Contents
1 Introduction
2 Various Approaches
2.1 Use something besides _ (BAD)
2.2
2.3
2.4
3 Should we generalize this as in P1110R0?
4 Conclusion
5 References
1 Introduction

Disallow _ Usage in C+4-20 for Pattern Matching in C++23

Document #:
Date:
Project:

Reply-to:

P1469R0

2019-01-21

Programming Language C+-+
Evolution

Sergei Murzin
<smurzin@bloomberg.net>
Michael Park
<mcypark@gmail.com>
David Sankel
<dsankel@bloomberg.net>
Dan Sarginson
<dsarginson@bloomberg.net>

Deprecate all or most uses of _ as an identifier (WORSE)
Deprecate _ access when structured-binding bound (OKAY)
Disallow _ access when structured-binding bound (GOOD)

N NN NN =

N

We need to deprecate a rare usage of _ as an identifier in C++-20 so it can be safely used for pattern matching
[P1371] which is targeting C++23. The issue is simple, we’d like structured binding code as in,

auto [a, _] = std::make_pair(3, 4);

to have _ represent a wildcard pattern instead of binding the identifier _. There are a few ways to do this
and we suggest what we think is the ideal engineering approach.


mailto:smurzin@bloomberg.net
mailto:mcypark@gmail.com
mailto:dsankel@bloomberg.net
mailto:dsarginson@bloomberg.net

2 Various Approaches

2.1 Use something besides _ (BAD)

Why is _ so important when ? is available? Languages with pattern matching almost universally use _ as a
wildcard pattern and popular libraries in C++ (like Google Test) do the same. It would be awkward and
somewhat embarrassing if C++ were to not use such a ubiquitous token. Furthermore, because _ has so
much existing widespread use, we expect people to use _ anyway, and accidentally bind the _ identifier.

__ is another possiblility, but it is difficult to recognize as a double underscore with many fonts and we expect
significant confusion were we to use this.

2.2 Deprecate all or most uses of _ as an identifier (WORSE)

Another option is to deprecate all or most uses of _ as an identifier. We could, for instance, deprecate
references to _ identifiers declared in block-scope. The migration cost for this is unfortunately quite a steep
one. There are more instances of the _ token than short in the wild according to [ACTCD16]. Breaking all
this code would be extremely costly for the C+4 community.

2.3 Deprecate _ access when structured-binding bound (OKAY)

Finally, we could deprecate referencing _ identifiers that are bound as part of a structured binding. Because
structured binding is a relatively new feature and most uses of _ as a structured binding identifier are expected
to be wildcard uses anyway, the cost of fixing breakages would be low. This change to be a sweet spot for
engineering value, but we need to act quickly if we want to take advantage of this for pattern matching in
C++23.

2.4 Disallow _ access when structured-binding bound (GOOD)

Because usages of _ identifiers that are bound by structured binding are so rare, there is little engineering
benefit in deprecating these usages instead of just making access illegal altogether. In fact, a deprecation
period can actually increase cost as engineers (who ignore warnings) will have more opportunity to use _
identifiers bound by structured bindings.

3 Should we generalize this as in P1110R0?

[P1110R0] suggests that we make something like the wildcard (_) pattern accessible in many other places
than patterns (e.g. in an enumerator). The authors of this paper find questionable engineering value for
many of these suggestions and have no opinion on others. Our primary focus is on parity between structured
bindings and pattern matching.

4 Conclusion

Right now we have an opportunity to prevent mistakes being made by using the wildcard that everyone
expects for pattern matching. Let’s deprecate or disallow access to _ variables if they are bound by structured
binding.



5 References
[ACTCD16] Andrew Tomazos. Andrew’s C/C++ Token Count Dataset 2016 (ACTCD16).
http://www.tomazos.com/acted16.pdf

[P1110RO] Jeffrey Yasskin and JF Bastien. 2018. A placeholder with no name.
http://wg21.link/P1110R0

[P1371] Sergei Murzin, Michael Park, David Sankel, and Dan Sarginson. 2019. Pattern Matching.
http://wg21.link/P1371


http://www.tomazos.com/actcd16.pdf
http://wg21.link/P1110R0
http://wg21.link/P1371

	Introduction
	Various Approaches
	Use something besides _ (BAD)
	Deprecate all or most uses of _ as an identifier (WORSE)
	Deprecate _ access when structured-binding bound (OKAY)
	Disallow _ access when structured-binding bound (GOOD)

	Should we generalize this as in P1110R0?
	Conclusion
	References

