt e initializer ;

where the declaration is never interpreted as a function declaration and the parts of the
declaration other than the declarator-id are taken from the corresponding structured binding
declaration. The type of the id-expression e is called E. [Note: E is never a reference type
[expr.prop]. —end note]

If the initializer refers to one of the names introduced by the structured binding declaration,
the program is ill-formed.

If E is an array type with element type T, the number of elements in the identifier-list shall
be equal to the number of elements of E. Each vi is the name of an lvalue that refers to the
element i of the array and whose type is T; the referenced type is T. [Note: The top-level
cv-qualifiers of T are cv. —end note] [Example:

auto f() -> int(&)[2];
auto [x, y] = f(); // x and y refer to elements in a copy of the array

return value
auto& [xr, yr] = f(); // xr and yr refer to elements in the array referred

to by f's return value

—end example]

�? The constexpr and consteval specifiers [dcl.constexpr]

[Editor’s note: Change p1 as follows:]

The constexpr specifier shall be applied only to the definition of a variable or variable template,
a structured binding declaration, or the declaration of a function or function template. The
consteval specifier shall be applied only to the declaration of a function or function template.
A function or static datamember declared with the constexpr or consteval specifier is implicitly
an inline function or variable [dcl.inline]. If any declaration of a function or function template
has a constexpr or consteval specifier, then all its declarations shall contain the same specifier.

[...]

15

[Editor’s note: Modify p6 as follows:]

A constexpr specifier used in an object declaration declares the object as const. Such an
object shall have literal type and shall be initialized. In any constexpr variable declara-
tion, the full-expression of the initialization shall be a constant expression [expr.const]. A
constexpr variable that is an object, as well as any temporary to which a constexpr reference
is bound, shall have constant destruction. Let x denote the object or reference declared
by the declaration of a constexpr variable v. Immediately after the initializing declaration of
v, x shall be constexpr-representable. If x has static or thread storage duration, x shall be
constexpr-representable at a point following the initializingdeclarationof vwhose immediate
scope is a namespace scope.

[Example:

struct pixel {
int x, y;

};
constexpr pixel ur = { 1294, 1024 }; // OK
constexpr pixel origin; // error: initializer missing

namespace N {
void f() {

int x;
constexpr int& ar = x; // OK
static constexpr int& sr = x; // error: x is not

// constexpr-representable at the point
// indicated below

}
// immediate scope here is that of N
}

—end example]

�? The constinit specifier [dcl.constexpr]

Drafting note: Unlike in [dcl.constexpr], we don’t need an explicit rule about the object or
reference being constexpr-representable in this section, because the restriction added to
[expr.const]/2 will cause the variable to have dynamic initialization if the object or reference is
not constexpr-representable.

[Editor’s note: Modify p1 as follows:]

The constinit specifier shall be applied only to a declaration of a variable with static or thread
storage duration or to a structured binding declaration ([dcl.struct.bind]). If the specifier is
applied to any declaration of a variable, it shall be applied to the initializing declaration. No
diagnostic is required if no constinit declaration is reachable at the point of the initializing
declaration.

16

�? Template non-type arguments [temp.arg.nontype]

[Editor’s note: Modify [temp.arg.nontype]/p1 as follows:]

A template-argument for a non-type template-parameter with declared type T shall be such
that the invented declaration

T x = template-argument ;

satisfies the semantic constraints for the definition of a constexpr variable with static storage
duration [dcl.constexpr]. If the type T of a template-parameter [temp.param] contains a place-
holder type ([dcl.spec.auto]) or a placeholder for a deduced class type ([dcl.type.class.deduct]),
the type of the parameter is the type deduced for the variable x in the invented declaration
deduced from the above declaration.

T x = template-argument ;

If a deduced parameter type If the parameter type thus deduced is not permitted for a
template-parameter declaration [temp.param], the program is ill-formed.

[Editor’s note: Add after [temp.arg.nontype]/p6:]

[Example:

template <int& r> class A;
extern int x;
A<x> a; // OK
void f(int p) {

constexpr int& r = p; // OK
A<r> a; // error: a static constexpr int& variable

// cannot be initialized to refer to p here
}

—end example]

Feature test macros

[Editor’s note: In [tab:cpp.predefined.ft], bump __cpp_structured_bindings to the date of
adoption] .

Acknowledgments

We would like to thank Bloomberg for sponsoring this work. Thanks to Nina Dinka Ranns,
Pablo Halpern, and Joshua Berne for their feedback.

Thanks to Richard Smith for the original discussion of possible solutions on the Core reflector,
for helping us understand the interaction of this feature with lambda expressions, and for
feedback on the wording.

Thanks to Nicolas Lesser for the original work on P1481R0 [2].

17

https://wg21.link/P1481R0

Thanks to Daisy Hollman for input on the issue of lambdas that reference variables from their
enclosing functions.

Thanks to JF Bastien for encouraging us to clarify the interaction of this feature with lambda
expressions.

References

[1] Corentin Jabot. P2686R0: Updated wording and implementation experience for p1481
(constexpr structured bindings). https://wg21.link/p2686r0, 10 2022.

[2] Nicolas Lesser. P1481R0: constexpr structured bindings. https://wg21.link/p1481r0, 1
2019.

[3] Barry Revzin. P2280R4: Using unknown references in constant expressions. https://wg21.
link/p2280r4, 4 2022.

[4] Barry Revzin. P2758R0: Emitting messages at compile time. https://wg21.link/p2758r0, 1
2023.

[5] Richard Smith. CWG1634: Temporary storage duration. https://wg21.link/cwg1634, 3
2013.

[6] Daveed Vandevoorde, Peter Dimov, Louis Dionne, Nina Ranns, Richard Smith, and Daveed
Vandevoorde. P0784R7: More constexpr containers. https://wg21.link/p0784r7, 7 2019.

[N4885] Thomas Köppe Working Draft, Standard for Programming Language C++
https://wg21.link/N4885

18

https://wg21.link/p2686r0
https://wg21.link/p1481r0
https://wg21.link/p2280r4
https://wg21.link/p2280r4
https://wg21.link/p2758r0
https://wg21.link/cwg1634
https://wg21.link/p0784r7
https://wg21.link/N4885

	1 Abstract
	2 Revisions
	2.1 Revision 3
	2.2 Revision 2
	2.3 Revision 1
	2.4 Revision 0

	3 Issues with R0 and possible solutions
	4 Possible solutions
	4.1 0. Allowing static and non-tuple constexpr structured binding
	4.2 1. Making constexpr implicitly static
	4.3 2. Always re-evaluate a call to get?
	4.4 3. Symbolic addressing
	4.5 Thread-local variables
	4.6 Lambdas that reference automatic storage duration objects from the enclosing function
	4.7 Other cases that are not allowed
	4.8 Teachability of the relaxed restrictions

	5 Wording for Option 3a (symbolic addressing with the same-function restriction)
	6 One-definition rule
	6.0.1 Static initialization

	7 Constant expressions
	8 Declarations
	8.1 Preamble

	9 Structured binding declarations
	9.1 The constexpr and consteval specifiers
	9.2 The constinit specifier
	9.3 Template non-type arguments

	10 Feature test macros
	11 Acknowledgments
	12 References

