

C++ Exception Optimizations. An experiment.
Document Number: P 1676 R0 Date: 2019-06-04

Reply-to: Gor Nishanov (gorn@microsoft.com) Audience: EWG

Abstract
This paper reports a positive experience in developing optimizations that look for several C++ exceptions throw

and catch patterns and replace exception machinery with regular control flow.

While the original motivation for exploring optimization of these patterns was that they frequently occur in

coroutines, these optimizations may be beneficial for other application categories and more optimizations of

this kind can be developed if this approach proves profitable.

Contents
1 Introduction ...1

2 Catch and rethrow optimization ...2

3 Propagate exception pointer optimization ...3

4 Simple throw and catch optimization ...4

5 Complications ..4

6 Scope Guard interactions ..5

7 Further Simpifications ...6

8 Acknowledgements ...6

9 Bibliography ...6

10 Appendix ..6

1 Introduction
There are few C++ exceptions related optimization in modern compilers. One common optimization is to dis-

cover which functions cannot throw at all and propagate that information through a call graph, eliminate excep-

tion handling in the functions that will not ever see an exception. This paper looks at another set of cases where

functions do throw and optimizations transform the code either by completely replacing EH machinery with reg-

ular control flow or replace a costlier mechanism such as catch(…) and rethrow with less expensive un-

wind/cleanup logic.

There are several language features, specifically “throw;”, “std::current_exception()” and “std::uncaught_excep-

tions()”, that interact with the described optimizations. We will start with a simple case where optimizer can ob-

serve that no calls to those facilities is made on the optimized code path and cover the details of handling the

tricky cases in the “Complications” section.

mailto:gorn@microsoft.com

p1676r0 С++ Exception Optimizations. An experiment 2

2 Catch and rethrow optimization
Functions that do not have a try-catch and rely on destructors to do the cleanup when the exception is thrown

have less overhead during exception propagation that functions that do have a catch and rethrow. This makes it

profitable to perform this transformation:

Before After1
{
 SomeType someVar;
 try {
 may_throw();
 } catch (...) {
 payload();
 throw;
 }
}

{
 SomeType someVar;
 auto _= std::make_scope_fail([]{
 payload();
 });
 may_throw();
}

This results in 55x speedup on Windows amd64 and 70x speed up on Linux amd64 for synthetic benchmark that

runs an inexpensive cleanup (an increment of a variable). Most of the measured cost is the exception handling.

This pattern occurs after inlining in synchronous generator coroutines that allow an exception to propagate to

the user of the generator whenever he/she pulls the next value. It is profitable to run this optimization if a func-

tion is a coroutine.

1 Here we expressed pushing the payload on a cleanup path as if we used a scope guard facility from [P0052]. Actual optimi-
zation obviously does not use a scope guard and only manipulates the intermediate representation so that the effect of
unwind from that point would be to call the payload().

360 20000

0 5000 10000 15000 20000 25000

1

Windows: Unwind time in
nanoseconds

catch'n'throw unwind

15 1030

0 500 1000 1500

1

Linux: Unwind time
in nanoseconds

rethrow'n'catch copy-construct

p1676r0 С++ Exception Optimizations. An experiment 3

3 Propagate exception pointer optimization
Another pattern that occurs after inlining in the async code dealing with futures, promises and/or asynchronous

coroutines is rethrowing an exception from exception_ptr, catching it with catch(…) and storing the same excep-

tion elsewhere. This makes it profitable to perform this transformation:

Before After

 try {
 SomeType someVar;
 std::rethrow_exception(src);
 } catch (...) {
 dst = std::current_exception();
 }

{
 SomeType someVar;2
}

dst = src;3

This results in 70x speedup on Linux amd64 for synthetic benchmark that runs an inexpensive cleanup (an incre-

ment of a variable). Most of the measured cost is the exception handling.

More general form of this optimization is as follows:

Before After

 try {
 SomeType someVar;
 may_throw();
 std::rethrow_exception(src);
 } catch (...) {
 dst = std::current_exception();
 }
 …

 try {
 SomeType someVar;
 may_throw();
 goto save_eptr;
 } catch (...) {
 dst = std::current_exception();
 }
 goto save_bypass;

save_eptr: dst = src;
save_bypass:
…

2 See “Complications” section that explains how to deal with destructors calling tricky functions that may observe this trans-
formation.
3 The actual code pattern observed is not an assignment, but a copy construction of an exception in the unitialized storage
for destination, such as new (&dst_storage) exception_ptr(current_exception()); . We showed dst = src for ex-
position simplicity.

15

1030

0 200 400 600 800 1000 1200

1

Linux: exception_ptr propagation in nanoseconds

rethrow'n'catch copy-construct

p1676r0 С++ Exception Optimizations. An experiment 4

4 Simple throw and catch optimization
Finally, we will look at exception “short-circuiting” pattern, where after inlinining we end up with throw and

catch of the same exception in the same function.

Before After

 try {
 if (pred())
 throw cancelled{};
 may_throw();
 } catch (cancelled const &) {
 payload();
 } catch (something-else) {…} …
 …

 try {
 if (pred())
 goto call_payload;
 may_throw();
 } catch (cancelled const &) {
 goto call_payload;
 } catch (something-else) {…} …
 goto payload_bypass;

call_payload: payload();
payload_payload:
 …

This transformation results in 1000+ times speedup on Linux amd64 for synthetic benchmark that runs very in-

expensive cleanup (an increment of a variable) and a predicate that always returns true. For comparison, we list

per iteration cost of a throw and catch, computing sine function of a double, performing an allocation and deal-

location of memory for an exception using Itanium ABI’s cxa_allocate_exception/cxa_free_exception and finally

a direct call to payload if predicate is true (short-circuit label).

This pattern may occur after inlining in asynchronous generator coroutines that use cancelled exception to indi-

cate the need to stop execution of the asynchronous generator in the presence of Async RAII [D1662R0].

5 Complications
So far, we considered the code where optimizer knows that none of the functions executed during cleanup or

catch handling that is replaced with regular control flow contains (directly or indirectly) calls to std::current_ex-

ception(), std::uncaught_exceptions() or throw; statement.

When such functions calls are encountered, the optimizer would need to insert calls to the exception runtime to

appropriately increment and decrement the uncaught_exceptions count and set up/tear down current excep-

tion. While it will slow down the execution relative to the regular control flow (as we have seen in the previous

1

33

231

1069

0 200 400 600 800 1000 1200

short-circuit

cxa_allocate_exception/free

sin(x)

throw'n'catch

Linux: Throw'n'Catch vs Other Things (in nanoseconds)

https://wg21.link/P1662

p1676r0 С++ Exception Optimizations. An experiment 5

section to allocate and free memory for an exception takes about 33ns), it is still significantly cheaper than in-

voking full exception propagation machinery (~1000ns).

Note: that setting the current exception is needed even if unknown functions calls are only in the cleanup code

leading towards the catch. This is needed because a user can replace a standard terminate handler with his own

and observe the current exception in the replacement terminate handler either via throw; or a call to std::cur-

rent_exception().

6 Scope Guard interactions
While previous section describes a general way of dealing with calls to functions that may call std::current_ex-

ception() and friends. There are cases where calls to the exception runtime are not needed. Consider the up-

coming scope guard facility [P0052] that is built on top of uncaught_exceptions() function.

User writes Optimizer sees

 auto _= std::make_scope_fail([]{
 payload();
 });
 may_throw();

int tmp = uncaught_exceptions();
try { may_throw(); }
on_unwind4 {
 if (tmp < std::uncaught_exceptions())
 payload();
 // exception unwind continues
}
if (tmp < std::uncaught_exceptions())
 payload();

If an optimizer is taught the semantics of the uncaught_exceptions function, it can remove uncaught_exception

away in all cases covered by ScopeGuard paper [P0052], assuming that destructors for helper temporary objects

are inlined and calls to uncaught_exceptions are observable:

Before After
int tmp = uncaught_exceptions();
try { may_throw(); }
on_unwind {
 if (tmp < std::uncaught_exceptions())
 payload();
 // exception unwind continues
}
if (tmp < std::uncaught_exceptions())
 payload();
}

try { may_throw(); }
on_unwind { payload(); }

This and similar optimizations of std::uncaught_exceptions() will increase the reach of exception short-circuiting

optimizations described earlier.

4 Here on_unwind marks a block of code to execute during exception unwinding. This capability is present in the intermedi-
ate representation of a compiler, but, does not have a direct language equivalent in C++. ScopeGuard tries to emulate it.

https://wg21.link/P0052
https://wg21.link/P0052

p1676r0 С++ Exception Optimizations. An experiment 6

7 Further Simpifications
We expect that further optimizations are possible with comparable complexity of the implementation that

would handle more patterns. For example, we can add an optimization of the pattern occurred after inlining of

Lippincott Function [LippFunc].

Before After

try {
 may_throw();
} catch (...) {
 try { throw; }
 catch (A) { handler1(); }
 catch (B) { handler2(); }
 catch (...) { handler3(); }
}

try {
 may_throw();
}
catch (A) { handler1(); }
catch (B) { handler2(); }
catch (...) { handler3(); }

While the original motivation for exploring optimization of these patterns was that they frequently occur in

coroutines, these optimizations may be beneficial for other application categories and more optimizations of

this kind can be developed.

8 Acknowledgements
Many thanks to those who reviewed the drafts of this paper and provided valuable feedback, among them:

Lewis Baker, Neeraj Singh, Modi Mo, Billy O’Neil, Gabriel Dos Reis.

9 Bibliography
[D1662R0] Lewis Baker. “Adding async RAII support to coroutines” (WG21 paper pre-publication draft, 2019-06-

10).

[N2952] V. Voutilainen. “Accessing current exception during unwinding” (WG21 paper, 2009-09-21).

[P0052] Peter Sommerlad, Andrew L. Sandoval. “Generic Scope Guard and RAII Wrapper for the Standard Li-

brary” (WG21 paper, 2019-02-19).

[N4152] Herb Sutter. “uncaught_exceptions()” (WG21 paper, 2014-09-30).

[LippFunc] C++ Secrets. “Using a Lippincott Function for Centralized Exception Handling” (WG21 paper, 2013-12-

13).

10 Appendix
Measurements were done on a Lenovo P50 with Skylake Xeon(R) CPU E3-1505M v5 3.7Ghz CPU running Ubuntu

18.04 LTS using modified version of clang compiler that included eh optimization pass.

https://reviews.llvm.org/D63388 - section 3 and 4 optimizations

https://reviews.llvm.org/D55186 - section 2 catch and rethrow optimization

http://cppsecrets.blogspot.com/2013/12/using-lippincott-function-for.html
https://wg21.link/P1662
https://wg21.link/n2952
https://wg21.link/P0052
https://wg21.link/N4152
http://cppsecrets.blogspot.com/2013/12/using-lippincott-function-for.html
https://reviews.llvm.org/D63388
https://reviews.llvm.org/D55186

