
Contracts That Work
Document #: P1429R2
Date: 2019-06-16
Project: Programming Language C++
Audience: EWG
Reply-to: Joshua Berne <jberne4@bloomberg.net>

John Lakos <jlakos@bloomberg.net>
Abstract

In a number of papers ([P1332R0], [P1333R0], [P1334R0], [P1429R0]) we have proposed a
re-envisioning of how to structure the semantics of C++ contracts both to clarify their behavior
and to enable solutions for important real-world use cases that come up immediately when
attempting to introduce contracts into existing production codebases. Here, we aim to present
refined wording for the fundamental changes we feel should be considered to solve the C++

community’s needs and desires for contracts.

Contents
1 Revision history 1

2 Overview 2

3 CCS Semantics 2
3.1 Ignore . 3
3.2 Assume . 3
3.3 Check (Never Continue) . 3
3.4 Check (Maybe Continue) . 3

4 CCS Syntax 4

5 Build Modes 4

6 Formal Wording 4

7 Conclusion 7

8 References 7

1 Revision history

• R2 – Refinements (Pre-Cologne, June 2019)

1

mailto:jberne4@bloomberg.net
mailto:jlakos@bloomberg.net

– Allowing side effects in all predicates

– Allowing checked predicate elision

• R1 – Additional wording clarifications (Post-Kona, February 2019)

– Consolidate to propose all semantics as explicitly usable.

– Removed mention of disabling contract checking entirely.

– Appendix sections A.1, A.2, A.3, and A.4.

• R0 – Initial draft (Pre-Kona, January 2019)

2 Overview

Contracts as originally specified in [P0542R5] consist of an attribute-like syntax for specifying contract
-checking statements (CCSs) within the language. This syntax allows for specifying contracts as
assertions (with assert), preconditions (with expects), or postconditions (with ensures). Each
CCS contains a conditional-expression (or predicate) that is expected to be true when control flow
reaches it. The current working paper (WP — [N4810]) fully captures how these different types
of CCSs relate to code meaning, so we will focus only on how CCSs behave in relation to their
surrounding code and other contracts by limiting our discussion to the assert “flavor” of CCSs.

The anticipated C++ contract checking facility (CCF) also introduces a violation handler that an
implementation is allowed to let users define for themselves (more restrictive implementations are
given the freedom to restrict the violation handler to one provided by the implementation). Our
semantics seek to make behavior of a CCS independent of the violation handler. A violation handler
may always choose to throw or abort, but to be the easiest to use for novices, we recommend that
the default violation handler should “log” information (a stack trace, etc.) about the problem and
return, leaving control flow up to the semantic in effect (for that specific CCS) at the call site.

What we seek to change is the way in which the behavior of a CCS is defined and determined, both
in code and at translation time. That is what the rest of this paper will focus on.

3 CCS Semantics

There are 4 semantics that are essential to the definition of the C++ CCF. Here, we are merely
giving names to the same semantics already accepted into the current draft of the working paper —
all for the sake of improving clarity. As a brief aside, we reprise how history arrived at the semantics
we are proposing here for C++.

• C’s assert macro allowed for 2 fundamental behaviors — do nothing (compile out, or
completely ignore) or abort on a failed check (which we call check_never_continue).

• Prior assertion facilities ([N3604], or Bloomberg’s BSLS_ASSERT) often enabled pluggable
behaviors for failed checks, including simply logging and continuing — we would call this
behavior check_maybe_continue.

2

• With the adoption of contracts as a language-level facility ([P0542R5]) the option for an
even more powerful way to leverage contracts became available by not checking contracts
but allowing the compiler to treat a contract failure as language undefined behavior — a
semantic which we would call assume. This was an option not achievable by any of the
previous library-only solutions.

Putting concise, clear definitions of all possible CCS semantics into the WP for C++ 20 would
improve future discussions of language interaction with contracts. Behavior can be discussed and
defined in terms of the semantics instead of specifying the exact combination of translation options
and code.

3.1 Ignore

The simplest semantic is to do nothing.

A CCS having the ignore semantic must be a valid expression - similar to the arguments of a sizeof
operator, the CCS predicate is a discarded statement. The actual predicate will not, however, ever
be evaluated and the CCS will have no other impact on the program meaning.

3.2 Assume

A CCS having the assume semantic will be syntactically checked and may (might) be assumed (by
the compiler) to be true. It is undefined behavior if the predicate were to return false. Notably, the
expression is never actually evaluated (and thus functions used in the expression need not be defined
for the program to be well-formed). Note also that there is no obligation on an implementation to
actually do anything with this information, and a conforming implementation can freely treat this
semantic identically to the ignore semantic.

3.3 Check (Never Continue)

A CCS having the check_never_continue semantic might evaluate the expression and if would be
false will invoke the violation handler. If the violation handler returns, std::abort will be invoked.
This guarantees that control flow will never continue if the predicate is false, so as a byproduct of
that behavior the predicate can be known to be true after the CCS.

3.4 Check (Maybe Continue)

A CCS having the check_maybe_continue semantic might evaluate the expression, and if it would
be false, will invoke the violation handler. If the violation handler returns control flow continues as
normal.

3

4 CCS Syntax

The current working paper allows each CCS to take an optional level (i.e., default, audit, or
axiom), and if none is specified, default is assumed. A level is mapped to an actual semantic (e.g.,
assume, check_never_continue. That mapping is performed (for each TU) at build time.

[P1334R0] proposes a way to cut out the middle man and specify the intended semantic directly in
the CCS itself. Explicit semantics like this bring us two useful properties:

• The CCS behavior is independent of build mode.

• The semantic of each CCS is independent of every other CCS in the same TU. It is this
critically important property that allows staging a check that is new and unverified in the
same TU as checks that are already fully enforced (or possibly even assumed).

Allowing an explicit check_maybe_continue CCS is a way to get a simple version of the “review”
role discussed in-depth in [P1332R0]. A contract that is going to be a default level contract can
be introduced first with the check_maybe_continue semantic, and it will then run “safely” without
risking bringing down systems which previously were violating it in a “benign” fashion.

In the wording, where previously a contract-attribute-specifier contained an optional contract-level,
now we would let that level be either a contract-level or a contract-semantic, and encapsulate that
by defining a new grammar non-terminal contract-mode. The allowed explicit semantics all need
to be added to [lex.name]/2 — identifiers with special meaning — as well as the grammar for
contract-semantic.

5 Build Modes

Contract control at build time is an essential part of a complete CCF. Being able to deploy the
same code in modes where the speed versus safety choice is made with different priorities facilitates
robustly deploying highly optmized and safe software.

CCSs with levels (default, audit, or axiom) should be independantly controlled (see [P1332R0]
for a more thorough discussion of why). In addition, numerous parties have expressed a strong
need to be able to turn off all CCSs completely (both to be absolutely sure program behavoir is
independant of predicate executiona and to obtain a build that never invokes the violation handler
or has arbitrary undefined behavior.) To facilitate these needs, we define a build mode that contains
a number of different values which together determine which semantic any given contract might
have.

6 Formal Wording

In [basic.def.odr]/12.6:

• ...

4

• if D invokes a function with a precondition, or is a function that contains an assertion or has a
contract condition (9.11.4), it is implementation-defined under which conditions all definitions
of D shall be translated using the same build level and violation continuation mode build
mode; and

• ...

In [gram.dcl] the following is changed:
contract-attribute-specifier

[[expects optcontract-level optcontract-mode : conditional-expression]]
[[ensures optcontract-level optcontract-mode optidentifier : conditional-expression
]]
[[assert optcontract-level optcontract-mode: conditional-expression]]

contract-mode
contract-level
contract-semantic

contract-semantic
check_maybe_continue
check_never_continue
ignore
assume

In [lex.name], four identifiers, check_maybe_continue, check_never_continue, ignore and
assume, are added to the table Identifiers with special meaning.

[dcl.attr.contract.syn]/6 gets the following changes:

The only side effects of a predicate that are allowed in a contract-attribute-specifier are modifications
of non-volatile objects whose lifetime began and ended within the evaluation of the predicate. An
evaluation of a predicate that exits via an exception invokes the function std::terminate The
behavior of any other side effect is undefined.

[dcl.attr.contract.check] gets replaced by the following (3 paragraphs removed completely for
brevity):

If the contract- level mode of a contract-attribute-specifier is absent, it is assumed to be a
contract-level of default. [Note: A default contract-level is expected to be used for those
contracts where the cost of run-time checking is assumed to be small (or at least not expensive)
compared to the cost of executing the function. An audit contract-level is expected to be used for
those contracts where the cost of run-time checking is assumed to be large (or at least significant)
compared to the cost of executing the function. An axiom contract-level is expected to be used for
those contracts that are formal comments and are not evaluated at run-time cannot be checked at
run-time - i.e., they cannot be implemented or would have significant side-effects if evaluated. A
contract-semantic is expected to be used for those contracts that need a semantic independent of
the build mode. —end note]

The violation handler of a program is a function of type “optnoexcept function of (lvalue reference to
const std::contract_violation) returning void”. The violation handler is invoked if indicated
by the semantics of the contract when the predicate of a a checked contract evaluates would evaluate

5

to false (called a contract violation). There should be no programmatic way of setting or modifying
the violation handler. It is implementation-defined how the violation handler is established for a
program and how the std::contract_violation argument value is set, except as specified below.
[Note: Implementations are encouraged but not required to provide a default violation handler
that outputs the contents of the std::contract_violation object then returns normally. —end
note] If a precondition is violated, the source location of the violation is implementation-defined
[Note: Implementations are encouraged but not required to report the caller site. —end note] If
a postcondition is violated, the source location of the violation is the source location of the function
definition. If an assertion is violated, the source location of the violation is the source location of
the statement to which the assertion is applied.

If a violation handler exits ... (unchanged note on throwing violation handlers and noexcept
functions.)

Every contract will be given a semantic at translation time that is ignore, assume, check_never_-
continue, or check_maybe_continue.

A translation may be performed with varying build modes. The mechanism for selecting build modes
is implementation-defined. The translation of a program consisting of translation units where the
build mode is not the same in all translation units is conditionally-supported, with implementation
defined semantics. There should be no programmatic way of setting modifying, or querying any
part of the build mode of a translation unit. The build mode contains the following values (checked
in order if specified to determine the semantic of any given contract):

• A global contract mode with a value of enabled or disabled. If specified as disabled, all contracts
have the ignore semantic. [Note: A global contract mode of enabled has no effect. —end
note]

• An axiom contract mode with a value of assume or ignore. If specified, all axiom level contracts
have the named semantic.

• A default contract mode with a value of assume, ignore, check_maybe_continue or check_-
never_continue. If specified, all default level contracts have the named semantic.

• A audit contract mode with a value of assume, ignore, check_maybe_continue or check_-
never_continue. If specified, all audit level contracts have the named semantic.

If not specified by the build mode, a default level contract has the semantic check_never_continue.

If not specified by the build mode, an audit level contract has the semantic ignore.

If not specified by the build mode, an axiom level contract has the semantic ignore.

If not specified by the build mode, a contract having a contract-semantic has the semantic named
by that contract-semantic.

A contract having the semantic ignore is not checked and not evaluated.

A contract having the semantic assume is not checked and not evaluated; if such a contract would
evaluate to false during constant expression evaluation it is unspecified if that expression is a core
constant expression; if the predicate of such a contract would evaluate to false in other contexts, the
behavior is undefined.

6

A contract having the semantic check_never_continue is checked, it is unspecified if the predicate
is evaluated. If the predicate of such a contract would evaluate to false, the violation handler is
invoked. If the violation handler is invoked and returns normally, std::abort will be invoked.

A contract having the semantic check_maybe_continue is checked, it is unspecified if the predicate
ise valuated. If the predicate of such a contract would evaluate to false, the violation handler is
invoked.

When the return value of the predicate of a contract with a checked semantic can be determined
without evaluating that predicate, an implementation is allowed to omit the evaluation of the
predicate, even if the predicate has side effects. [Note: Side effects of predicates are discouraged as
the validity of a program should not depend upon the evaluation (or not) of contract predicates.
—end note]

The predicate of a contract that does not have a checked semantic in any build mode is an unevaluated
operand.

[Note: During constant expression evaluation (7.7), an expression is not a core constant expression
if it invokes the violation handler, and it is unspecified if it is a core constant expression if it violates
an assumed contract. —end note]

[expr.const]/4 gets the following changes: An expression e is a core constant expression unless
the evaluation of e, following the rules of the abstract machine (6.8.1), would evaluate one of the
following expressions:

• ...

• a checked contract (9.11.4) whose predicate evaluates to false; any invocation of the violation handler ;

• ...

If e satisfies the constraints of a core constant expression, but evaluation of e would evaluate
an operation that has undefined behavior as specified in Clause 16 through Clause 32 of this
document, a contract with the assume semantic (9.11.4) whose predicate would evaluate to false,
or an invocation of the va_start macro, it is unspecified whether e is a core constant expression.

7 Conclusion

These proposed wordings capture the original stated intent of the merged contract proposal, with
the addition of the features in [P1333R0] and [P1334R0].

8 References

[N4810] Richard Smith, Working Draft, Standard for Programming Language C++

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/n4810.pdf

7

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/n4810.pdf

[N3604] John Lakos, Alexei Zakharov, Centralized Defensive-Programming Support for Narrow
Contracts
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3604.pdf

[N4075] John Lakos, Alexei Zakharov, Alexander Beels, Centralized Defensive-Programming Support
for Narrow Contracts (Revision 6)
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4075.pdf

[P0542R5] G. Dos Reis, J. D. Garcia, J. Lakos, A. Meredith, N. Myers, B. Stroustrup, Support for
contract based programming in C++

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0542r5.html

[P1290R0] J. Daniel Garcia, Avoiding undefined behavior in contracts
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1290r0.pdf

[P1290R1] J. Daniel Garcia, Ville Voutilainen Avoiding undefined behavior in contracts
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1290r1.pdf

[P1290R3] J. Daniel Garcia, Avoiding undefined behavior in contracts

[P1332R0] Joshua Berne, Nathan Burgers, Hyman Rosen, John Lakos, Contract Checking in C++:
A (long-term) Road Map
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1332r0.txt

[P1333R0] Joshua Berne, John Lakos, Assigning Concrete Semantics to Contract-Checking Levels
at Compile Time
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1333r0.txt

[P1334R0] Joshua Berne, John Lakos, Specifying Concrete Semantics Directly in Contract-Checking
Statements
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1334r0.txt

[P1335R0] John Lakos, ”Avoiding undefined behavior in contracts” [P1290R0] Explained
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1335r0.txt

[AKRZEMI1] Andrzej Krzemieński, Assigning semantics to different Contract Checking Statements
https://github.com/akrzemi1/__sandbox__/blob/master/papers/ccs_roles.md

[P1429R0] Joshua Berne, John Lakos Contracts That Work
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1429r0.pdf

[P1607R0] Joshua Berne, Jeff Snyder, Ryan McDougall http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2019/p1607r0.pdf

[P1670R0] Alisdair Meredith, Joshua Berne Side Effects of Checked Contracts and Predicate Elision

[P1671R0] Joshua Berne, Alisdair Meredith Contract Evaluation in Constant Expressions

[P1704R0] Andrzej Krzemieński, Joshua Berne Undefined functions in axiom-level contract state-
ments

8

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3604.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4075.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0542r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1290r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1290r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1332r0.txt
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1333r0.txt
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1334r0.txt
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1335r0.txt
https://github.com/akrzemi1/__sandbox__/blob/master/papers/ccs_roles.md
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1429r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1607r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1607r0.pdf

A Other Wording Improvements

Changes discussed in this section have been incorporated into the formal wording above, and we see
them as bug fixes on the previous version of this document and the working paper. These are the
result of further refinement, reflector discussions, and discussion with a number of people at the 2019
Kona meeting. Many also have separate proposals that look to add these features independantly of
this proposal.

A.1 constexpr Evaluation

See [P1671R0] for a discussion of this issue independant of the more foundational issues in this
proposal. This proposal incorporates the ideas and wording presented there.

Wording has been added to explicitly call out how both checked and unchecked contract violations
should be dealt with during constant expression evaluation. A checked contract violation was already
not-a-constant-expression, so any attempt to force compile time resolution of a function with a
checked contract violation would fail. An unchecked contract was previously always valid, and we
propose

A.2 terminate or abort

We have chosen std::abort for now on the advice of other committee members.

• Arguments for std::terminate

– There are no cases where the language currently injects any direct calls to std::abort.

– The use of std::terminate outside of exception handling has arguable already happened.

• Arguments for std::abort

– Contract violations should not call and confuse custom terminate handlers, especially
since the violation handler is already configurable.

– std::terminate as designed was for failures in the exception handling system, which
contract violations are not.

– Failure to use std::abort outside of exceptions before should not be continued now.

A.3 Side effects of predicates

See [P1670R0] for a discussion of this issue independant of the more foundational issues in this
proposal. This proposal incorporates the ideas and wording presented there.

The current draft declares almost all side effects of checked contracts to be undefined behavior. For
unchecked contracts (axioms) with the associated draft wording that allows evaluation this removes
the ability to safely use any contract that has a side effect. For checked contracts, this makes a wide
variety of functions that conceptually have no side effect become introducers of undefined behavior -

9

this includes any predicate that might need to allocate, log, access volatile variables, or use any c
function that might set errno. Precluding that entire class of functions from safe use in predicates
is problematic.

The desire to not allow side effects mostly stems from a desire to maintain the optionally-executable
nature of contracts. If a function has no side effects, you have no actual way to observe if it
was evaluated or not, so a compiler can freely elide the evaluation if it can determine the result
without executing it. Similarly, if the function has no side effects then correct programs that behave
observably differently in different build modes are precluded.

If we have checked semantics always evaluate contracts then the side of those predicates become
something users can depend upon. In order to prevent this, we explicitly allow the implementation
to omit the evaluation of the predicate if it can determine what the return value of the predicate
would be. Since the implementation still needs to determine if the predicate returns true or false,
compilers are left with two choices - evaluate the predicate or evaluate something without side
effects that provably always returns the same value as the predicate. This gives compilers with
enough semantic analysis the ability to freely elide contracts that it can prove are not being violated,
while not turning ’benign’ side effects into dangerous pitfalls of undefined behavior.

A.4 Axiom Behavior

See [P1704R0] for a discussion of this issue independant of the more foundational issues in this
proposal. This proposal incorporates the ideas and wording presented there.

Axioms as originally advertised allowed for 2 features that have not been successfully transcribed
into the wording for the standard.

• An axiom should be able to reference functions that are declared but not defined in order
to reference verbs meaningful only to static analyzers or to the compiler at compile time.
Currently the compiler may always evaluate any predicate (checked or not) ad this prevents
that.

• An axiom should be able to reference functions with side effects and trust they will not
evaluate. All predicates with side effects are thus labeled undefined behavior. This includes
predicates that are “never executed at runtime” — i.e., axioms.

The previous section addresses the second issue. To fix the first issue, after discussing the details
with core, we have modified how “assumed” contracts are worded, and have added the statement
that any contract that cannot be checked in any build mode is an unevaluated operand. This
maintains the feature that if a predicate can be checked the build mode you choose does not impact
what is ODR used or not.

A.5 Global Contract Mode

There is an inherent tension in terms of teachability and consistency with the introduction of
concrete semantics.

10

• Some people have expressed a strong desire that anything that looks like a contract should
have no functional impact on a program’s behavior, so all contract attributes should support
being “turned off”.

• Others have expressed a desire that when explicitly stating as semantic that line of code
should actually have that stated semantic, making it easier to test, build alternate facilities,
and reliably know in limitted cases exactly how a specific piece of a program will behave.

• Others still see the benefits of the concrete semantics on their own (especially assume), and
feel they would lose those benefits if there was an underlying off switch for those statements,
so if given a solution where the literal semantics were not actually literal we would then see
proposals for redundant facilities that spell almost the same behavior in a totally different
fashion.

We have put in a global contract mode which, when off , will force all CCSs to have a semantic of
ignore. The existence of this mode needs only one line of wording, and we think a simple vote on
the desire for it should determine the inclusion of that line in the standard.

A.6 Minimizing Contracts

One additional suggestion that has been made, [P1607R0], was to remove the build-time controls
and levels almost entirely. That proposal followed the wording in this paper very closely, simply
removing audit, axiom, and everything in the build mode other than a single on/off switch.

That approach remains a subset of the wording in this document, and would be easily applied if
that route was deemed preferable.

11

