
Stroustrup C++ exceptions and alternatives P1947 

1 
 

Doc. No. P1947 
Date: 2019-11-18 

Audience: EWG and LEWG 
Reply to: Bjarne Stroustrup (bs@ms.com) 

C++ exceptions and alternatives 
Bjarne Stroustrup 

Abstract 
Exceptions are necessary, as are error codes. This paper discusses problems, costs, and risks involved in 
replacing C++ exceptions with alternatives (e.g., so-called “deterministic exceptions”). It recommends 
against adding new error-handling mechanisms to C++. It encourages careful studies of improved error-
handling styles and techniques. It encourages study of potential improvements in the implementation of 
(existing) C++ exceptions. 

The “deterministic exception” proposals tease us with hopes of healing the schism in the C++ 
community caused by needs for no-exception compiler options and even of finally healing the C/C++ 
schism. To many, massive efficiency improvements seem easily obtainable. Others see a promise of 
safer and more readable code. Unfortunately, those great hopes are most unlikely to become fulfilled. 
Yet-another error-handling mechanism/style will fracture the community further because the existing 
mechanisms and styles won’t disapear, efficiency improvements will be patchy and not benefit 
anywhere near all users, the work on new mechanisms will delay much-needed work on optimization of 
existing facilities and on novel other features. Even the promise of “determinism” will be only partially 
met. 

I don’t refer to specifics of proposals (e.g., [Sutter] and [Douglas]). I don’t think the time for language 
details has come; maybe it will never come. I think the whole direction is wrong. We should focus on 
improving the C++ exceptions and on using them well. 

Introduction 
This is a negative paper because it opposes proposals without suggesting specific improvements or 
novel alternatives. I hate writing such; it does not seem constructive, but novel features can do harm. 
Fundamentally, the burden of proof is on the proposers. Here, I outline some of that burden. In the case 
of “deterministic exceptions” and other suggested alternatives to C++ exceptions, I don’t think that 
burden is remotely met. It is natural to be enthusiastic about a new proposal and – especially in 
presentations – to emphasize its strength, but in the context of a standards proposal equal weight, or 
more, should be placed on the evaluation of disadvantages and potential problems. First do no harm! 
The C++ exceptions are not perfect – that was known from the onset and very few major language 
features are perfect – but over decades exceptions have served millions of people well in the ways that 
they were designed to do. They still do. 

Overselling alternative error-handling schemes can do harm by raising unrealistic hopes and by scaring 
people away from reasonable uses of C++ exceptions (and RAII) and from C++ itself by overemphasizing 
their negatives. 



Stroustrup C++ exceptions and alternatives P1947 

2 
 

History 
The origins of exception handling lie in the problems experienced managing a variety of error-handling 
approaches, such as C’s errno, error-states, callbacks, return codes, and return objects. In addition, it 
was observed that there were no really good approaches to reporting errors detected in constructors 
and in operators. 

I and others were very aware of the literature on exceptions and error handling stretching back to 
Goodenough’s pioneering work. Before exceptions were adopted into C++, many standards meetings 
had sessions devoted to the topic and industry experts from outside the committee were consulted. 
Implementation alternatives were examined, and ideals were articulated. A relatively brief description 
can be found in D&E. 

The integration of exception handling with constructor/destructor resource managements in the form of 
RAII is one of the major achievements of C++ –  still not fully appreciated by people relying on error-code 
based error handling. 

Error codes and exceptions 
There have always been applications for which the use of exceptions was unsuitable. Examples 
Include 
 

• Systems where the memory is so limited that the run-time support needed for 
exception handling crowds out needed application functionality. 

• Hard-real time systems where the tool chains cannot guarantee prompt response after a 
throw. That is not an inherent language problem. 

• Systems relying on multiple unreliable computers so that immediate crash-and-restart is 
a reasonable (and almost necessary) way of dealing with errors that cannot be handled 
locally. 
 

Consequently, most C++ implementations always had a no-exceptions switch. On the other 
hand, there are problems for which error codes provide no good solution: 
 

• Constructor failures – there is no return value (except the constructed object itself). 
Pure RAII must then be replaced by explicit checks on an object’s state plus some 
handler code; e.g., Gadget g {args}; if (!g.valid()) handle_construction_error(g);  

• Operators – there is no place to return an error indicator from an operator, e.g., from 
++, *, or ->. You will have to use non-local error indicators or live with an impoverished 
notation, e.g., multiply(add(a,b),c) rather than (a+b)*c. 

• Callbacks – where the function using the callback should be able to invoke functions 
with a wide variety of possible errors (often, callbacks are lambdas). 

• Non-C++ code – there is no way to propagate an error-code through a function that is 
not C++ and hasn’t been written specifically to deal with error codes. 



Stroustrup C++ exceptions and alternatives P1947 

3 
 

• People forgetting to test a return code – there are clever schemes to try to ensure that 
error-codes are checked consistently, but they are either incomplete or rely on 
exceptions or termination once a failure to check is detected. 

The zero-overhead principle 
It has been repeatedly stated that C++ exceptions violate the zero-overhead principle. This was 
of course discussed at the time of the exception design. Unsurprisingly, the answer depends on 
how you interpret the zero-overhead principle. For example, a virtual function call is slower 
than an “ordinary” function call and involves memory for a vtbl. It is obviously not zero-
overhead compared to a simple function call. However, if you want to do run-time selection 
among an open set of alternatives the vtbl approach is close to optimal. Zero-overhead is not 
zero-cost; it is zero-overhead compared to roughly equivalent functionality. 
 
Similarly, the exception mechanism was compared to alternatives in a program that needed to 
catch all errors and then either recover or terminate. 
 

• A program that responds to any error that cannot be handled locally by some form of 
immediate termination (e.g., reporting to another computer and going into a safe state) 
was considered outside the scope of the exception mechanism. And thus, not a 
violation. 

• Schemes that consider an exception throw as just an alternative return path was 
considered different: not C++ exception handling. For simple alternative return values, 
error codes were considered the answer. Thus, simply demonstrating that a throw is 
slower than a return does not demonstrate a violation. 

• The kind of comparison that was considered fair was between consistently using error 
codes and using exceptions for rare (exceptional) errors. In that case, the performance 
comparison was between an exception handling scheme (table based or otherwise) and 
a systematic combinations of error codes (e.g., (error-code, value) pairs) and their 
testing. 

• The use of inheritance to represent clusters of open sets of exceptions is not overhead 
when you need clustering of an open set of values. Unfortunately, the later provision of 
the standard-library exception hierarchy encouraged consistent use of full RTTI. This 
may be a violation, but that use wasn’t anticipated (I was against the exception class 
hierarchy and my early examples passed and caught simple class objects whenever 
clustering wasn’t needed). It is possible to optimize the handling of exceptions that are 
not clusters. 
 

Exceptions may not be the best example of the zero-overhead principle, but they are not in 
obvious violation. 

There has been little serious research on the topics of performance of exceptions and reliability 
of the resulting code in C++. There are, however, many small unscientific studies and lots of 
loudly expressed opinions – often claiming exceptions to be inherently slower than various 



Stroustrup C++ exceptions and alternatives P1947 

4 
 

forms of checking of error-codes. That is not my experience. To the best of my knowledge, no 
half-way serious study has failed to observe that there are realistic examples where error codes 
win big and realistic examples where exceptions win big. In this context, “big” means integer 
factors, rather than a few percent. 

Run a simple performance test: go N levels deep into a call sequence and then report an error. 
If the error is rare, say 1:1000 or 1:10000 and the call nesting is deep, say 100 or 1000, 
exception handling is much faster than explicit tests. If the call depth is 1 and the error happens 
50% of the time, explicit tests win big. My naive, but potentially useful, question is “how rare 
must an error be to be considered exceptional?” Unfortunately, the answer is “that depends.” 
It depends on the complexity of the code, the hardware, the optimizer, the implementation of 
exception handling, and more. C++ exceptions were designed assuming an answer at least in 
the 1:100 region. In other words, that propagation of error indicators is far more common than 
explicit handling. The space problem is likely to be harder to solve than the run-time problem. 
For systems relying on termination, I could imagine an implementation simply terminating on a 
throw but if errors are to be propagated and handled, the tradeoff difficulties won’t go away. 

Exceptions have been observed to speed up critical code by eliminating repeated test and by 
shortening the critical path. Exceptions have been successfully used in systems with low-latency 
constraints and real-time constraints. Not all exception performance stories are negative. 

The N+1 problem 
Whatever solution we come up with won’t make the old solutions go away. Even errno is still with us 
after 47 years. We’ll still have errc, the standard-library exception hierarchy, various error-code 
solutions (including expected and outcome), pair used to indicate error state, nullptr, and iterator pairs. 
These are not all standard, but those and more (including Microsoft’s “structured exceptions”) are 
widespread and actively promoted. Adding any solution will add one more technique to the language 
and/or library. It will add implementation complexity (if it is an ISO standard or in a platform standard) 
and users will have one more alternative to consider when using other people’s code and writing their 
own. 

C++ exceptions came from such a simplification/unification effort when the world was far simpler and 
less diverse. Today, a unification of error-handling approaches seem even less likely to succeed. 

Why don’t all people use exceptions? 
Even people who theoretically could have used exceptions didn’t for a variety of reasons: 

• Some people could not use exceptions because their code already was a large 
irreparable mess of unprincipled pointer use. Quite often, such people directed their 
critique toward exceptions rather than their old code. 

• Some people (many) simply didn’t understand or even didn’t know of RAII and used 
exceptions as merely as an alternative return mechanism mirroring the use of error-
return codes. Typically, code using try-catch as a form of if-then is uglier, larger, and 
slower than proper use of error codes or RAII.  



Stroustrup C++ exceptions and alternatives P1947 

5 
 

• Some people started using exceptions by littering their code with try-blocks (e.g., 
inspired by Java). This leads to ugly, hard-to maintain code. For example, clean-up using 
try { … } catch { … throw; } can be 50-to-70 times slower than placing the clean-up code 
in a destructor. 

• Many implementations of exceptions were slow because implementers generalized to 
handle other kinds of exceptions (e.g., Microsoft’s “structured exceptions”), prioritized 
debugging (e.g., GCC walks the stack twice after a throw to preserve backtraces), used a 
single mechanism to serve a variety of languages (equally badly), or simply didn’t 
expend much development effort on optimization. 

• Exception handling have become relatively slower over the years because significant 
efforts have been spent optimizing non-exception cases. I suspect there are significant 
optimization opportunities left for C++ exception handling. For example, Gor Nishanov 
reported up to 1000 times speed improvements for some simple optimizations related 
to coroutine implementations on Windows and Linux [Nishanov]. Significant space 
improvements will likely be harder to achieve, though. 

• Catching an exception is done by specifying the type of exception to be caught. As a 
result, the implementations of throw and catch got entangled with the mechanism for 
runtime type information (RTTI). This caused inefficiencies and complexity. In particular, 
it caused memory to be consumed (by the data needed for RTTI) even if an application 
never relied on RTTI for distinguishing exceptions and precluded optimization for simple 
cases. Furthermore, relying on RTTI made it hard to optimize the type matching where 
dynamic linking was used. Basically, exception handling implementations were tuned for 
the rare most complicated case. This was made worse when the exception class-
hierarchy was added to the standard-library and people were encouraged to use that for 
even the simplest cases. 

• The fact that exceptions are part of the platform ABIs makes it very hard to change early 
overdesigned implementations. 

• Some people insist that only a single method of error handling be used and usually 
concludes that since exceptions are not suitable for every case, that method must be 
error-codes. The problems with error codes (e.g., forgetting to test and writing 
handlers) are then deemed “just inconveniences.” 

• Some people simply believed the persistent rumors of inefficiencies based on worst-
case scenarios and/or unrealistic comparisons, such as leaving error-code handling in 
place after adding exceptions, comparing incomplete error-handling to exception-based 
handling, or using exceptions to handle ordinary choices rather than for handling errors 
that cannot be handled locally. There has been far too little serious investigation into 
the cost of exception and its alternatives. I suspect that the myths about exceptions 
have had more influence than any fact. 
 

Most of these problems will persist with an N+1 solution (or more likely N+m solutions) as 
multiple competing error-handling proposals are being worked on. 



Stroustrup C++ exceptions and alternatives P1947 

6 
 

“Deterministic exceptions” and error codes 
“Deterministic exceptions” are a formalization of the use of error codes. The obvious implementation is 
turning a return value of type X into a pair {error_code,X} possibly optimized into  an equivalent to 
variant<error_code,X>. The need for “formalization” comes partly from the need to optimize and partly 
to automate error propagation (up the call stack). I assume that every “deterministic exception” scheme 
will implicitly call destructors during propagation. Otherwise, RAII would be lost. 

Pure error-code schemes require an explicit test for each function call, leading to the error-code hell 
known from languages such as Go. I see the main value of “deterministic exception” formalization as 
helping to avoid that. 

Both “deterministic exceptions” (as proposed) and pure error-code schemes differ from C++ exceptions 
by being opt-in. I consider it impractical to change the massive amount of existing code depending on 
implicit propagation of exceptions. Also, many people (me included) consider implicit propagation to be 
the ideal. 

At least part of the discussion of C++ exceptions and “deterministic exceptions” is based on a confusion 
between the definition of exception handling mechanisms and their implementation. 

Costs 
When considering error handling, three run-time costs must be considered 

• Error propagation costs: the cost of getting an error indication from one scope into some 
enclosing scope where it can be handled. 

• Error recognition costs: the cost of recognizing an error indication as relevant (to be handled, 
rather than to be propagated) 

• Error identification costs: the cost of passing information related to the error along with the 
error indicator to a handler (e.g., a string or a list of problems to be addressed). 

These costs typically involve both data and code, both time and space. 

Run-time costs are not the only significant costs. We must also consider: 

• Code complexity (probability of logic errors and lost optimization opportunities) 
• Danger of errors not getting caught (cost of crashes) 

Too often, discussions about exceptions have focused exclusively on performance and sometimes 
exclusively on performance of highly tuned code. 

Exception handling 
C++ exception handling is usually implemented using a table lookup based on the program counter to 
find exception handlers during stack rollback. Alternative schemes based on “markers” in stack frames 
(allowing an implementation to distinguish between normal return actions and exceptional returns) 
were tried early on, but their performance was deemed inferior and could be used only where C-
language stack frames were handled compatibly. 

I think that the current implementations of C++ exception handling are sub-optimal from a performance 
standpoint and could be improved: 



Stroustrup C++ exceptions and alternatives P1947 

7 
 

• GCC always (even in optimized modes) walks the stack twice to provide better debug support. 
• Implementations use complete RTTI implementations to do type matching (ostensibly to 

simplify use of dynamic linking). 
• Cross-function optimizations of exception handling are still rare. 
• Special-purpose stack-unwinding and type-matching algorithms are not used for systems with 

special requirements (e.g., with no dynamic linking or tight memories). 
• Some exception handling mechanisms cater for generalizations and alternatives not mandated 

by the standard. 
• There seem to be no optimization of the original case of passing and catching simple exceptions 

by value. Given final, we can know that a given exception type isn’t the root of a hierarchy. 
• Use of the general free store for all exception objects, rather than pre-allocated memory for 

common and important exceptions as anticipated in the original design. 

One reason for the relative poverty of optimizations seems to be that since exceptions were considered 
slow there seemed no reason to optimize them. Thus, exception handling is now relatively slower than it 
was in the 1990s. Other kinds of code have been significantly optimized since then. 

As an example of a missed opportunity, I can mention the Chinese-remainder fast constant-time type 
matching algorithm that I published in 2005 [Gibbs]. For closed systems and relatively small class 
hierarchies (as are increasingly common in embedded systems), this eliminates almost all of the type 
matching cost. 

It may also be the case that the table-based implementation approach is sub-optimal for tiny memories 
compared to error-code/stack-marking implementation approaches. The possibility of special-purpose 
implementations of exception handling for special-purpose systems ought to be explored. The 
Edinburgh experiments [Renwick] are encouraging for this direction of exploration. 

Unfortunately, significant improvements are likely to be ABI breaking, but that is likely to be less trouble 
than breaking the basic model of error handling. 

Error-codes 
Consider a “deterministic exception” throwing function 

 X f() throws { … return x; } 

 X void g() … { … X xx = f(); … return xx; } 

Here, assuming the kind of implementation that has been most prominent in the discussions, a pair 
{error_code,X} must be returned from f(). That pair must be unpacked for xx to be accessed and either 
handled in g() or repacked and passed on as the result of g(). This packing and unpacking will complicate 
return-value optimizations (and could increase register pressure) and the testing could be costly. We 
need a good estimate of that cost in time and space. 

If f() and g() are part of a long call chain from a caller that knows what to do about the exception to the 
point where the exception was detected, the packing, unpacking, and testing could be rather expensive 
even when no exception is thrown. This was one reason all implementations of C++ exceptions 
eventually ended up being table-based after some early implementations had relied on marking stack 



Stroustrup C++ exceptions and alternatives P1947 

8 
 

frames. We could imagine optimizations, but such inter-procedural optimization would equally apply to 
C++ exceptions. 

“Deterministic exceptions” are likely to inject conditional execution paths into expressions where you 
might not expect them (and where the alternatives are out-of-line for C++ exceptions). For example, 
consider a+b*c for matrices where + and * might throw. 

Unless the “deterministic exception” is immediately handled in g() after the return from f(), destructors 
must be executed on the exceptional return path. Consider 

 X void g() … { string s; … X x1 = f(); vector<Gadget> vg;  X xx = f(); … return xx; } 

This implies that instead of the table-lookup implementation of destructor calls for C++ exceptions, we 
get a rat’s nest of conditional branches.  The cost of destructor calls is a major part of the non-
determinism of C++ exceptions that bothers hard-real time users. From this point of view,  
“deterministic exceptions” are ill named (as people could mistakenly believe that their cost would be 
easier to estimate than the cost of C++ exceptions). The tools that we miss for estimating the run-time 
cost of exception propagation will also be needed for “deterministic exceptions.” Similarly, we need 
solid estimates of the cost of the code space for conditions compare to the data space consumed by 
tables. 

We have generally assumed that a “deterministic exception” can be represented by a single word or 
even a single bit. In either case, additional information will often be needed to be passed along (e.g., a 
message string or a list of actions to-be-taken). This was the observation that led to throwing objects, 
rather than integer values. 

We could pack many different values into a single word. This leads to the need to avoid value clashes 
(e.g., is exception 4731 unique in the system?). It also leads to off-stack storage of exception state, such 
as strings (as in the standard-library exception hierarchy) and linked list of traces. This can be costly and 
involve allocation. People would also have to choose between off-stack storage of large exception 
objects and copying such objects during exception propagation. This has happened to the error-code 
based error-handling mechanisms in Go (https://blog.golang.org/go1.13-errors). 

The representation of clusters of exceptions, such as the standard exception hierarchy would either 
have to be non-general (not shared among different libraries) or added as a standard-library “bolt-on” 
on the side of the “deterministic exception” mechanism. 

C++ exceptions and deterministic exceptions 
Assume that we have some variant of the “deterministic exception” idea. The C++ exceptions won’t go 
away, so an implementation will need to cope with both and combinations of both. 

Consider a call 

 void f() throws { … g() … } 

If g() may throw a C++ exception and f() throws a “deterministic exception” we could 



Stroustrup C++ exceptions and alternatives P1947 

9 
 

1. Ban the call of g(). This makes “deterministic exceptions” viral in that every function called by a 
function throwing one must be converted from using C++ exceptions. I don’t consider that 
viable.  

2. Convert an exception thrown by g() into a “deterministic exception” to be returned by f(). This 
implies the cost of conversion code unless the compiler can prove that g() never throws. That 
might be expensive – adding to the cost of both “deterministic exceptions” and C++ exceptions. 

3. Require the call of g() to be annotated in some way (say by a try) so that we know that we need 
to convert an exception. This places the burden of determining whether g() can throw on the 
programmer. If the programmer is responsible and wrong (fails to label a call that throws with 
try) we get some form of UB. That would be unacceptable. If the use of try is mandated by the 
type system, we are back in case [1] with added syntactic noise. If not, we are back in case [2]. 

4. Just propagate the exception as usual (ignoring the “deterministic exception” specification). This 
makes the “deterministic exception” specification untrustworthy. I don’t consider that viable. 

We have a similar case if g() can throw “deterministic exceptions” and f() can report errors by C++ 
exceptions. Again, we must carry an exception conversion cost. 

We badly need solid estimates of such conversion costs.  

Also, we need strategies for using C++ exceptions and deterministic exceptions in larger systems that 
use both (e.g., because they use two libraries that use different kinds of exception handling). We also 
need to consider systems that also use error codes and conversion strategies that might work at scale. 

Consider a callback 

 X f(Callback g) … { X x = init; … x=g() … return x; } 

We have three alternatives for error-reporting from f() and three from g(): 

• C++ exceptions 
• “deterministic exceptions” 
• noexcept 

The callback can be a function object (e.g., a lambda) or a pointer to function. 

This is a bit of a puzzle 

• If g() can return a “deterministic exception” we have to unpack and test before assigning to x. 
• If g() can return through a C++ exception we automatically bypass the assignment to x 

Unless we constrain the type of g(), we need to handle both cases. For a utility function, constraining the 
type of g() would mean the need to overload to handle all cases. In both cases, we need to percolate the 
exception appropriately, yielding 4 or 9 cases (depending whether you count noexcept), For a simple 
pointer to function, this implies overhead. 

If, as seems to be assumed, “deterministic exceptions” are to be incorporated into the type system (as 
noexcept unfortunately was), it is not obvious how to relate the alternatives to each other. Consider: 

• int (*p)(int) // may throw C++ exception 
• int (*)(int) throws 



Stroustrup C++ exceptions and alternatives P1947 

10 
 

• int (*)(int) nothrow 

How do we write code using the alternatives if they are distinct. The same problem emerges with 
lambdas. 

In considering the “deterministic exceptions” and their interactions with C++ exceptions, I fear “the 
mother of all ABI breakages.” 

Visibility 
One of the reasons for introducing exceptions was to allow users to separate “ordinary code” 
from “error handling code.” The fact that exception propagation paths are invisible was (and is 
by many, including me) seen as a feature. For both code hygiene and performance reasons, I 
intensely dislike having my code littered with checks for unlikely (exceptional) errors. Consider: 

void user () 
{ 

vector<string> v {" hello "}; 
for (string s; cin >>s; ) 

v. push_back (s); 
  v[3] += " odd"; 

auto ps = make_unique <Shape>( read_shape ( cin )); 
Smiley_face face {Point{0 ,0} ,20}; 
// ... 

} 
 

This example is artificial, but stylistically not atypical. The user() function offers many opportunities for 
unlikely errors: memory exhaustion, read errors, range errors, construction failures (e.g., deep in the 
hierarchy of Smiley_face). In addition, the use of a unique_ptr<Shape> protects against a memory leak. 
If we used explicit error-codes instead of exceptions, we would need at least seven error-checks in this 
function, doubling the amount of source code, plus a few more checks inside the various constructors. 
Without RAII (and its integration with exceptions) the code would bloat further still. On average, more 
code implies more errors. This point is often underappreciated by people who argue from small 
examples. For such small examples, “just one test” doesn’t matter much and is relatively hard to forget. 

There is a school of thought that many of such tests can be eliminated through the use of preconditions: 
let the caller make sure that the input is correct and suffer undefined behavior if the user gets it wrong. 
For most cases, I consider that infeasible. Users make too many mistakes. 

On the other hand, some errors should be expected and for those checks of some form of error code is 
preferred: 

ifstream f {"Myfile"}; 
if (!f) { 

// ... deal with error ... 
} 
// ... use f ... 



Stroustrup C++ exceptions and alternatives P1947 

11 
 

 
Here, the error-code is hidden inside the stream state for ease of use. 

There is a special case that deserves attention as an optimization opportunity. Often, for generality, a 
library must throw to enable multi-level propagation, but in many cases a user knows that failure is 
likely and checks. For example: 

try { 
 p = new X[a_lot]; 
} 
catch (bad_alloc) { 
 p = new X[a_few]; 
} 

 
And 
 
 try { 
  X x; 
  // … do something if x constructs correctly … 
 } 
 catch (Bad_X) { 
  // … do something else … 

} 
 
The common case often can be (and today sometimes is) optimized to a simple condition. If 
programmers could rely on that, interfaces could be simplified by relying more on exceptions. For 
example, dual-interfaces approaches like the one used in <filesystem> might be unnecessary. I actually 
like the filesystem’s dual interfaces because a user can often decide whether a call is likely to lead to an 
error, but not all interfaces have that property. 
 

Memory exhaustion 
It has been suggested that memory exhaustion as reported by bad_alloc should be considered separate, 
and not as an exception. That’s tempting, because memory exhaustion is the ultimate unpredictable 
event, and in many applications vanishingly rare. However, there are many 

• cases where a new fails (throwing an exception) but a program can manage without the as 
much memory as requested or the exact memory requested  

• programs that may not fail (for any reason but hard hardware failure) so that exceptions are be 
turned into something like “log and system reinitialize.” 

A general-purpose library cannot know which is the case for a program in which it is used. This is the 
main reason that WG21 decided that new should throw. 

What cannot be done is unconditional termination. These use cases were prominent when we decided 
on using bad_alloc exceptions. At a CppCon’19 session, a suggestion for unconditional termination after 
memory exhaustion was met with about 10 concrete counter examples from current systems. 



Stroustrup C++ exceptions and alternatives P1947 

12 
 

Some examples of network failure are logically very similar to new failure; bad_alloc isn’t unique. In 
particular, any library that may suffer rare (exceptional) errors has to deal with problems logically similar 
to failure of new (e.g., a function that depends on network access). It is reasonable to consider whether 
the handling of new failure and logically similar exception could be optimized (e.g., but using final 
exception classes). 

Kernel Code 
It is often asserted that exceptions cannot be used in kernel code (and similarly constrained code). The 
absence of exception use is then sometimes used as an argument for exceptions being unsuitable, 
dangerous, and/or slow. However, not using exceptions in a kernel is a historical/political decision (many 
kernels were started before C++ was a viable choice as a kernel implementation language), not a 
fundamental technical problem. C++ exceptions have been successfully used in kernel code, yielding 
benefits compared to the conventional error-code styles. [Gylfason]. 

Concerns 
In addition, I have some general, rather than language-technical, concerns. 

There are more to exceptions than performance 
The current discussion of exceptions (error handling) tend to focus on performance. However, error 
handling is a prime software engineering topic. I recommend a greater focus  

• on notation (e.g., use of operator overloading) 
• on the role of constructors, destructors, and RAII 
• on the effects on readability from littering the code with tests and “annotations”  
• on the guarantees offered (e.g., the guarantee that every error reported is handled) 
• on the complexity and cost of passing information about an error up the call chain 

In particular, test cases used for performance measurements should not be restricted to relatively small 
fragments of high-performance code involving only built-in types. 

Complexity and mission creep 
A novel feature always looks simpler than an older one. This is often because the problems with the 
older feature are well known and have been addressed, often with less elegant “patches” to address 
compatibility and interoperability problems. 

Typically, a “clean” novel facility increases significantly in complexity, implementation costs, and 
possibly even in overhead as it works its way through the standards process and the process of 
integrating it into the various tool chains. 

I think there is good reason to believe that this will happen to “deterministic exceptions.” The area of 
the language, the standard library, and the problems of use are so central and delicate that it is hard to 
imagine otherwise. 

C/C++ compatibility 
There is a long tradition of C and C++ being only “almost compatible” despite strenuous efforts by many 
people (including me) to eliminate as many incompatibilities as possible. However, the wish for 



Stroustrup C++ exceptions and alternatives P1947 

13 
 

complete compatibility isn’t completely universal. Even if it was, two committees with different 
memberships, working on different working papers and with different delivery schedules are unlikely to 
come up with completely compatible solution at first try. In particular, I worry that the C++ needs for 
compatibility with existing exception-handling mechanisms and for support of destructors could lead to 
novel incompatibilities, rather than the hoped-for increase in compatibility. Early shipping or accepting a 
C implementation that didn’t address C++ problems could do long-term damage to C++. 

Conclusion 
We don’t have a viable alternative to C++ exceptions. We do have opportunities for improved 
optimization and use. If those optimizations of the implementation of C++ exceptions are ABI breaking, 
they should still be considered in preference to language changes. 

We are not sufficiently certain of the general approach of “deterministic exceptions” to decide on a 
direction. In the “deterministic exceptions” direction, we risk a bad case of “patching patches to patches 
to … .” Gradual extension based on experience is manageable only where we have a firm view of 
direction. 

We don’t have sufficiently good data for a serious discussion of real-world overheads. 

Caveat 
The burden of proof of value and the proof of minimal harm is on the proposers of something new. 
Demonstrating flaws in the status quo or in a defense of status quo is not sufficient and can be a mere 
distraction. A solution to “your local problem” (for your company or your industry) isn’t necessarily a 
solution for the global C++ community. 

Acknowledgements 
Thanks to all who took part in the reflector discussion prompted by a draft of this paper. Some issues 
raised there were beyond the scope of this paper. 

References 
1. Herb Sutter: Zero-overhead deterministic exceptions: Throwing values. http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2019/p0709r4.pdf. 
2. Niall Douglas: SG14 status_code and standard error object for P0709 Zero-overhead 

deterministic exceptions.  http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2019/p1028r2.pdf. 

3. Gor Nishanov: C++ Exception Optimizations. An experiment.  http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2019/p1676r0.pdf. 

4. James Renwick et al: Low-Cost Deterministic C++ Exceptions for Embedded Systems. 
https://www.research.ed.ac.uk/portal/files/78829292/low_cost_deterministic_C_exceptions_fo
r_embedded_systems.pdf. Proc 28th International Conference on Compiler Construction 
(CC2019). 

5. Michael Gibbs and Bjarne Stroustrup: Fast Dynamic Casting. 
http://www.stroustrup.com/fast_dynamic_casting.pdf. Software - Practice & Experience. Vol 35, 
Issue 12. 2005 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0709r4.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0709r4.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1028r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1028r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1676r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1676r0.pdf
https://www.research.ed.ac.uk/portal/files/78829292/low_cost_deterministic_C_exceptions_for_embedded_systems.pdf
https://www.research.ed.ac.uk/portal/files/78829292/low_cost_deterministic_C_exceptions_for_embedded_systems.pdf
http://www.stroustrup.com/fast_dynamic_casting.pdf


Stroustrup C++ exceptions and alternatives P1947 

14 
 

6. Damien Neil and Jonathan Amsterdam: Working with Errors in Go 1.13. 
https://blog.golang.org/go1.13-errors. 17 October 2019. 

7. Halldór Ísak Gylfason and Gísli Hjálmtýsson: Exceptional Kernel – Using C++ exceptions 
in the Linux kernel. 

 

https://blog.golang.org/go1.13-errors.%2017%20October%202019

	C++ exceptions and alternatives
	Bjarne Stroustrup

	Abstract
	Introduction
	History
	Error codes and exceptions
	The zero-overhead principle
	The N+1 problem
	Why don’t all people use exceptions?

	“Deterministic exceptions” and error codes
	Costs
	Exception handling
	Error-codes
	C++ exceptions and deterministic exceptions

	Visibility
	Memory exhaustion
	Kernel Code
	Concerns
	There are more to exceptions than performance
	Complexity and mission creep
	C/C++ compatibility

	Conclusion
	Caveat
	Acknowledgements
	References

