
Document Number: P0609R2 

Date: 2023-11-27 

Author: Aaron Ballman <aaron@aaronballman.com> 

Audience: Evolution Working Group 

Attributes for Structured Bindings 
Revision History 

R0 
• Original proposal 

R1 
• Updated motivation 

R2 
• Rebased proposed wording onto latest standard, added more motivation 

Motivation 
We added the ability to write structured binding declarations in C++17. The optional attribute-specifier-

seq in such a declaration appertains to the hidden variable declared by the structured binding 

declaration. Despite the variable being hidden, this is still useful functionality (for instance, it allows the 

programmer to specify the alignment of the structured binding declaration itself, which may allow for 

useful compiler optimizations when loading from an array). 

However, there is no way to specify attributes that appertain to the individual structured bindings. It is 

desirable to allow vendor-specific attributes to appertain to these bindings for attributes that would 

otherwise appertain to variables to enable better diagnostics, especially through static analysis. For 

instance, some implementations support thread-safety attributes (guarded_by, et al) which denote 

that a variable requires a particular locking primitive to be held before accessing the variable. Other 

implementations support an annotation which denotes that an object with an array of char or pointer 

to char type does not necessarily contain a terminating null character (nonstring). Given the 

prevalence of vendor-specific attributes, it is likely that other motivating use cases currently exist. 

I propose to allow optional attributes for each of the introduced structured bindings, as in this example: 

auto g() { 

  auto [a, b [[vendor::attribute]], c] = f(); 

  return a + c; 

} 

While this may generate an overabundance of square brackets in a declaration, the syntax is consistent 

with our other treatments of attributes in declarations. 

This proposal was seen by EWG at the November 2022 meeting in Kona where it was polled to forward 

to CWG pending potential updates to existing attributes and to ensure there is not a conflict with the 

syntax for structured binding packs in P1061. 

https://wg21.link/p1061


There should be no conflict with P1061 as the two grammars can be unified in a straightforward manner 

and the semantics of an attribute on a structured binding pack should fall out naturally.  

I investigated the existing standard attributes to see which ones, if any, should be changed to allow 

them to be applied to a structured binding. assume, carries_dependency, fallthrough, likely, 

unlikely, nodiscard, noreturn, and no_unique_address cannot sensibly apply to a structured 

binding because they do not apply to anything variable-like. It was questionable as to whether an 

alignment specifier or the deprecated attribute would make sense on a structured binding, so those 

were left for further exploration. The only standard attribute that had clear utility on a structured 

binding was maybe_unused. 

Proposed Wording 
Modify [dcl.pre]p1: 

... 
attributed-identifier: 
 identifier attribute-specifier-seqopt 
 
attributed-identifier-list: 
 attributed-identifier 
 attributed-identifier-list , attributed-identifier 

 
simple-declaration: 
 decl-specifier-seq init-declarator-listopt ; 

 attribute-specifier-seq decl-specifier-seq init-declarator-list ; 

 attribute-specifier-seqopt decl-specifier-seq ref-qualifieropt [ attributed-identifier-list ] initializer ; 

... 
 

Modify [dcl.pre]p6: 

A simple-declaration with an attributed-identifier-list is called a structured binding declaration. … 

Modify [dcl.struct.bind]p1: 

A structured binding declaration introduces the identifiers v0, v1, v2, ... of the attributed-identifier-list as 

names of structured bindings. The optional attribute-specifier-seq of an attributed-identifier from the 

attributed-identifier-list appertains to the introduced structured binding. … 

Modify [dcl.struct.bind]p3: 

If E is an array type with element type T, the number of elements in the attributed-identifier-list shall be 

equal to the number of elements of E. ... 

Modify [dcl.struct.bind]p4: 

Otherwise, if the qualified-id std::tuple_size<E> names a complete class type with a member named 

value, the expression std::tuple_size<E>::value shall be a well-formed integral constant expression and 

the number of elements in the attributed-identifier-list shall be equal to the value of that expression. ... 

Modify [dcl.struct.bind]p5: 



Otherwise, all of E's non-static data members shall be direct members of E or of the same base class of 

E, well-formed when named as e.name in the context of the structured binding, E shall not have an 

anonymous union member, and the number of elements in the attributed-identifier-list shall be equal to 

the number of non-static data members of E. … 

Modify [dcl.attr.unused]p2: 

The attribute may be applied to the declaration of a class, a typedef-name, a variable (including a 

structured binding declaration), a structured binding, a non-static data member, a function, an 

enumeration, or an enumerator. 

Acknowledgements 
Thanks to Richard Smith and Jens Maurer for reviewing this paper, and to Corentin Jabot for presenting 

it on my behalf. 


