
A Standard Audio API for C++:
Motivation, Scope, and Basic Design

Guy Somberg ​(guy@gameaudioprogrammer.com)

Guy Davidson ​(guy@hatcat.com)

Timur Doumler ​(papers@timur.audio)

Document #: P1386R0
Date: 2019-01-21
Project: Programming Language C++
Audience: SG13

“C++ is there to deal with hardware at a low level,
and to abstract away from it with zero overhead.”

– Bjarne Stroustrup, Cpp.chat Episode #44 1

Abstract

This paper proposes to add a low-level audio API to the C++ standard library. It allows a
C++ program to interact with the machine’s sound card, and provides basic data structures
for processing audio data. We argue why such an API is important to have in the standard,
why existing solutions are insufficient, and the scope and target audience we envision for it.

We provide a brief introduction into the basics of digitally representing and processing audio
data, and introduce essential concepts such as audio devices, channels, frames, buffers,
and samples.

We then sketch out a first design of such a low-level device access API, as well as examples
how to use it. A first draft implementation of the API is available online.

Finally, we mention some open design questions that require feedback from the committee,
and discuss additional features that are not yet part of the API as presented but will be
added in future papers.

1 See [CppChat]. The relevant quote is at approximately 55:20 in the video.

1

Contents
1 Motivation 3

1.1 Why Does C++ Need Audio? 3
1.2 Audio as a Part of Human Computer Interaction 4
1.2 Why What We Have Today is Insufficient 4
1.3 Why not Boost.Audio? 6

2 Previous Work 7

3 Scope 7

4 Target Audience 8

5 Background 8
5.1 What is Audio? 8
5.2 Representing audio data in C++ 9

5.2.1 Samples 9
5.2.2 Frames and Channels 10
5.2.3 Buffers 10

5.3 Audio Devices 11
5.4 Audio Software Interfaces 11

6 Design 12
6.1 Design Principles 12
6.2 Design Overview 12
6.3 Device Selection 13
6.4 Class device 13
6.5 Class buffer_list 16
6.6 Class buffer 16
6.7 Class buffer_view 17
6.8 Class strided_span 18
6.9 Algorithms 20

7 Example Usage 20
7.1 White Noise 20
7.2 Process in the Main Thread 21
7.3 Sine Wave 22
7.4 Low-Latency Processing of Microphone Input 22

8 Reference Implementation 24

9 Polls for the Committee 24
9.1 General Polls 24
9.2 Underlying Type of a Buffer 24
9.3 Alternate Backends 25

2

10 Future steps 26
10.1 Changing the Device Configuration 26
10.2 Detecting Device Configuration Changes 26
10.3 Combining Multiple Devices 27
10.4 Channel Convenience Naming 27
10.5 Clocks and Timestamps 27
10.6 Exclusive vs Shared Mode 27

11 References 28

Document Revision History

R0, ​2019-01-21: Initial version.

1 Motivation

1.1 Why Does C++ Need Audio?
Almost every computer, phone, and embedded device on the market today comes with
some form of audio output and (in many cases) input, yet there is no out-of-the-box support
for audio in the C++ language. Developers have to use a multitude of different
platform-specific APIs or middleware cross-platform frameworks. Wouldn’t it be great if the
basic functionality of talking to your sound card would come for free with every C++
compiler, as part of the C++ standard library? Not only would it allow one to write truly
cross-platform audio code, but it would also lower the barrier of entry for learning.

The principles of pulse-code modulation (PCM) go back to at least the 1920s [PCM], and
commodity PC hardware has been doing this exact thing since at least the early 1990s
[SoundCard] if not earlier. That gives us between 30 and 100 years of experience doing
audio the same way. These fundamentals have withstood the test of time - they have
remained virtually unchanged from its humble beginnings, through the invention of the MP3,
surround sound, and even now into the heyday of ambisonics and virtual reality. Throughout
all of this time, PCM is the ​lingua franca​ of audio. It is time to provide an interface to audio
devices in the C++ standard.

The job of the standard is to standardise existing practice. This proposal intends to draw
together current practice and present a way forward for a standard audio interface designed
using modern C++ features.

3

1.2 Audio as a Part of Human Computer Interaction
Since the advent of C, computing has changed considerably with the introduction and
widespread availability of graphics and the desktop metaphor. Human Computer Interaction
(HCI) is the field of study which considers how people interact with computers and
technology, and has expanded greatly since the introduction of personal computing. C++ is a
systems programming language widely used on the server as well as the client (mobile
phones and desktop computers). It is also a language which lacks library support for many
fundamental aspects of client computing. If C++ is to be a language for the client as well as
the server, it needs to complete its HCI support.

Games are often used to demonstrate the scope of requirements for HCI support. In order to
implement even the simplest of primitive games, you need at a minimum the following
fundamental tools:

● A canvas to draw on.
● Graphics support to draw specific figures.
● Input support for receiving user control events.
● Audio support for providing additional reinforcing feedback.

Currently, the C++ standard library provides none of these tools: it is impossible for a C++
programmer to create even a rudimentary interactive application with the tools built into the
box. She must reach for one or more third-party libraries to implement all of these features.
Either she must research the APIs offered by her program’s various supported host systems
to access these features, or she must find a separate library that abstracts the platform
away. In any case, these APIs will potentially change from host to host or library to library,
requiring her to learn each library’s particular individual quirks.

If C++ is there to deal with the hardware at a low level, as Bjarne Stroustrup said, then we
must have access to all of the hardware, and that includes the audio hardware.

Audio playback and recording has been solved many times over - a large number of both
proprietary and open-source libraries have been developed and implemented on a myriad of
platforms in an attempt to provide a universal API. Examples libraries include Wwise,
OpenAL, Miles Sound System, Web Audio, PortAudio, RtAudio, JUCE, and FMOD to name
a few. [AudioLibs] lists 38 libraries at the time of writing. While some of these APIs
implement higher-level abstractions such as DSP graphs or fancy tooling, at a fundamental
level they are all doing the exact same thing in the exact same way.

1.2 Why What We Have Today is Insufficient
The corpus of audio libraries as it exists today has a few fundamental problems:

● The libraries are often platform-specific.
● There is a lot of boilerplate code that cannot be shared among platforms.
● The libraries are not written to be able to take advantage of modern syntax and

semantics.

4

Consider the “Hello World” of audio programming: the playback of white noise, which is
generated by sending random sample data to the output device. Let’s examine what this
code will look like on MacOS with the CoreAudio API and on Windows with WASAPI, the
foundational audio libraries on their respective platforms. (The code in this section has been
shrunk to illegibility on purpose in order to show the sheer amount of boilerplate required.)

MacOS CoreAudio Windows WASAPI

AudioObjectPropertyAddress pa = {
 kAudioHardwarePropertyDefaultInputDevice,
 kAudioObjectPropertyScopeGlobal,
 kAudioObjectPropertyElementMaster
};
uint32_t dataSize;
if (noErr != AudioObjectGetPropertyDataSize(
 kAudioObjectSystemObject, &pa, 0, nullptr, &dataSize)
 || dataSize != sizeof(AudioDeviceID))
 return err;

AudioDeviceID deviceID;
if (noErr != AudioObjectGetPropertyData(
 kAudioObjectSystemObject, &pa, 0, nullptr, &dataSize,
&deviceID))
 return err;

AudioDeviceIOProcID ioProcID;
if (noErr != AudioDeviceCreateIOProcID(
 deviceID, ioProc, nullptr, &ioProcID))
 return err;
if (noErr != AudioDeviceStart(deviceID, ioProc)) {
 AudioDeviceDestroyIOProcID(deviceID, ioProcID);
 return err;
}

AudioDeviceStop(deviceID, ioProc);
AudioDeviceDestroyIOProcID(deviceID, ioProcID);

OSStatus ioProc(AudioObjectID deviceID,
 const AudioTimeStamp*,
 const AudioBufferList*,
 const AudioTimeStamp*,
 AudioBufferList* outputData,
 const AudioTimeStamp*,
 void*)
{
 if (outputData != nullptr) {
 const size_t numBuffers = outputData->mNumberBuffers;

 for (size_t iBuffer = 0; iBuffer < numBuffers; ++iBuffer) {
 const AudioBuffer& buffer = outputData->mBuffers[iBuffer];
 const size_t numSamples = buffer.mDataByteSize /
sizeof(float);

 float* pDataFloat = reinterpret_cast<float*>(buffer.mData);
 for (size_t i = 0; i < buffer.mDataByteSize; ++i) {
 pDataFloat[i] = get_random_sample_value();
 }
 }
 }
 return noErr;
}

CoCreateInstance(CLSID_MMDeviceEnumerator, NULL, CLSCTX_ALL,

 IID_IMMDeviceEnumerator, (void**)&pEnumerator);

pEnumerator->GetDefaultAudioEndpoint(eRender, eConsole,

&pDevice);

pDevice->Activate(IID_IAudioClient, CLSCTX_ALL, NULL,

 (void**)&pAudioClient);

pAudioClient->GetMixFormat(&pwfx);

pAudioClient->Initialize(AUDCLNT_SHAREMODE_SHARED, 0,

 hnsRequestedDuration, 0, pwfx, NULL);

pAudioClient->GetBufferSize(&bufferFrameCount);

pAudioClient->GetService(IID_IAudioRenderClient,

(void**)&pRenderClient);

pMySource->SetFormat(pwfx);

pRenderClient->GetBuffer(bufferFrameCount, &pData);

pRenderClient->ReleaseBuffer(bufferFrameCount, flags);

hnsActualDuration =

 (double)REFTIMES_PER_SEC * bufferFrameCount /

pwfx->nSamplesPerSec;

pAudioClient->Start();

while (flags != AUDCLNT_BUFFERFLAGS_SILENT) {

 Sleep((DWORD)(hnsActualDuration/REFTIMES_PER_MILLISEC/2));

 pAudioClient->GetCurrentPadding(&numFramesPadding);

 numFramesAvailable = bufferFrameCount - numFramesPadding;

 pRenderClient->GetBuffer(numFramesAvailable, &pData);

 float* pDataFloat = reinterpret_cast<float*>(pData);

 for(int i=0; i<numFramesAvailable; i++) {

 pDataFloat[i] = get_random_sample_value();

 }

 pRenderClient->ReleaseBuffer(numFramesAvailable, flags);

}

Sleep((DWORD)(hnsActualDuration/REFTIMES_PER_MILLISEC/2));

pAudioClient->Stop();

In both of these examples, the large majority of this code simply sets up devices and buffers:
only the sample-generating code (in blue) actually updates the output buffer in any way.
Note that the sample-generating code is basically identical between the CoreAudio and
WASAPI code . 2

The amount of boilerplate code has prompted the creation of several libraries which attempt
to abstract devices and buffers. The same example using JUCE looks like this:

2 If you can read it at that font size...

5

JUCE

class MainComponent : public AudioAppComponent
{
public:
 MainComponent() {
 setAudioChannels (2, 2);
 }

 ~MainComponent() {
 shutdownAudio();
 }

 void prepareToPlay (int samplesPerBlockExpected, double sampleRate) override {}

 void getNextAudioBlock (const AudioSourceChannelInfo& bufferToFill) override {
 ​for (auto channel = 0; channel < bufferToFill.buffer->getNumChannels(); ++channel) {
 auto *buffer = bufferToFill.buffer->getWritePointer(channel, bufferToFill.startSample);
 for (auto sample = 0; sample < bufferToFill.numSamples; ++sample)
 buffer[sample] = get_random_sample_value();
 }
 }

 void releaseResources() override {}
 void paint (Graphics&) override {}
 void resized() override {}

 JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (MainComponent)
};

In this case, the abstraction is achieved by declaring a base class and requiring the client to
override several member functions. While this does require less code, there is still
redundancy in the form of four empty overridden functions, as well as a macro hiding a
chunk of housekeeping. And, once again, our buffer-filling (blue) code is nearly identical.

In the first two code samples (CoreAudio and WASAPI), the code is calling a C API, and
thus is limited in its ability to take advantage of modern C++ abstractions. The third code
sample (JUCE) could have been written using C++98, with only the override keyword hinting
at modern implementation.

New C++ language features have made it possible to write clearer, more concise code. It is
the authors’ intent to specify a modern interface to audio programming.

1.3 Why not Boost.Audio?
Obligatory reference to xkcd:

Source: ​https://xkcd.com/927/

6

https://xkcd.com/927/

Consider that a hypothetical Boost.Audio library existed with some interface not dissimilar to
what is described in this paper. This is great for everybody who has access to a platform
that Boost supports, and who is on a team that includes the boost libraries. But, let us say
that a new embedded chip or a new operating system comes on the market with a new and
different API for communicating with the audio hardware. How do users of a hypothetical
Boost.Audio library access the audio hardware?

The problem is that Boost.Audio does not support this new audio hardware out of the box.
Users of these new systems must either modify Boost.Audio to support their hardware
(hopefully submitting a patch to Boost in the process), or they have to abandon their use of
Boost.Audio for the unsupported platforms and split their codebase.

If, on the other hand, audio capabilities were a part of the standard library provided by the
compiler, then the embedded chip or OS vendor could write one single high-quality
implementation, ship it with the standard library, and all of their customers will immediately
be able to use their existing ​std::audio​ code on the new hardware.

2 Previous Work
This is the first paper formally proposing audio functionality for the C++ standard. To our
knowledge, the most serious discussion so far of such an idea is a thread from 2016 on the
Future C++ Proposals Google group (see [Forum]). The author was initially sketching out a
higher-level approach to audio based on stream-like semantics. Some of the criticism in the
ensuing discussion was that this wasn’t sufficiently low-level, didn’t give direct access to the
actual underlying audio data (samples, frames) and basic operations on it such as
deinterleaving, wasn’t directly based on existing audio libraries, and didn’t have a way to
interact with the concrete audio device used by the OS for audio I/O. The proposal we
present here fulfils all of those requirements.

Later parts of the Google group discussion explore different design ideas towards a more
universal low-level API for audio, some of which are part of our design as well.

Before publishing this paper, we presented an earlier draft of our proposal in November
2018 at the Audio Developer Conference in London (see [ADC]). We received
overwhelmingly positive feedback for this proposal from the industry. We also received lots
of useful technical feedback on the API design, and incorporated it into this paper.

3 Scope
This paper describes a low-level audio playback and recording device access API, which will
function for a large class of audio devices. This API will work on commodity PC hardware
(Windows, MacOS, Linux, etc.), microcontrollers, phones and tablets, big iron, exotic

7

hardware configurations, and even devices with no audio hardware at all . Additionally, we 3

target non-realtime use cases for command-line or GUI tools that want to operate on audio
data without actually rendering it to an audio device.

Defining what is not supported is as much important as defining what is. This paper does
not seek to implement any features related to MIDI, FM synthesis, audio file
parsing/decompression/playback, buffered streaming from disk or network, or a DSP graph . 4

At least some of these omitted features are in scope for a ​std::audio​ library, but those
features will come either in later revisions of this paper, or in papers of their own once the
fundamentals have been laid out in this document.

4 Target Audience
Because the API presented in this paper is a low-level audio device access API, it is
targeted at two broad categories of people: audio professionals and people learning
low-level audio programming. The classes and algorithms are the same algorithms that
professionals currently have to write for their target platforms, and they are designed for
minimum overhead. At the same time, a beginner who wants to learn low-level audio
programming will find the interfaces intuitive and expressive because they map directly to
the fundamental concepts of audio.

However, because this API does not (yet) provide any facilities for functionality like loading
and playing audio files, there is a category of programmers for whom this library is too
low-level. For those people, we hope to include a suite of libraries in succession papers
once this paper has been put through its paces.

5 Background

5.1 What is Audio?
Fundamentally, audio can be modeled as waves in an elastic medium. In our normal
everyday experience, the elastic medium is air, and the waves are air pressure waves. The
differences in air pressure is sensed by our ears, and our brains interpret the signals as
sound. For more details on the fundamentals of audio and hearing, along with additional
references, see Chapter 1 by Stephen McCaul of [GAP]. Additionally, for an interactive
document which can help to create an intuition for sound and audio, see [Waveforms].

From chapter 1 of [GAP]:
“Any one-dimensional physical property can be used to represent air pressure at an instant
in time. If that property can change over time, it can represent audio. Common examples

3 Obviously, devices with no audio hardware will not generate any audio, but the API is aware of such
devices and respects the principle that “you don’t pay for what you don’t use” on such devices.
4 DSP graphs are the most common way to represent complex audio processing chains.

8

are voltage (the most common analog), current (dynamic microphones), optical transitivity
(film), magnetic orientation (magnetic tape), and physical displacement (records).
[...]
The ubiquitous representation for processing sound [...] is pulse-code modulation, or PCM.
This representation consists of a sequence of [values] that represent the sound pressure at
equally spaced times.”

More precisely, the representation most commonly used is Linear PCM (LPCM). There are
other digital representations such as delta modulation, but they are much less widely-used.
In this paper, we have deliberately chosen LPCM because it is the de facto standard for
audio applications and drivers.

5.2 Representing audio data in C++

5.2.1 Samples
A ​sample​ is the fundamental unit of audio, which represents the amplitude of an audio signal
at a particular point in time. It is represented as a single numeric value, typically either a
floating point number in the range -1..+1 or a signed integer, but may also be another type
that is appropriate to the target platform. The ​sample rate​ or sampling frequency is the
number of samples per second. Typical sample rates are 44,100 Hz, 48,000 Hz, and 96,000
Hz. The ​bit depth​ is the number of bits of information in each sample, which can be lower
than the number of bits available in the numeric data type used. Typical bit depths are 16 bit
or 24 bit.

9

5.2.2 Frames and Channels
A ​frame​ is a collection of samples referring to the same point in time, one for each output
(typically a speaker) or input (typically a microphone). For example, a stereo (two-speaker)
output will have 2 samples in the frame, one for the left speaker and one for the right. A
“5.1” channel surround sound system will have six samples in the frame: left, center, right,
surround left, surround right, and LFE (low-frequency emitter, typically referred to as a
“subwoofer”). Each sample within a frame is targeted at a particular speaker, and we refer
to the collection of samples targeted for a particular speaker as a ​channel​.

5.2.3 Buffers
A ​buffer​ is a collection of frames, typically laid out in a contiguous array in memory. Using
such a buffer for exchanging data with the sound card greatly reduces the communication
overhead compared to exchanging individual samples and frames, and is therefore the
established method. On the other hand, buffers increase the latency of such data exchange.
The tradeoff between performance and latency can be controlled with the ​buffer size​. This
will often be a power-of-two number. On desktop machines and phones, typical buffer sizes
are between 64 and 1024 samples per buffer.

There are two orderings for buffers: interleaved and deinterleaved. In an interleaved buffer,
the channels of each frame are laid out sequentially, followed by the next frame. In a
deinterleaved buffer, the channels of each frame are laid out sequentially, followed by the
next channel laid out sequentially.

It is probably easiest to view this visually. In the following tables, each square represents a
single sample, L stands for “left channel”, and R stands for “right channel”. Each buffer
contains four frames of stereo audio data.

Interleaved:

L R L R L R L R

Deinterleaved:

L L L L R R R R

Another example, this time with a 5.1-channel setup. Here L = left, R = right, C = center, SL
= surround left, SR = surround right, LFE = low-frequency emitter. In order to fit onto a page,
there are only three frames in these buffers.

Interleaved:

L R C SL SR LFE L R C SL SR LFE L R C SL SR LFE

10

Deinterleaved:

L L L R R R C C C SL SL SL SR SR SR LFE LFE LFE

5.3 Audio Devices
A ​device​ is the software interface to the physical hardware that is outputting or inputting
audio buffers. Audio hardware consists of a digital to analog converter (DAC) for output
devices (speakers), and/or an analog to digital converter (ADC) for input devices
(microphones).

Under the hood, devices have a double buffer of audio data : the device consumes one 5

buffer while the software fills the other. However, the audio device ​does not wait​ for the
previous buffer to complete before swapping the buffers. In fact, it cannot, because time
moves forward whether or not we are ready for it. This is important, because it means that
audio is a near real-time system . Missing even a single sample is unacceptable in audio 6

code, and will typically result in an audible glitch.

Every time a buffer context switch occurs, the device signals that its memory buffer is ready
to be filled (output) or consumed (input). At that moment, the program has a very short
window of time - typically a few milliseconds at most - in which to fill or consume the buffer 7

with audio data before the buffer is switched again. At a fundamental level, the design
proposed in this document is about hooking into this moment in time when the buffer is
ready and exposing it to user code.

5.4 Audio Software Interfaces
There are two broad categories of audio APIs: polling APIs and callback APIs.

In a callback API, the operating system fabricates a thread on your program’s behalf and
calls into user code through that thread every time a buffer becomes available. One
example of a callback-based API is MacOS CoreAudio.

In a polling API, the user code must check periodically whether a buffer is available. The
polling function will return a valid buffer when one is available, and the user code can
process it. Some polling systems will provide an event handle that can be used to block the
user code until a buffer is available. Examples of polling APIs are Windows WASAPI (which
includes an event handle) and any embedded devices which do not have an operating
system (and therefore cannot create threads).

5 As with everything in C++, this explanation follows the “as if” rule. The actual mechanics are more
complex, but the distinctions are not important to this paper.
6 Audio processing exhibits many of the properties of a hard real-time system, but in most contexts
there is an operating system and a thread scheduler between the audio software and the chip. So,
although it is tempting to call it so, “hard real-time” is not technically correct in most cases.
7 An example: a common sample rate is 48,000 Hz, and a common buffer size is 128 samples. 128
samples divided by 48,000 samples per second gives just 2.66 milliseconds to fill the buffer.

11

On systems where threads are available, the audio will typically be driven by a thread (in
callback APIs, there is no other choice!). Due to the time restrictions, it is critically important
that these threads perform no operations that could possibly block for an indeterminate
length of time. This means that there can be no file or network I/O, no locks, and no memory
allocations. Algorithms and data structures that are used in the audio thread are typically
either lock-free or wait-free. Additionally, the thread is typically run at the highest available
OS priority.

6 Design

6.1 Design Principles
The API in its current form is a low-level device access API, intended to be the
least-common denominator. As the quote from the first page of this document indicates, the
API must abstract the hardware at a low level, and leave no room for a lower-level interface.
Thus, this API, by necessity, is bare-bones. However, it lays the foundations for higher-level
abstractions that can come in the future, or which users can build upon to create their own
software and libraries.

Another thing to note is that this paper is not inventing anything. While the API surface of
this library is distinctive, it is an attempt to standardize a common denominator among
several popular low-level device access APIs

6.2 Design Overview
This paper (the R0 version) will cover a high-level design of the various classes and
structures and their relationships. If we get positive feedback on this design, then future
versions will include proposed wording and completely fleshed-out APIs.

Broadly, the proposed design provides abstractions for each of the concepts defined in
Section 5 of this document:

● std::experimental::audio::device_list​ - A list of devices that are available on
the system.

● std::experimental::audio::device​ - Communicates with an audio input or
output driver.

● std::experimental::audio::buffer_list​ - Passed by a device to the audio
callback. Provides zero or more input and output buffers that the device is expecting
to be filled (for output devices) or containing audio data (for input devices).

● std::experimental::audio::buffer​ - A range of multi-channel audio data.
● std::experimental::audio::buffer_view​ - A view into a buffer that interprets it

as a collection of channels or a collection of frames.
● std::experimental::audio::strided_span​ - A view into a buffer that has a

known length and has a “stride” into the underlying data such that all of the channels
of a single frame, or all of the individual channels of the buffer are iterated over.

12

The remainder of this section will go into greater detail about the specific classes, their
usage, and their APIs. Unless stated otherwise, all free functions and classes are in the
std::experimental::audio​ namespace.

Note that this API is intentionally incomplete so that the signal does not get overwhelmed by
the noise. For example, we have left out constructors, destructors, allocator support, and
thorough noexcept to name but a few items. These functions and more will come in future
revisions of this document, once we have encouragement from SG13 to continue in this
direction.

6.3 Device Selection
The first entry point to ​std::audio​ is to figure out which device you wish to communicate
with using the device selection routines.

device get_default_input_device()

device get_default_output_device()

Returns​: device objects referring to the system-default input or output device. If there is no
default input or output device, returns a default-constructed device.

device_list get_input_device_list()

device_list get_output_device_list()

Returns​: device_list objects which will iterate over the input or output devices that are
currently available on the system.

class device_list {

 iterator begin();

 iterator end();

};

6.4 Class ​device
After using the device selection API, you will end up with a ​device​ object. The ​device​ class
communicates with the underlying audio driver, and can be run in a threaded mode or a
polling mode. A device can have only inputs, only outputs, or both inputs and outputs.

enum class buffer_order

{

 interleaved,

 deinterleaved

};

class device

{

 using sample_type = <tbd>

 using callback = void(*)(device&, buffer_list&);

13

 buffer_order get_native_ordering() const noexcept;

 size_t get_sample_rate() const noexcept;

 size_t get_buffer_size() const noexcept;

 size_t get_bit_depth() const noexcept;

 void connect(callback cb);

 void start();

 void stop();

 void wait() const;

 template<class Rep, class Period>

 void wait_for(std::chrono::duration<Rep, Period> rel_time) const;

 template<class Clock, class Duration>

 void wait_until(std::chrono::time_point<Clock, Duration> abs_time)

const;

 void process(callback cb);

};

buffer_order device::get_native_ordering() const noexcept

Returns​: The buffer order of the data in the buffers contained in the ​buffer_list​ passed to
the callback, which is accessible via ​buffer::raw()​.

size_t device::get_sample_rate() const noexcept

Returns​: The sample rate that the device is configured to play at.

size_t device::get_buffer_size() const noexcept

Returns​: The size of the buffer in bytes that the device will provide to the callback.

size_t device::get_bit_depth() const noexcept

Returns​: The number of bits actually used in the data type. This number is guaranteed to be
less than or equal to ​sizeof(sample_type) * CHAR_BIT​.

void device::connect(callback cb)

Results​: Attaches a callback to execute when the audio device is ready to receive one or
more buffers of audio data (output devices) or has generated one or more buffers of audio
data (input devices). If this function is being used, it must be called before calling ​start()​.
If this function is called after ​start()​, an exception is thrown. The thread that is generated
acts as if it contained the following code:

void thread_func() {

 while(!stopped) {

 wait();

 process(cb);

14

 }

}

void start()

Results​: Initializes the underlying audio device to begin requesting (output devices) or
generating (input devices) audio data. If ​connect()​ has been called on this device, the
audio device will be driven by a separate thread, which is started at this point. The thread
may be created by the library or by the operating system. If a thread has been requested
but cannot be created, then an exception is thrown.

void stop()

Results​: Shuts down the underlying audio device so that it no longer requests (output
devices) or generates (input devices) audio data. If a thread was created, it is joined or
detached when this function returns. If ​start()​ has not been called, then this function has
no effect.

void device::wait() const

Results​: Waits until the device is ready with at least one buffer of audio data. If the device is
configured to drive a thread (by calling ​connect()​), or the device is not currently running
(​start()​ has not yet been called or ​stop()​ has been called), then this function returns
immediately.

template<class Rep, class Period>

void wait_for(std::chrono::duration<Rep, Period> rel_time) const

Results​: Waits until either the device is ready with at least one buffer of audio data, or the
specific duration has elapsed. If the device is configured to drive a thread (by calling
connect()​), or the device is not currently running (​start()​ has not yet been called or
stop()​ has been called), then this function returns immediately.

template<class Clock, class Duration>

void wait_until(std::chrono::time_point<Clock, Duration> abs_time) const

Results​: Waits until either the device is ready with at least one buffer of audio data, or until
the absolute timeout has expired. If the device is configured to drive a thread (by calling
connect()​), or the device is not currently running (​start()​ has not yet been called or
stop()​ has been called), then this function returns immediately.

void process(callback cb);

Results​: Checks to see if the device has at least one buffer of audio data available. If so, it
calls the callback with ​*this​ and a ​buffer_list​ referencing all available buffers. If the
device is configured to drive a thread (by calling ​connect()​), the device is not currently
running (​start()​ has not yet been called or ​stop()​ has been called), or there are no audio
buffers available, then this function returns immediately.

15

6.5 Class ​buffer_list
A ​buffer_list​ is a wrapper for two collections: one for input buffers and one for output
buffers. Most consumer devices (in fact, all systems that these authors know about) will
have either zero or one entry in the collection - a fact which implementers are expected to
take advantage of. However, this API does not wish to preclude devices which are unknown
to the authors - or which do not yet exist - which may provide multiple buffers to be filled.

class buffer_list

{

 span<buffer> input_buffers() const noexcept;

 span<buffer> output_buffers() const noexcept;

};

span<buffer> buffer_list::input_buffers() const noexcept

Returns​: A ​span​ containing zero or more buffers of audio data that has been generated by
the device.

span<buffer> buffer_list::output_buffers() const noexcept

Returns​: A ​span​ containing zero or more buffers of audio data that the device has requested
to be filled.

6.6 Class ​buffer
A ​buffer​ is a random access collection of samples with different accessors for raw,
interlaced, and deinterlaced views of the data.

class buffer

{

 buffer_order get_ordering() const noexcept;

 span<value_type> raw() const noexcept;

 buffer_view channels() const noexcept;

 buffer_view frames() const noexcept;

};

buffer_order buffer::get_ordering() const noexcept

Returns​: The buffer order of the underlying buffer, as returned by ​raw()​.

span<value_type> buffer::raw() const noexcept

Returns​: The underlying buffer.

buffer_view buffer::channels() const noexcept

16

Returns​: A view of the underlying buffer as a deinterleaved collection of collections of
channels.

buffer_view buffer::frames() const noexcept

Returns​: A view of the underlying buffer as an interleaved collection of collections of frames.

6.7 Class ​buffer_view
A ​buffer_view​ is a read-only collection view of a ​buffer​ that is crafted such that it iterates
over the channels or frames of the underlying buffer as appropriate. Note that it is not
actually a container because it returns by value rather than by reference. The type that it
returns is itself a collection view into the underlying buffer, which means that it does not own
the data, so returning a reference is inappropriate. This differs from the normal container
requirements in that it is not actually storing its own data, but rather is a view into some data
that is owned by the buffer.

class buffer_view

{

 using value_type = strided_span;

 using size_type = size_t;

 // other types as necessary...

 size_type size() const noexcept;

 value_type operator[](size_t index) const noexcept;

 value_type operator[](size_t index) noexcept;

 value_type at() const;

 value_type at();

 class iterator;

 class const_iterator;

 iterator begin();

 const_iterator begin() const;

 const_iterator cbegin() const;

 iterator end();

 const_iterator end() const;

 const_iterator end() const;

 // other read-only container functions...

};

value_type operator[](size_t index) const

value_type operator[](size_t index)

Returns​: A ​strided_span​ starting at the given index and with the appropriate stride to
access the underlying buffer’s data appropriately. For example, if the underlying data is

17

2-channel interleaved and this ​buffer_view​ was created from the ​buffer::frames()
function, then ​operator[]​ will return a ​strided_span​ with a size of 2 and a stride of 1. If
the underlying data is 4-channel deinterleaved and this ​buffer_view​ was created from the
buffer::channels()​ function, then ​operator[]​ will return a ​strided_span​ with a size of
4 and a stride of ​(buffer.raw().size() / 4)​.

6.8 Class ​strided_span
A ​strided_span​ is a span which supports skipping entries from the underlying buffer
according to some stride. As with ​buffer_view​, it is intended to access data owned by the
buffer​.

The purpose of ​strided_span​ is to step through the contents of a memory buffer owned by
another entity in a specific order. Let us take one of the examples from section 5.2.3,
reproduced here in its original form:

Interleaved:

L R C SL SR LFE L R C SL SR LFE L R C SL SR LFE

Deinterleaved:

L L L R R R C C C SL SL SL SR SR SR LFE LFE LFE

Let us say that we wish to examine this data as a sequence of frames, each one containing
a Left, Right, Center, Surround Left, Surround Right, and LFE channel. We can implement
our ​strided_span​ as an offset into the buffer combined with a stride and a total count:

template<class T>

class strided_span

{

 // …

private:

 T* buffer;

 size_t offset;

 size_t stride;

 size_t total_count;

};

So, for this buffer, we will have the following:

 Interleaved Deinterleaved

Frame 0 Offset: 0
Stride: 1
Count: 6

Offset: 0
Stride: 3
Count: 6

18

Frame 1 Offset: 6
Stride: 1
Count: 6

Offset: 1
Stride: 3
Count: 6

Frame 2 Offset: 12
Stride: 1
Count: 6

Offset: 2
Stride: 3
Count: 6

Matching the colors to the buffers, we get this as expected:

Interleaved:

L R C SL SR LFE L R C SL SR LFE L R C SL SR LFE

Deinterleaved:

L L L R R R C C C SL SL SL SR SR SR LFE LFE LFE

We can also use the strided_span to view the buffer’s contents as an array of channels.
This time we will use our two-channel stereo setup from section 5.2.3 as an example : 8

Interleaved:

L R L R L R L R

Deinterleaved:

L L L L R R R R

Our table now looks like this:

 Interleaved Deinterleaved

Left channel Offset: 0
Stride: 2
Count: 4

Offset: 0
Stride: 1
Count: 4

Right channel Offset: 1
Stride: 2
Count: 4

Offset: 4
Stride: 1
Count: 4

And, mapping the colors we get:

Interleaved:

L R L R L R L R

8 Mostly this is so that I don’t have to come up with six different background colors to use.

19

Deinterleaved:

L L L L R R R R

Note that in both of these examples, the stride and count are fixed, whereas the offset
increments either by 1 or by the count.

6.9 Algorithms
Currently, the only algorithms are related to interleaving and deinterleaving of buffers.
According to [Jain] there exists an O(n) time O(1) space algorithm for a two-way interleave,
and the same paper posits that there exist such algorithms for k-way shuffles.

template<class RandomAccessIterator>

void interleave(

 RandomAccessIterator begin, RandomAccessIterator end, size_t channels)

Result​: Assumes that the input range is deinterleaved. Swaps the members such that the
input range is interleaved.

template<class RandomAccessIterator>

void deinterleave(

 RandomAccessIterator begin, RandomAccessIterator end, size_t channels)

Result​: Assumes that the input range is interleaved. Swaps the members such that the input
range is deinterleaved.

template<class RandomAccessIterator>

void set_buffer_order(

 RandomAccessIterator begin, RandomAccessIterator end, size_t channels,

 buffer_order input_order, buffer_order output_order)

Result​: As-if the following code:

if(input_order == output_order)

return;

if(output_ordering == buffer_ordering::interleaved)

interleave(begin, end, channels);

else

deinterleave(begin, end, channels);

7 Example Usage

7.1 White Noise
In audio, white noise refers to a random signal that has equal intensity at different
frequencies [Noise]. We can generate white noise by picking uniformly distributed random

20

values within the allowed value range. We use the ​minstd_rand​ engine because it is
smaller and faster than other generators.

random_device rd;

minstd_rand engine{rd()};

uniform_real_distribution<float> distribution{-1.0f, 1.0f};

float get_random_sample_value() {

 return distribution(engine);

}

int main() {

 using namespace std::experimental::audio;

 auto device = get_default_output_device();

 device.connect([](device& d, buffer_list& bl) {

 for (auto& buffer : bl.output_buffers()) {

 for (auto& channel : buffer.channels()) {

 for (auto& sample : channel) {

 sample = get_random_sample_value();

 }

 }

 }

 });

 device.start();

 while(true); // Spin forever

}

7.2 Process in the Main Thread
On systems with a polling API such as WASAPI on Windows, you can drive the audio from
the main thread if you so choose.

int main() {

 using namespace std::experimental::audio;

 auto device = get_default_output_device();

 auto callback = [](device& d, buffer_list& bl) { /* ... */ };

 device.start();

 while(true) {

 device.wait();

 device.process(callback);

 }

}

21

7.3 Sine Wave
White noise is all well and good, but what if we want to actually generate something real?
We’ll generate a 440 Hz sine wave. (For musicians , that’s an A.) 9

int main() {

 using namespace std::experimental::audio;

 auto d = get_default_output_device();

 const double frequency_hz = 440.0;

 const double delta = 2.0 * M_PI * frequency_hz / d.get_sample_rate();

 double phase = 0;

 d.connect([=](device&, buffer_list& bl) mutable {

 for (auto& buffer : bl.output_buffers()) {

 for (auto& frame : buffer.samples()) {

 auto next_sample =

 static_cast<device::sample_type>(std::sin(phase));

 phase += delta;

 for (auto& sample : frame)

 sample = next_sample;

 }

 }

 });

 device.start();

 while(true); // Spin forever

}

7.4 Low-Latency Processing of Microphone Input
Here we are reading input samples from the microphone, passing them to some library that
performs processing on the raw memory buffer (this library assumes that the buffer is
interleaved), and then writing the processed buffer to the device’s output buffer. Note that,
although this example is long compared with the others, it is still less than 30 lines of code
(not including comments or whitespace) for a fairly complex task.

int main() {

 using namespace std;

 using namespace std::experimental::audio;

9 Although some orchestras will tune to 441 Hz, or even 442 Hz. Interesting historical tidbit: the audio
CD format runs at 44,100 Hz, which is exactly enough for 100 samples per pulse for an A at a 441 Hz.

22

 // We will presume that this is an input/output device

 auto d = get_default_output_device();

 vector<device::sample_type> processed_data;

 d.connect([&](device& d, buffer_list& bl) {

 // First process the input buffers

 for (auto& buffer : bl.input_buffers()) {

 // Get the raw input buffer and make sure that it is

 // in the correct order for the third-party library.

 auto raw_buffer = buffer.raw();

 set_buffer_order(begin(raw_buffer), end(raw_buffer),

 buffer.channels().size(),

 buffer.get_ordering(),

 buffer_order::interleaved);

 // Pass the buffer to the third-party library to process

 ThirdPartyLib::Process(raw_buffer);

 // Copy the contents of the buffer to send to the output.

 size_t current_size = processed_data.size();

 size_t raw_buffer_size = raw_buffer.size();

 processed_data.resize(current_size + raw_buffer_size);

 copy(begin(raw_buffer), end(raw_buffer),

 processed_data.data() + current_size);

 }

 // Now process the output buffers

 for (auto& buffer : bl.output_buffers()) {

 // We are once again operating on raw buffers.

 auto raw_buffer = buffer.raw();

 // Grab the next processed buffer and make sure that it is

 // in the correct order

 span<device::sample_type> processed_samples

 { processed_data.data(),

 min(processed_data.size(), raw_buffer.size()) };

 // Put the processed data back into device native ordering.

 // We are assuming that input channel count is equal to

 // output channel count for simplicity of the example. In

 // reality, you would have to perform a channel mapping by hand.

 set_buffer_order(begin(processed_samples), end(processed_samples),

 buffer.channels().size(),

 buffer_order::interleaved,

 buffer.get_ordering());

23

 // Copy the processed data into the output buffer.

 copy(begin(processed_samples), end(processed_samples),

 begin(raw_buffer));

 // Get a subspan for the remaining buffer

 auto remaining_buffer =

 raw_buffer.subspan(processed_samples.size());

 // Fill any remainder with zeros

 fill(begin(remaining_buffer), end(remaining_buffer),

 device::sample_type{});

 }

 });

 device.start();

 while(true); // Spin forever

}

8 Reference Implementation
A working repository with an implementation of the draft API that currently functions on
macOS is available at ​https://github.com/stdcpp-audio/libstdaudio​. This implementation is
still a work in progress and may have some rough edges, but it does follow the API design
presented here. We plan to get Windows and Linux implementations done after the
February 2019 Kona meeting.

9 Polls for the Committee
We plan to present this paper in its current state at the February 2019 Kona meeting. Here
are some polls that we would like to take at the meeting to receive guidance from the
committee on how to proceed with this proposal.

9.1 General Polls
● Do we want to pursue audio for inclusion in the C++ standard?
● For the API design, do we want to pursue the direction presented in this paper?
● For the ship vehicle, do we want to pursue an Audio TS?

9.2 Underlying Type of a Buffer
In this paper, we have ignored the very important issue of the type of the samples in a buffer.
Most consumer systems (MacOS, Windows, Linux) will happily mix floating-point values, but
those same systems can be configured to mix with signed integers of varying widths.

24

https://github.com/stdcpp-audio/libstdaudio

Similarly, embedded hardware may have a restriction of using 8-bit buffers, fixed-point
buffers, or even some exotic type such as a floating-bar [Quilez].

For now, we have chosen to leave this issue unresolved by using the strawman
device::sample_type​ name everywhere, and assuming that it is a floating-point value for
now. There are various design options:

● Should the sample type be a template parameter on the device?
● Should the sample type be a template parameter on a lower level – the buffer_view

or the strided_span?
● Should the sample type itself be a type-erased type that the user has to cast at

runtime?

The difference between these polls is an important and subtle one. If the device gets the
template parameter, then there could be a potential type conversion cost in order to coerce
the type provided by the driver into the type requested by the template parameter. (Or a
runtime failure if there is a mismatch.) If the buffer gets the template parameter, then the
end-user code is responsible for detecting the type and switching the behavior, which makes
user code more complex. This is even more true if the lowest-level type (the sample itself) is
type-erased, but on the other hand in this case the API doesn’t have to be templated at all.

9.3 Alternate Backends
Many operating systems provide different APIs for accessing the low-level audio driver. For
example, on Windows you can use WASAPI or ASIO, and on Linux you have a choice
between ALSA, OSS, and Pulseaudio. We want to be able to support multiple different
backend implementations for a single system – even within a single process. (For example,
have two ​std::audio::device​s in a single process, one of which is communicating with a
sound device via WASAPI and another which is communicating via ASIO.)

There are two main design options:

● Should this functionality be made available by making the backend type a template
parameter on the device class?

● Should this functionality be made available through virtual functions on the device
class?

Templating the device class on the backend type makes the API more complicated, and
makes it hard for the user to choose between different backends at runtime. On the other
hand, making the device a polymorphic class and using OOP patterns to solve this issue
doesn’t feel like a design that blends well with the rest of the C++ standard library.

25

10 Future steps
The draft audio specification defined by this paper and its follow-ups in future mailings is
intended to go through a number of different phases:

● Phase 1​ - Low-level device access. This paper represents the beginnings of phase 1.
The goal here is to create a foundational framework that the remaining phases can
build upon.

● Phase 2​ - Audio file I/O and playback. Once the foundation is laid, we can start
dealing with file I/O and playback. There has been no design work done in this
space, but it will likely take the form of a suite of algorithms and data structures that
can be plugged in to the device callback. Adding this is crucial, since playing sounds
from a file, and recording microphone input into a file, are probably the two most
common uses of an audio API.

● Phase 3​ - (optional) MIDI. In music software, an important subcategory of audio
software, MIDI has been the dominant industry standard since the 80s as a protocol
for communicating musical information. If there is interest from the committee, an API
for MIDI could be added to the standard library and would be a great addition to the
audio API discussed here.

In the more immediate future, there are several features that we have not yet added but that
are potentially important to have in this API even for Phase 1:

10.1 Changing the Device Configuration
We have already added getter functions for essential parameters of an audio device, such
as ​get_sample_rate()​ and ​get_buffer_size()​. However, on many systems the user can
actually configure those parameters, and many audio apps use this functionality. We will
therefore need to add setters as well.

10.2 Detecting Device Configuration Changes
The configuration of an audio device can also change outside of an app while it is running.
For example, the user can change audio settings such as the sample rate or the default
format in the operating system’s preference pane. Furthermore, new devices can be plugged
in, existing devices can be unplugged, and another device can be selected as the default
output/input device. The app will need to get notification callbacks on all of these. We are not
yet sure which kind of notification API would be the best fit and provide good enough
consistency with the design of the standard library.

26

10.3 Combining Multiple Devices
All of this API is currently centered around operating a single audio device. However,
systems exist with more than one audio endpoint , and some method of coordinating among 10

multiple devices is important.

In particular, there are optimization opportunities on some platforms. For example, on
Windows, WASAPI allows the user to create an Event which is triggered whenever the
device is ready to receive or provide samples. Ordinarily, the user will call
WaitForSingleObject()​ on that Event (which is how ​device::wait()​ would be
implemented under the hood). However, on systems with multiple audio endpoints, it is
more efficient to create all of their Events, and then make a single
WaitForMultipleObjects()​ call on all of the Events. This call will trigger whenever the
first Event is triggered, and can be called repeatedly to ensure that the calling thread is
woken up with a minimum of overhead.

This functionality could either be built into ​device​, or be a separate class.

10.4 Channel Convenience Naming
There are a number of conventions in the audio world regarding the names of channels, and
the order that they appear in an interleaved buffer. For example, in an interleaved stereo
buffer, the common standard is to have the left channel first, then the right channel.
Similarly, there are standards for other channel configurations. We would like to provide
some convenience enums for audio buffers so that you can say (for example)
bv[channel::left]​ in order to access the left channel. In order to make this useful, we
would also have to provide some way of accessing/setting the channel order configuration.

10.5 Clocks and Timestamps
Some use cases for an audio library require a notion of physical time and a clock, and a way
to timestamp audio buffers, for example when using audio in combination with video data.
On the other hand, some platforms might support audio, but might not support any way of
relating audio processing to physical time. It is therefore still unclear to us whether (and how)
to include such functionality.

10.6 Exclusive vs Shared Mode
On many systems (including Windows and MacOS among others), the audio device can be
opened either in exclusive mode or in shared mode. In exclusive mode, the device belongs
to the program that opened it – no other audio programs from the system will be able to
communicate with the audio device while it is opened by another program. In shared mode,

10 In fact, they are common. Most commodity PCs will have audio outputs to plug speakers into, as
well as being able to drive audio on a monitor through an HDMI connection.

27

the operating system runs a mixer under the hood which allows multiple programs to
communicate with an audio device simultaneously. The OS might also apply a master
volume and other effects to the output before sending it to the device.

Each setting has different advantages and disadvantages. Exclusive mode provides lower
latency because there is no operating system mixer, but it has stricter requirements on buffer
format, can potentially fail if another program already has the device open, and does not
allow other programs to play audio through the device at the same time. Contrariwise,
opening a device in shared mode provides for a wider variety of supported buffer formats,
generally doesn’t fail, and plays well with other programs, but at the cost of higher latency.
Typically, games and consumer programs will use shared mode, while pro audio
applications will use exclusive mode.

This distinction is important, and several backends let the application choose in which mode
it wants to open the device. We therefore must design a way to expose this functionality.

11 References
[CppChat] ​https://www.youtube.com/watch?v=OF7xbz8fWPg

[AudioLibs] ​https://en.wikipedia.org/wiki/Category:Audio_libraries

[Forum] ​https://groups.google.com/a/isocpp.org/forum/#!topic/std-proposals/Hkdh02Ejx6s

[ADC] ​https://www.youtube.com/watch?v=1aGoJSvwZjg

[GAP] Game Audio Programming Principles and Practices, Edited by Guy Somberg.
Published by CRC Press. ISBN 9781498746731

[Waveforms] ​https://pudding.cool/2018/02/waveforms/

[PCM] ​https://en.wikipedia.org/wiki/Pulse-code_modulation

[SoundCard] ​https://en.wikipedia.org/wiki/Sound_card

[Jain] ​https://arxiv.org/pdf/0805.1598.pdf

[Quilez] ​http://iquilezles.org/www/articles/floatingbar/floatingbar.htm

[Noise] ​https://en.wikipedia.org/wiki/White_noise

28

https://www.youtube.com/watch?v=OF7xbz8fWPg
https://en.wikipedia.org/wiki/Category:Audio_libraries
https://groups.google.com/a/isocpp.org/forum/#!topic/std-proposals/Hkdh02Ejx6s
https://www.youtube.com/watch?v=1aGoJSvwZjg
https://pudding.cool/2018/02/waveforms/
https://en.wikipedia.org/wiki/Pulse-code_modulation
https://en.wikipedia.org/wiki/Sound_card
https://arxiv.org/pdf/0805.1598.pdf
http://iquilezles.org/www/articles/floatingbar/floatingbar.htm
https://en.wikipedia.org/wiki/White_noise

