
Document Number: P1456R1
Date: 2019-11-07
Audience: Library Evolution Working Group
Author: Casey Carter
Reply to: casey@carter.net

Move-only views

1 Scope
The View concept requires that its models are Copyable, which excludes some useful Range types - notably
including coroutine generators. This proposal suggests relaxing the copyability requirement to allow Range
types which are Movable but not Copyable to model View and hence be first-class citizens in view composition
so as to be more usable with the ranges library.

Table 1 — Tony Table

Before After
return view::iota(0, 42)

| view::filter(is_even)
| view::transform([](int i) -> auto& {

static auto r = int_range_generator(i);
return r; // YOLO

})
| view::join;

return view::iota(0, 42)
| view::filter(is_even)
| view::transform([](int i) {

return int_range_generator(i);
})

| view::join;

struct fib_view {
struct iterator {

using difference_type = int;
using value_type = int;

int a = 0, b = 1;

int operator*() const { return a; }
iterator& operator++() {

a = std::exchange(b, a + b);
return *this;

}
void operator++(int) { ++*this; }

};

auto begin() const { return iterator{}; }
auto end() const { return std::unreachable; }

};
// ...
return fib_view{} | view::take(20);

generator<int> fib() {
int a = 0, b = 1;
while (true)

co_yield std::exchange(a, std::exchange(b, a + b));
}
// ...
return fib() | view::take(20);

1.1 Revision History
1.1.1 Revision 1

— Add a semantic requirement to view requiring copy operations to be O(1) if present.

1

1.1.2 Revision 0

— Inserted many words into an empty document.

2 Problem description
2.1 background
P0896R4 “The One Ranges Proposal” [2] introduced the View concept into the C++working draft. View
refines Semiregular which refines Copyable in order that Views may be used in ways similar to Iterators
which also refine Semiregular. Semiregularity combined with the constant-time complexity requirement
on View and Iterator operations allows them to copied freely by range adaptors and the range adaptor
closure object machinery used in View composition. Since general Range types aren’t required to support
such usage, they are in some sense second-class citizens in View composition.
C++11 added move-only types to the language. Parts of the Standard Library have adapted to better
support move-only types, for example, we can store them in containers. Other parts of the library have been
reluctant to do so: the algorithms - with the exception of the serial overload of std::for_each - still require
copyable function objects, for example, and we still don’t have a mechanism to type erase move-only function
objects. It behooves us to consider whether the Ranges view composition machinery added by P0896R4
should support move-only types by admitting move-only views.
Some examples to consider:
— single_view ([range.single.view]) requires its element to model CopyConstructible. The element

is stored inside an optional-like wrapper in the single_view object, so the element must model
CopyConstructible in order for the single_view to model Semiregular. If View’s copyability
requirement were relaxed, single_view could support types that only model MoveConstructible.

— filter_view and transform_view each hold a function object. Those function objects are similarly
required to be CopyConstructible only so the view can model Semiregular.

2.2 Why views but not function object arguments?
We’ve managed to put off supporting move-only types in standard library algorithms on the basis that there’s a
simple workaround: add a layer of indirection! If you can’t call std::ranges::find_if(myvec, move_only_-
predicate) with your move-only function object, call std::ranges::find_if(myvec, std::ref(move_-
only_predicate)) instead. This solution typically isn’t a burden since calls to algorithms typically occur in
straight-line code that already has named objects for the range / iterator arguments. If you want to pass an
rvalue move-only function object to an algorithm, stuff it into a named object as well and use std::ref.
View composition differs fundamentally from a series of algorithm calls. Instead of a series of statements
interleaved with declarations, a view composition expression is a composition of nested function calls, possibly
disguised with the | operator to give it a more linear appearance, that yields a view. There’s nowhere to
store intermediate results and no mechanism to name temporaries in "the middle" of such an expression. It’s
necessary to find a place to store the move-only range, pass an lvalue into view composition, and somehow
ensure that the stored range outlives the composed view. This can be challenging when a function wants to
return the result of composition of a local move-only range with some sequence of range adaptors.
Another important difference is that View is a concept that’s exported for users to utilize in their own
programs, whereas the requirement that the algorithms need copyable function objects is only words in
a specification. WG21 can relax a requirement expressed in specification text any time we like simply
by changing the words - conforming implementations must ensure they handle the relaxed requirements,
but there’s no possiblity of breaking user programs. Conversely, the set of requirements expressed by a
concept in the Standard can never change without potential breakage: if we strengthen a concept, existing
callers of standard library components constrained with that concept may be broken. If we weaken a
concept, third-party library components constrained with that concept are broken by suddenly becoming
underconstrained. We have one chance to get concepts right.

2.3 Coroutines on the horizon
Generators are the intersection of coroutines and ranges. A generator is, simply enough, a coroutine that
models the Range concept. A user writes a function whose return type is a generator type that co_yields
successive elements of the range (LIVE):

2

http://eel.is/c++draft/range.single.view
https://wandbox.org/permlink/OjvfCc8L3pYMNdU9

generator<int> fib() {
int a = 0, b = 1;
while (true)

co_yield std::exchange(a, std::exchange(b, a + b));
}

which is substantially more concise than the equivalent direct implementation of such an input range (LIVE):
struct fib_view {

struct iterator {
using difference_type = int;
using value_type = int;

int a = 0, b = 1;

int operator*() const { return a; }
iterator& operator++() {

a = std::exchange(b, a + b);
return *this;

}
void operator++(int) { ++*this; }

};

auto begin() const { return iterator{}; }
auto end() const { return std::unreachable; }

};

Note that the direct range implementation models View, so it can easily pariticipate in view composition -
but the same is not true for the generator implementation.
Coroutine frames are not copyable resources, so it’s not possible to implement a generator that can produce
truly independent copies. It is possible to implement a generator that is as Semiregular as are input
iterators1, but only by invoking the same spooky-action-at-distance that input iterators have in which
operations performed on an input iterator (or generator) can potentially invalidate the copies. Movable-but-
not-Copyable input iterators (or generators) would avoid this issue. While it may be too late for us to solve
the problem for input iterators, it would seem a shame to repeat the design error with generators.

2.4 What about range adaptors that want to copy Views?
The range adaptors in the working draft - and the range adaptors in range-v3 - only copy views in one
circumstance: when a user calls the base() member function to retrieve a copy of the underlying view being
adapted. None of the adaptors copy views in the process of their normal operation. In fact, no one has
suggested to the author a potential design for a range adaptor which does need to copy a view.
On the other hand, we do have concrete examples of types that would like to model View which are not
copyable. The evidence suggests that we should relax the copyability requirement of View now, and if
and when an adaptor is discovered which does need to copy a view it can be constrained with View<T>
&& Copyable<T> along with the added semantic requirement that copies are O(1). We could introduce a
CopyableView concept with these requirements when that day comes to ease using this constraint, although
the lack of any suggestion of an adaptor that needs the constraint suggests it would be premature to
standardize such a concept now.

2.5 Does this mean containers can be views?
Potentially yes, although there are some messy details. View should require O(1) destruction as well as the
current requirement for O(1) copies and moves - which lack the proposed wording below corrects - which
rules out many containers. Allocator-aware containers also notably only have O(1) move assignment when
their allocator has specific properties. This paper does not propose any changes to allow View to accept
container types that would otherwise be rejected by the enable_view heuristic, but that is a potential avenue
for future work.

1) With thanks to Lewis Baker.

3

https://wandbox.org/permlink/tlqfMsvXuoz4hSy4

Eric Niebler has expressed concerns to the author in private communication about such a change muddying
the Ranges design, with which the author agrees: we need to tread very carefully here.

3 Proposal
Put simply, the proposal is to remove the copyability requirement from the View concept as defined in
[range.view]:

template<class T>
concept View =

Range<T> && Semiregular<T> && enable_view<T>;

by decomposing Semiregular<T> into Copyable<T> && DefaultConstructible<T> and then replacing
Copyable with Movable:

template<class T>
concept View =

Range<T> && Movable<T> && DefaultConstructible<T> && enable_view<T>;

This allows for move-only types to model View without excluding any types which model the prior formulation
of the concept.
Note that a similar relaxation that only applies to single-pass (input and output) views has been implemented
in range-v3 [1] since June of 2017 along with the experimental range generator implementation.
To redress the problem that the base() members of the range adaptors return copies of the underlying view,
we propose that each such base() member be replaced to by two overloads: a const-qualified overload that
requires the type of the underlying view to model CopyConstructible, and a &&-qualified overload that
extracts the underlying view from the adaptor (thus leaving it invalid).

4 Technical specifications
Change [range.req.general]/2 as follows: [Note: There’s a drive-by edit here to require O(1) destruction: the
intent has always been that views have only constant-time operations, we apparently forgot that destruction
is an operation. We also require copies to be O(1) if they are valid. —end note]

... The view concept specifies requirements on a range type with constant-time destruction and
copy and assignmove operations.

Change [range.view] as follows:

template<class T>
concept view =

range<T> && semiregular<T> && enable_view<T>;

1 The view concept specifies the requirements of a range type that has constant time copy, move
construction, move assignment, and destruction operators; that is, the cost of these operations is
not proportional to the number of elements in the view.

template<class T>
concept view =

range<T> && movable<T> && default_constructible<T> && enable_view<T>;

2 T models view only if:
—(2.1) copy_constructible<T> is false, or T has O(1) copy construction; and
—(2.2) copyable<T> is false, or T has O(1) copy assignment.

3 [Example: Examples of views are:
—(3.1) A range type that wraps a pair of iterators.
—(3.2) A range type that holds its elements by shared_ptr and shares ownership with all its copies.
—(3.3) A range type that generates its elements on demand.

4

http://eel.is/c++draft/range.view
https://github.com/ericniebler/range-v3/commit/11fb1f0c6ef60a61a3eb264b5c3d0d42fc4615a2
https://github.com/ericniebler/range-v3/commit/d2bd910faa75d9016f6fb124f9de46c926c49c72
http://eel.is/c++draft/range.req.general
http://eel.is/c++draft/range.view

Most containers ([containers]) are not views since copyingdestruction of the container copiesdestroys
the elements, which cannot be done in constant time. —end example]

Change [range.filter.view] as follows:

namespace std::ranges {
template<input_range V, indirect_unary_predicate<iterator_t<V>> Pred>

requires view<V> && is_object_v<Pred>
class filter_view : public view_interface<filter_view<V, Pred>> {

[...]
constexpr filter_view(R&& r, Pred pred);

constexpr V base() const& requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

constexpr iterator begin();
[...]

[...]

constexpr V base() const;

3 Effects: Equivalent to: return base_;

Change [range.transform.view], [range.take.view], [range.common.view], and [range.reverse.view] similarly.
Change [range.join.view] as follows: [Note: This is a drive-by fix to add base which was unintentionally
omitted from join_view and split_view in P0896R4.—end note] [Note: This wording supercedes the
resolution of LWG 3322. —end note]

namespace std::ranges {
template<input_range V>

requires view<V> && input_range<iter_reference_t<iterator_t<V>>> &&
(is_reference_v<iter_reference_t<iterator_t<V>>> ||
view<iter_value_t<iterator_t<V>>>)

class join_view : public view_interface<join_view<V>> {
[...]
template<input_range R>

requires viewable_range<R> && constructible_from<V, all_view<R>>
constexpr explicit join_view(R&& r);

constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

constexpr auto begin() {
[...]

[...]

Add the same definitions to [range.split.view] before the first definition of begin.
Change [range.join.iterator]/5 as follows: [Note: This includes a drive-by simplification of a return type from
decltype(auto) to auto& to clarify that update_inner always returns an lvalue.—end note]

auto update_inner = [this](range_reference_t<Base> x) -> decltype(auto)auto& {
if constexpr (ref_is_glvalue) // x is a reference

return (x); // (x) is an lvalue
else

return (parent_->inner_ = view::all(std::move(x)));
};

for (; outer_ != ranges::end(parent_->base_); ++outer_) {
auto& inner = update_inner(*outer_);
[...]

5

http://eel.is/c++draft/containers
http://eel.is/c++draft/range.filter.view
http://eel.is/c++draft/range.transform.view
http://eel.is/c++draft/range.take.view
http://eel.is/c++draft/range.common.view
http://eel.is/c++draft/range.reverse.view
http://eel.is/c++draft/range.join.view
http://eel.is/c++draft/range.split.view
http://eel.is/c++draft/range.join.iterator

Bibliography
[1] Eric Niebler. Range-v3. https://github.com/ericniebler/range-v3. Accessed: 2019-1-18.

[2] Eric Niebler, Casey Carter, and Christopher Di Bella. P0896R4: The one ranges proposal, 11 2018.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0896r4.pdf.

6

https://github.com/ericniebler/range-v3
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0896r4.pdf

	1 Scope
	1.1 Revision History

	2 Problem description
	2.1 background
	2.2 Why views but not function object arguments?
	2.3 Coroutines on the horizon
	2.4 What about range adaptors that want to copy Views?
	2.5 Does this mean containers can be views?

	3 Proposal
	4 Technical specifications
	Bibliography

