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There might not be an elegant OOTA fix 
“The three rules of the Librarians of Time and Space are: 1) Silence; 2) Books must be returned 
no later than the last date shown; and 3) Do not interfere with the nature of causality.” - “Guards! 
Guards!”, Terry Pratchett 

Introduction 
Here’s one way of thinking about why the out-of-thin-air problem is tricky to resolve: we want 
additional constraints on the concurrent part of the memory model, but the desire for those 
constraints is motivated by the dependency ordering established during execution of the 
non-concurrent parts of the program on real hardware. So we want sequential code to maintain 
a(n implicit) memory ordering constraint on concurrent code. The problem of outlawing OOTA, 
then, is about defining which sequential dependencies the compiler is not allowed to optimize 
away. 
 
Much recent OOTA work has focused on abstracting out the sequential parts of a program 
behind some relatively comprehensible mathematical formalism that distinguishes which 
syntactic dependencies are true semantic dependencies and which are false (for instance: this 
is done with event structures in the modular relaxed dependencies paper). The reasoning goes: 
“this subset of dependencies are true semantics ones, and so the compiler must maintain them 
in the generated code; thus, regardless of how clever the sequential optimizations are, they 
must leave an ordering constraint in place”. 
 
These approaches have worked well (in the sense of matching both our intuitions and 
implementations) in small litmus tests, and can distinguish between the OOTA examples that 
everyone agrees can’t and shouldn’t ever occur, and the RFUB-like ones that real compilers 
may allow. 
 
I don’t think these solutions can scale up to the whole language, though. Litmus tests largely 
ignore undefined behavior and non-concurrent sources of nondeterminism. We’ll look at cases 
where a compiler optimization can take an obviously-bad-OOTA example and counterintuitively 
remove the ordering constraint when a very slight tweak is applied to the surrounding code. Any 
OOTA fix must therefore either disallow a large class of sequential optimizations, or else must 
mathematically model most of C++'s quirks. 
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Undefined behavior can eliminate dependencies 
Consider the following program: 
 

std​::atomic<​int​> x{​0​}, y{​0​}; 
int​ r1, r2; 
 

void​ ​t1​() { 
  r1 = x.load(memory_order_relaxed); ​// A 
  ​int​ local = (r1 & ​1​); 
  ​if​ (local == ​0​) { 
    y.store(​1​, memory_order_relaxed); ​// B 
  } 

 

void​ ​t2​() { 
  r2 = y.load(memory_order_relaxed); ​// C 
  x.store(r2, memory_order_relaxed); ​// D 
} 

 
In the memory model as it exists today, this program must terminate with r1 == 0. Any other 
outcome would require a reads-from edge from D to A, where D stores a nonzero value. Then 
r2 must be nonzero, and so there’s a reads-from edge from some store to C, which could only 
come from B. But in any execution consistent with the intra-thread semantics, if r1 is nonzero 
then B never executes, so there is no candidate store to y. (On the reflector, I claimed that 
disallowing the r1 == 0 outcome relied on the standard’s current informal recommendation 
against OOTA. Mark Batty pointed out that this was incorrect, and r1 == 0 is required, not just 
suggested). 
 
However, consider this slightly tweaked version of t1: 
 

// UB if this function is ever called. 

[[noreturn]] 

inline​ ​void​ ​unreachable​() { 
  ​return​; 
} 

void​ ​t1​() { 
  r1 = x.load(std::memory_order_relaxed); 

  ​int​ local = (r1 & ​1​); 
  ​if​ (local == ​0​) { 
    y.store(​1​, std::memory_order_relaxed); 

 



  } 

  ​if​ (local != ​0​) { 
    // If we get here, UB. 

    unreachable(); 

  } 

} 

 
On recent versions of GCC and clang, this is compiled to something like the following  on ARM, 1

a weakly ordered architecture: 
 

t1(): 

adrp x0, .LANCHOR0 

add x0, x0, :lo12:.LANCHOR0 

ldr w1, [x0] 

str w1, [x0, ​4​] 
add x0, x0, ​8 
mov w1, ​1 
str w1, [x0] 

ret 

 
The dependency between the load and the store has been eliminated, and the outcomes 
disallowed above may occur here. 
 
Is this a miscompilation? I don’t think you can come to a firm conclusion just by reading the text 
of the standard. It does a good job describing UB that originates solely from the (axiomatically 
defined) concurrent semantics, and a more-or-less adequate job describing UB that originates 
solely from the (operationally defined) single-threaded semantics, but does not really cover how 
they might interact. 
 
Regardless of whether or not this compilation *is* broken, you can construct arguments both 
ways as to whether or not it *should be*. 
 
The argument for preventing reordering: The outcome is extremely surprising, and not exhibited 
on any underlying hardware memory models. We have no way of knowing if these sorts of 
examples appear in practice. In a large program, across unbounded inlining, they may manifest 
in surprising ways. 
 
The argument for allowing reordering: the optimizer benefits (or may benefit) from removing the 
branches. These optimization benefits are real and measurable. Programmers in the real world 

1 ​https://gcc.godbolt.org/z/4vNQQs 
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don’t actually employ the sort of reasoning we used above, and don’t produce programs that 
require it. ​De minimis non curat lex​. 
 
I have considerable sympathy for the arguments in both directions. I want to highlight a 
reasonable-at-first-glance argument that I don’t think stands up to scrutiny, though: 
 

“This reordering should be allowed. Undefined behavior can do anything; it may 
well replace ​unreachable()​ with ​y.store(​1​, std::memory_order_relaxed)​. 
Once it does that, then both branches of the conditional are the same, and the 
example devolves into one that everyone agrees is a fake dependency”: 

if​ (local == ​0​) { 
  y.store(​1​, ​std​::memory_order_relaxed); 
} ​else​ { 
  y.store(​1​, ​std​::memory_order_relaxed); 
} 

 
I think that if you buy this argument, consistency demands that you buy a similar one about the 
following example: 
 

std​::atomic<​int​*> x{​nullptr​}, y{​nullptr​}; 
std​::atomic<​bool​> misbehave{​false​}; 
void​ ​t1​() { 
  ​int​* ptr = ​new​ ​int​; 
  x.store(ptr, ​std​::memory_order_release); 
} 

void​ ​t2​() { 
  ​int​* ptr = x.load(​std​::memory_order_acquire); 
  y.store(ptr, ​std​::memory_order_release); 
} 

void​ ​t3​() { 
  ​int​* ptr = y.load(​std​::memory_order_acquire); 
  ​if​ (ptr != ​nullptr​) { 
    *ptr = ​1​; 
  } 

} 

void​ ​t4​() { 
  ​if​ (misbehave.load(​std​::memory_order_relaxed)) { 
    unreachable(); ​// Defined as above. 
  } 

} 

 

 



“If t3 obtains an invalid pointer, then its dereference of that pointer is UB. That UB 
may cause a relaxed store of ​true​ to ​misbehave​. The call to ​unreachable() 
may in turn be treated as a relaxed store of a garbage pointer value to ​x​. This 
can result in reads-from and happens-before relations that satisfy all consistency 
predicates and obey the single-threaded semantics; this program therefore has 
UB and no guarantees are imposed on its execution.” 

 
But this is awful; it’s the second-simplest example of release-acquire semantics that there is, 
mixed with a thread that touches no shared state and does nothing. For the language to mean 
anything, this program has to run as intended and without the possibility of UB. 
 
This example used a particularly simple type of UB, in a way that might make it seem like this 
issue is restricted to simple “conditional-branch-to-UB means the condition was false” scenarios. 
But there are others: 

- Type-based alias analysis: An equality comparison between two pointers-to-void may be 
removed if each is dereferenced after casting to incompatible types. 

- Lifetime rules: an equality comparison between pointers A and B may be removed if A is 
dereferenced after B is passed to ​free​()​. 

- Const qualification: An equality comparison between pointers A and B may be removed 
if A is known to point to an object declared as const, and *B is modified. 

- Integer overflow: A comparison to INT_MAX can be removed if the integer is 
subsequently incremented. 

Guarantees might be provided arbitrarily 
Consider this function: 
 

std​::atomic<​long long​> x; 
std​::atomic<​int​> y; 
 

void​ ​t1​() { 
  ​long long ​r1 = x.load(​std​::memory_order_relaxed); 
  ​if​ (r1 % ​4​ == ​0​) { 
    y.store(​1​, ​std​::memory_order_relaxed); 
  } 

} 

 
I think it will be mostly unobjectionable that a clean OOTA fix should establish some sort of 
ordering between the load and the store. 
 

std​::atomic<​long long​> x; 

 



std​::atomic<​int​> y; 
template​ <​typename​ T> 
void​ ​t1​() { 
  ​long long​ r1 = x.load(​std​::memory_order_relaxed); 
  ​if​ (r1 % ​4​ == ​0​) { 
    y.store(​1​, ​std​::memory_order_relaxed); 
  } 

  *(T*)r1 = *(T*)r1; 

} 

 
Here though, I don’t know that we can get an unconditional guarantee. The implementation may 
infer from the load that ​r1​ must be as aligned as ​alignof​(T)​. So in this case, ​t1<​char​>​ and 
t1<​short​>​ might establish some sort of OOTA-preventing ordering between the load and store, 
while ​t1<​int​>​ would not (assuming reasonable values for the relevant alignments). This is ugly, 
but I’m not sure it’s preventable without invalidating single-threaded optimizations (note that in 
general the atomic operations might occur someplace the compiler can’t see, while the control 
dependency elimination relies only on non-atomic operations). 
 
As described so far, this is the same issue as in the previous section; an unaligned pointer 
dereference is UB, so the compiler infers that the (pre-casted) pointer value must be properly 
aligned, and so eliminates the check. But, what if instead of ​r1 % ​4​, we had ​r1 % (​2​ * 
alignof​(T))​? The pointer dereference doesn’t (as a language rule) require *over*alignment. 
But imagine that, for some type ​T​, the compiler can prove that it sees all the places where a ​T 
object is constructed (say, because ​T​ is local to a particular function). Based on some black-box 
optimization heuristic, it decides that it would prefer to always overalign ​T​ objects, and to rely on 
that over-alignment when accessing them (perhaps it determines that some member of ​T​ could 
benefit from using SIMD instructions). It’s perfectly valid to do so, and, having overaligned all its 
T​ objects, it’s valid for it to generate code that assumes overalignment. The check could then be 
eliminated, and no amount of static or dynamic work could inform the programmer whether the 
ordering that seems present genuinely is. 

What might an inelegant fix look like? 
These issues have obvious similarities to those we’ve seen with ​memory_order_consume​. 
P0750 suggested fixing those with a class that explicitly tracks dependencies. This works even 
more straightforwardly for an OOTA fix, which does not need to concern itself with minimizing 
syntactic overheads for pointer chasing. 
 
Once we reify the notion of a dependency, we can ban cycles in ​rf U sb​ in which the store has 
a dependency passed from the load. We can also add a fence type taking a dependency as an 

 



argument, which bans the cycles in ​rf U sb​ where both a load and a fence taking its 
dependency from that load participate in the cycle: 
 

std​::atomic<​int​> x, y; 
 

void​ ​f​() { 
  ​std​::atomic_dependency d; 
  ​int​ r1 = x.load(​std​::memory_order_relaxed, d); 
  ​int​ r2 = r1 ^ r1; ​// A syntactic but not a semantic dependency. 
  ​int​ r3 = r1 + ​1​; ​// A true dependency, both syntactic and semantic. 
  ​if​ (r2 == ​0​) { 
    ​// OOTA outcomes allowed 
    y.store(​1​, ​std​::memory_order_relaxed); 
  } 

  ​if​ (r3 == ​0​) { 
    ​// OOTA outcomes allowed, despite the true dependency. We can still 
    ​// keep the current informal recommendation, though. 
    y.store(​1​, ​std​::memory_order_relaxed); 
  } 

  ​if​ (r2 == ​0​) { 
    y.store(​1​, ​std​::memory_order_relaxed, d); ​// No OOTA. 
  } 

  ​if​ (r2 == ​0​) { 
    ​std​::atomic_dependency_fence(d); 
    y.store(​1​, ​std​::memory_order_relaxed); ​// No OOTA. 
  } 

} 

 
In this phrasing, the implementation of ​memory_order_load_store​ is a 
relaxed-load-with-dependency followed by a dependency fence. Explicitly tracking the 
dependencies would be more optimizable, but also more verbose, than making every relaxed 
operation ​memory_order_load_store​. 

 


