
Document number: P1450R2
Revises: P1450R1
Date: 2019-10-07
Project: ISO JTC1/SC22/WG21: Programming Language C++
Audience: LEWG
Reply to: Vincent Reverdy

University of Illinois at Urbana-Champaign
vince.rev@gmail.com

Enriching type modification traits

Note: this is an early draft. It’s known to be incomplet and incorrekt, and it has lots of bad
formatting.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1450r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1450r1.pdf

Abstract
We introduce additional type traits to the standard library focused on type modification. The new type traits
we present considerably simplify qualifiers manipulation. We also introduce a new type trait to remove all
pointers on a type for the sake of completeness. These type traits have been especially useful in the design of
proxy classes, included an updated design for bit manipulation utilities. They also have been used extensively
in the implementation of a library dedicated to the creation of custom overload sets that will be proposed for
standardization in a separate proposal.

Contents
1 Proposal 1

1.1 History . 1
1.2 Introduction . 1
1.3 Impact on the standard . 2
1.4 Motivations and design decisions . 2

1.4.1 Pointers removal . 2
1.4.2 Qualifiers manipulation . 2

1.5 Technical specification . 3
1.6 Discussion and open questions . 3

1.6.1 Bikeshedding . 3
1.7 Acknowledgements . 3
1.8 References . 3

2 Wording 5
2.1 Metaprogramming and type traits . 5

2.1.1 Requirements . 5
2.1.2 Header <type_traits> synopsis . 5
2.1.3 Helper classes . 6
2.1.4 Unary type traits . 6
2.1.5 Type property queries . 6
2.1.6 Relationships between types . 6
2.1.7 Transformations between types . 6
2.1.8 Logical operator traits . 8
2.1.9 Endian . 8

i

1 Proposal [proposal]
1.1 History [proposal.history]

— P1450R2 targets LEWG. Changes required by LEWGI, and especially the removal of signedness and
clone traits, have been implemented.

— P1450R1 implemented the required changes with clone traits being marked for removal. The proposal
was quickly reviewed by LEWGI at the Cologne 2019 Standards Committee Meeting to check that
the changes required in the previous meeting were implemented. The proposal was then forwarded to
LEWG with unanimous consent.

— P1450R0 was carefully reviewed by LEWGI at the Kona 2019 Standards Committee Meeting, and was
approved to be forwarded to LEWG with minor modifications. Jonathan Wakely and Eric Fiselier both
confirmed that they have their own implementation of some of these type traits as an internal detail of
their codebase. LEWGI recommended the removal of the clone_* form, as well as copy_signedness,
and suggested the removal of copy_all_extents and copy_all_pointers. For consistency with the
rest of the type traits, the last two are kept for now, and will be removed if LEWG wants to. LEWGI
did not find a better name than copy_* to name these type traits.

— At the San Diego 2018 Standards Committee Meeting, LEWGI recommended the extraction of simple
type modification traits from the original P1016R0 proposal, which led to the proposal P1450R0 in its
current form.

— A first proposal was submitted in 2018 as P1016R0. However, back then it was not clear whether this
kind of type traits should wait for reflection. In San Diego 2018, SG7 clarified that these type traits are
pure library facilities that do not need to be first reviewed by them. They also clarified the fact that
type traits in their current form live in a different space than reflection, and that the second one will
not make the first one disappear. As a consequence, basic type traits should not wait for reflection. In
San Diego, LEWGI recommended the extraction of simple type modification traits from the original
P1016R0 proposal, which led to this proposal in its current form.

— Originally developed as helper traits for an overload sets and sequences library, presented at CppCon
2018 (Custom Overload Sets and Inline SFINAE for Truly Generic Interfaces). Early discussions and
feedback included a thread entitled General purpose utilities for template metaprogramming and type
manipulation on the future proposals Google group.

1.2 Introduction [proposal.introduction]
Since their introduction with C++11, the standard library type traits have been of great help for template
metaprogramming. They contributed to the standardization of common metaprogramming patterns, such
as SFINAE with enable_if, and since C++17 with void_t. In this paper, we introduce new type traits
corresponding to metaprogramming patterns that turned out to be very useful to implement template
proxy classes as well as to implement a tool to build custom overload sets. This tool will be proposed for
standardization in a separate paper. We believe that the listed type traits are of common use and could
benefit the entire community. The new type traits fall in three different categories:
— pointers removal: remove_all_pointers inspired from remove_all_extents

— qualifiers manipulation: copy_* type traits
An implementation is available at https://github.com/vreverdy/type-utilities.

§ 1.2 1

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1450r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1450r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1450r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1016r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1450r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1016r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1016r0.pdf
https://www.youtube.com/watch?v=WBTNCYT20f0
https://groups.google.com/a/isocpp.org/forum/#!topic/std-proposals/R04CWOjABIQ
https://groups.google.com/a/isocpp.org/forum/#!topic/std-proposals/R04CWOjABIQ
https://github.com/vreverdy/type-utilities

1.3 Impact on the standard [proposal.impact]
This proposal is a pure library extension. It does not require changes to any standard classes or functions.
All the extensions belong to the <type_traits> header.

1.4 Motivations and design decisions [proposal.design]
1.4.1 Pointers removal [proposal.design.removal]

// Pointers removal
template <class T> struct remove_all_pointers;

// Type alias
template <class T> using remove_all_pointers_t = typename remove_all_pointers<T>::type;

The current standard library includes two type traits to manipulate extents: remove_extent which removes
the first array dimension, and remove_all_extents which removes all dimensions. For pointers, only one is
currently provided: remove_pointer which removes one pointer. However, in some contexts it can be useful
to access the “raw” type
However for the same reason that it can be useful to remove all dimensions, it can sometimes be useful to
remove all pointers and access the “raw” type. Also, in the context of qualifiers manipulation (see (1.4.2)),
it makes sense to provide tools to transform a int*** into a double*** by transferring all pointers from
one type to another: copy_all_pointers. In this context, being able to remove all pointers seems to be a
natural addition to the standard library, for completeness. For all these reasons, we propose to introduce the
type trait: remove_all_pointers.

1.4.2 Qualifiers manipulation [proposal.design.copy]
// Qualifiers manipulation
template <class From, class To> struct copy_const;
template <class From, class To> struct copy_volatile;
template <class From, class To> struct copy_cv;
template <class From, class To> struct copy_reference;
template <class From, class To> struct copy_extent;
template <class From, class To> struct copy_all_extents;
template <class From, class To> struct copy_pointer;
template <class From, class To> struct copy_all_pointers;
template <class From, class To> struct copy_cvref;

// Type aliases
template <class F, class T> using copy_const_t = typename copy_const<F, T>::type;
template <class F, class T> using copy_volatile_t = typename copy_volatile<F, T>::type;
template <class F, class T> using copy_cv_t = typename copy_cv<F, T>::type;
template <class F, class T> using copy_reference_t = typename copy_reference<F, T>::type;
template <class F, class T> using copy_extent_t = typename copy_extent<F, T>::type;
template <class F, class T> using copy_all_extents_t = typename copy_all_extents<F, T>::type;
template <class F, class T> using copy_pointer_t = typename copy_pointer<F, T>::type;
template <class F, class T> using copy_all_pointers_t = typename copy_all_pointers<F, T>::type;
template <class F, class T> using copy_cvref_t = typename copy_cvref<F, T>::type;

In the heavy template metaprogramming involved in the building of template proxy classes and custom
overload sets, one pattern happened to be very useful: being able to transfer the qualifiers of one type
to another one. For example, to transform a const int& into a const double&, a int[1][2][3] into
a double[1][2][3], or an int*** to a double***. It can be also used in a function taking a universal
reference as an input, to qualify another type based on the qualification of the input:

template <class T> void f(T&& x) {
// An integer with the same qualification as the input

§ 1.4.2 2

using integer = std::copy_cvref_t<T&&, int>;
/∗ function contents ∗/

}

or to make a type const depending on another type:
template <class T> struct foo {

// Data members
T a;
std::copy_const_t<T, int> n;
std::copy_const_t<T, double> x;
/∗ class contents ∗/

};

Another uses are illustrated in P0847R0, where copy_cvref_t is called like_t.
For completeness, qualifier manipulators are added to all existing categories of type transformations: cv
(2.1.7.1), reference (2.1.7.2), array (2.1.7.4) and pointer (2.1.7.5). Additionally, depending on the behavior
regarding the second template parameter, two kinds of qualifier parameters are introduced: the copiers
copy_* presented in the next section.
The complete list of proposed copy_* traits is:

— const-volatile modifications: copy_const, copy_volatile, copy_cv

— reference modifications: copy_reference

— array modifications: copy_extent, copy_all_extents

— pointer modifications: copy_pointer copy_all_pointers

— other transformations: copy_cvref

As a note, in the same way remove_pointer deals with cv-qualified pointers, copy_pointer copy_all_-
pointers copy the cv-qualifiers of pointers.

1.5 Technical specification [proposal.spec]
See the wording (part 2).

1.6 Discussion and open questions [proposal.discussion]
1.6.1 Bikeshedding [proposal.discussion.bikeshed]
While some names are straightforward and follow existing patterns in standard library, the following names
are the most likely to be debated:
— copy_*

This name has been validated by LEWGI at the Kona 2019 meeting.

1.7 Acknowledgements [proposal.ackwldgmnts]
The authors would like to thank the participants to the related discussion on the future-proposals group. This
work has been made possible thanks to the National Science Foundation through the awards CCF-1647432
and SI2-SSE-1642411.

1.8 References [proposal.references]
A few additional type manipulation utilities, Vincent Reverdy, Github (March 2018)
P1016R0, A few additional type manipulation utilities, Vincent Reverdy, ISO/IEC JTC1/SC22/WG21 (May
2018)

§ 1.8 3

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0847r0.html
https://groups.google.com/a/isocpp.org/forum/#!topic/std-proposals/R04CWOjABIQ
https://github.com/vreverdy/type-utilities
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1016r0.pdf

N4727, Working Draft, Standard for Programming Language C++, Richard Smith, ISO/IEC JTC1/SC22/WG21
(February 2018)
P0847R0, Deducing this, Gasper Azman et al., ISO/IEC JTC1/SC22/WG21 (February 2018)
General purpose utilities for template metaprogramming and type manipulation, ISO C++ Standard - Future
Proposals, Google Groups (March 2018)

§ 1.8 4

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4727.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0847r0.html
https://groups.google.com/a/isocpp.org/forum/#!topic/std-proposals/R04CWOjABIQ

2 Wording [wording]
2.1 Metaprogramming and type traits [meta]
2.1.1 Requirements [meta.rqmts]

1 No modification.

2.1.2 Header <type_traits> synopsis [meta.type.synop]
1 Add the following to the synopsis of <type_traits>:

namespace std {
// 2.1.3, helper classes

// 2.1.4.1, primary type categories

// 2.1.4.2, composite type categories

// 2.1.4.3, type properties

// 2.1.5, type property queries

// 2.1.6, type relations

// 2.1.7.1, const-volatile modifications
template <class From, class To> struct copy_const;
template <class From, class To> struct copy_volatile;
template <class From, class To> struct copy_cv;

template <class From, class To>
using copy_const_t = typename copy_const<From, To>::type;
template <class From, class To>
using copy_volatile_t = typename copy_volatile<From, To>::type;
template <class From, class To>
using copy_cv_t = typename copy_cv<From, To>::type;

// 2.1.7.2, reference modifications
template <class From, class To> struct copy_reference;

template <class From, class To>
using copy_reference_t = typename copy_reference<From, To>::type;

// 2.1.7.3, sign modifications

// 2.1.7.4, array modifications
template <class From, class To> struct copy_extent;
template <class From, class To> struct copy_all_extents;

template <class From, class To>
using copy_extent_t = typename copy_extent<From, To>::type;
template <class From, class To>
using copy_all_extents_t = typename copy_all_extents<From, To>::type;

§ 2.1.2 5

// 2.1.7.5, pointer modifications
template <class T> struct remove_all_pointers;
template <class From, class To> struct copy_pointer;
template <class From, class To> struct copy_all_pointers;

template <class T>
using remove_all_pointers_t = typename remove_all_pointers<T>::type;
template <class From, class To>
using copy_pointer_t = typename copy_pointer<From, To>::type;
template <class From, class To>
using copy_all_pointers_t = typename copy_all_pointers<From, To>::type;

// 2.1.7.6, other transformations
template <class From, class To> struct copy_cvref;

template <class From, class To>
using copy_cvref_t = typename copy_cvref<From, To>::type;

// 2.1.8, logical operator traits

// 2.1.9, endian
}

2.1.3 Helper classes [meta.help]
1 No modification.

2.1.4 Unary type traits [meta.unary]
1 No modification.

2.1.4.1 Primary type categories [meta.unary.cat]
1 No modification.

2.1.4.2 Composite type traits [meta.unary.comp]
1 No modification.

2.1.4.3 Type properties [meta.unary.prop]
1 No modification.

2.1.5 Type property queries [meta.unary.prop.query]
1 No modification.

2.1.6 Relationships between types [meta.rel]
1 No modification.

2.1.7 Transformations between types [meta.trans]
2.1.7.1 Const-volatile modifications [meta.trans.cv]

1 Add the following to the table “Const-volatile modifications”:

§ 2.1.7.1 6

Table 1 — Const-volatile modifications

Template Comments
template<class From, class To>
struct copy_const;

The member typedef type names the same type as
add_const_t<To> if is_const_v<From>, and To otherwise.

template<class From, class To>
struct copy_volatile;

The member typedef type names the same type as
add_volatile_t<To> if is_volatile_v<From>, and To
otherwise.

template<class From, class To>
struct copy_cv;

The member typedef type names the same type as
copy_const_t<From, copy_volatile_t<From, To>>.

2.1.7.2 Reference modifications [meta.trans.ref]
1 Add the following to the table “Reference modifications”:

Table 2 — Reference modifications

Template Comments
template<class From, class To>
struct copy_reference;

The member typedef type names the same type as
add_rvalue_reference_t<To> if
is_rvalue_reference_v<From>,
add_lvalue_reference_t<To> if
is_lvalue_reference_v<From>, and To otherwise.

2.1.7.3 Sign modifications [meta.trans.sign]
1 No modification.

2.1.7.4 Array modifications [meta.trans.arr]
1 Add the following to the table “Array modifications”:

Table 3 — Array modifications

Template Comments
template<class From, class To>
struct copy_extent;

The member typedef type names the same type as
To[extent_v<From>] if rank_v<From> > 0 &&
extent_v<From> > 0, To[] if rank_v<From> > 0 &&
extent_v<From> == 0, and To otherwise.
Requires: To shall not be an array of unknown bound along its
first dimension if From is an array of unknown bound along its
first dimension.

template<class From, class To>
struct copy_all_extents;

The member typedef type names the same type as
copy_extent_t<From,
copy_all_extents_t<std::remove_extent_t<From>, To>> if
rank_v<From> > 0, and To otherwise.
Requires: From and To shall not be arrays of unknown bounds
along their first dimension at the same time.

2.1.7.5 Pointer modifications [meta.trans.ptr]
1 Add the following to the table “Pointer modifications”:

§ 2.1.7.5 7

Table 4 — Pointer modifications

Template Comments
template<class T>
struct remove_all_pointers;

The member typedef type names the same type as
remove_all_pointers_t<remove_pointer_t<T>> if
is_pointer_v<T>, and T otherwise.

template<class From, class To>
struct copy_pointer;

The member typedef type names the same type as
copy_cv_t<From, add_pointer_t<To>> if
is_pointer_v<From>, and To otherwise.

template<class From, class To>
struct copy_all_pointers;

The member typedef type names the same type as
copy_pointer_t<From,
copy_all_pointers_t<std::remove_pointer_t<From>, To>>
if is_pointer_v<From>, and To otherwise.

2.1.7.6 Other transformations [meta.trans.other]
1 Add the following to the table “Other transformations”:

Table 5 — Other transformations

Template Comments
template<class From, class To>
struct copy_cvref;

The member typedef type names the same type as
copy_reference_t<From,
copy_cv_t<remove_reference_t<From>, To>>.

2.1.8 Logical operator traits [meta.logical]
1 No modification.

2.1.9 Endian [meta.endian]
1 No modification.

§ 2.1.9 8

	Contents
	1 Proposal
	1.1 History
	1.2 Introduction
	1.3 Impact on the standard
	1.4 Motivations and design decisions
	1.4.1 Pointers removal
	1.4.2 Qualifiers manipulation

	1.5 Technical specification
	1.6 Discussion and open questions
	1.6.1 Bikeshedding

	1.7 Acknowledgements
	1.8 References

	2 Wording
	2.1 Metaprogramming and type traits
	2.1.1 Requirements
	2.1.2 Header <type_traits> synopsis
	2.1.3 Helper classes
	2.1.4 Unary type traits
	2.1.5 Type property queries
	2.1.6 Relationships between types
	2.1.7 Transformations between types
	2.1.8 Logical operator traits
	2.1.9 Endian

