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Abstract

The current wording for contracts opens some opportunities for undefined behavior.
Those opportunities derive from the freedom for assuming a contract even when the
program is built in a mode where the contract has not been checked. This paper proposes
a minimal set of changes to solve the issue by requiring that only contracts that have been
checked can be assumed. Additionally, this paper proposes an additional build option to
decide whether axioms are assumed or not. Finally this paper also proposes simplifications
on the ability to continue after a contract check has failed.

1 Summary
This paper proposes the following changes to the current wording for contracts:

e Clarifies assumption of default and audit contracts by ensuring that a contract that is
not evaluated cannot be used for any kind of assumption. Morever if such contract has
been evaluated it can be assumed only when the continuation mode has been disabled.

e Adds a new aziom mode that is used to determine if axioms may be assumed or not.

e Removes the ability to enable as a build option the continuation after a contract has
failed. In explanation it removes the continuation mode.

e Allows the possibility that a specific contract check can be specified (by stating so in
code) to continue in case of failure.

2 Changes from previous version

2.1 Changes in R2
The following major changes are made with respect to P1290R1 [1].

e Added a new section on continuation after contract violation (Section 6).



Revised text in proposed solutions section (Section 7) with new simplifications on seman-
tics.

e Added a new section comparing with other related proposals (Section 8).

Revised answers to some question (Section 9).

Revised proposed wording (Section 10).

2.2 Changes in R1
The following major changes are made with respect to P1290R0 [2].

e Removed references in axioms to assumption barriers.

e Revised text in proposed solutions section (Section 7) including the summary of semantics.

3 Introduction

Consider the following code:

int f(int x)
[[expects: x>0]]

{

return 1/x;

}

int g(int x)

[[expects audit: x==2 || x==3]]
{

return f(x);

}

Under the current wording [3], contracts that are not checked can be assumed to be true.
Consequently, we might have the following behaviors:

e When build mode is audit, both checks are intended to be evaluated and consequently
assumed. As a consequence f ()’s precondition can be elided even its checking is on as it
can be assumed to always be satisfied.

e When build mode is default, only the check in £ () is intended to be evaluated. However,
assuming the precondition in g() implies that the precondition inf £ () is always satisfied
and so the check can be elided even though it is on. Consequently, invoking g() with a
value of 0 would lead to undefined behavior.

e When build mode is off, no check evaluated. However, they are both assumed leading
again to undefined behavior.

Additionally, when the continuation mode is on (continue after violation) the assumption
brings in additional undefined behavior as now we are assuming conditions that might be false
(because the failed and we returned after running the violation handler).

This original intent of allowing assumptions was to provide an ample margin for optimiza-
tion. However, the above example is an illustration on how assumptions may lead to undefined
behavior.



The interactions of contracts and undefined behavior have been explained in detail in [4].
However, it should be noted that the main goal of contracts is allowing to write more correct
software by helping to detect more programming errors. Introducing new undefined behavior
was an unintentional effect that needs to be avoided.

Of course, a secondary effect of contracts is giving compilers leeway to perform optimiza-
tions. The aim is to satisfy this goal only in the cases that the first goal is not sacrificed.

4 Potential for undefined behavior

In this section we analyze some examples of possible undefined behavior.

4.1 Example 1

In [4] an example provided by Herb Sutter and prototyped by Peter Dimov (see at https:
//godbolt.org/g/7TTP7Mt) with simulated contracts is presented.
Essentially this example translated into contracts syntax would be:

void f(int x) [[expects audit: x==2]]
{

printf (" %d\n", x);
}

void g(int x) [[expects: x>=0 && x<3]]
{

extern int a[3[;

alx] = 42;
}

void foo();
void bar();
void baz();

void h(int x) [[expects: x>=1 && x<=3]]
{
switch(x) {
case 1: foo(); break;
case 2: bar(); break;
case 3: baz(); break;

}
}

void test ()

{

int val = std::rand();

try { f(val); /x...x/} catch(...) { /*...
try { g(val); /x..x/} catch(...) { /x...x/}
} try { h(val); /x...x/} catch(...) { /*..



4.1.1 Current status

With the current definition of contracts, compiling the code with the build mode set to audit
is not problematic. The precondition at £ () is checked and it can be assumed to be true in
next calls. Then, calls to g() and h() can optimize out the contracts under the assumption
that x is 2.

However, if the build mode is set to default, the precondition at £ () would not be checked,
but still assumed. Consequently, after the call to f(val) the compiler would be allowed to
assume that val is 2 and the preconditions of g() and h() would be assumed to be correct
and optimized out. This would lead to undefined behavior. For calls to h() it might be the
case that we got the surprising effect that no function is called. But even worse, if the switch
is implemented as a jump table and the compiler assumes the contract and elides the jump
table bounds check, then a wild branch would arise. The generated code would attempt to
read out-of-bounds at __jmptbl[vall, reinterpret whatever bytes it finds there as an address
of executable code, and jump there to continue execution. This would result in random code
execution and a very serious security issue.

4.1.2 Avoiding unchecked assumptions with disabled continuation

If we change the situation to require that no assumption of unchecked contract can be made
when the continuation is disabled, the outcome is quite different.

Compiling the code with the build mode set to audit would not be problematic and would
lead to the same outcome than with the current wording.

When the build mode is set to default, the precondition at £ () would not be checked and
would not be assumed. Consequently, after the call to f£(val) no assumption can be made on
the value of val. The preconditions of g() and h() would not be optimized out and the checks
would be performed. No undefined behavior happens.

4.1.3 Avoiding all assumptions with enabled continuation

If we avoid all assumptions when continuation is enabled, we also avoid the possible undefined
behavior derived from assuming a failed contract.

4.2 Example 2

This example is a variation of previous example, which is also discussed in [4]. In this variation
the precondition at function f () is now moved the be an axiom.

void f(int x) [[expects axiom: x==2]]

printf ("0d\n", x);
}

With the current definition of contracts, axioms are always assumed.

When the build mode is set to default, the precondition at f() would not be checked (as
it is an axiom), but still assumed. In this case, the contract elimination is considered to be
intentional as an axiom is considered to be always true.

When the build mode is set to off, no precondition is checked, but val==2 is still assumed.

However, in some cases it might be interesting to be able to remove assumptions introduced
by axioms. That would be the case, in a debug version where the developer wants to remove
all possible assumptions. On the other hand, there are cases where axioms are desired to be
used as assumptions. We consider this aspect orthogonal to the checking level induced by the
build mode.



4.3 Example 3

Consider now this simple example:

void f(int * p) [[expects axiom: p!=nullptr]]

{
if (p) g();
else h();

}

When axioms are assumed f () would be optimized to always call g(). That is not always
desirable. Again the ability to control independently whether axioms are assumed or not gives
us what we need.

5 Assumptions and continuation mode

5.1 Basic example

Consider now the following code

ind f(int * p) [[expects: p!= nullptr]]
if (p) g0);
}

5.1.1 Disabled continuation and check default contracts

If we compile with continuation mode set to off (the handler never returns) and the checking
level is set to default, the compiler can use the information from the precondition. The
generated code would be essentially the following:

void f(int * p) {
if (p==nullptr) {
_invoke_handler (); // Never return
}
else {
g0);
}
}

The assumption that p is not nullptr is derived from the structure of the generated code
and no special provision is needed to state that the contract is assumed.

5.1.2 Enabled continuation mode and check default contracts

If we compile with continuation mode set to on (the handler might return) and checking level
set to default, the compiler would generate a different code structure that would be essentially:

void f(int * p) {
if (p==nullptr) {
_invoke_handler (); // May return

g();
}



In this case, the contract (p!=nullptr)) is checked, but if it fails is not assumed. Again,
no special provisions are needed, the behavior is the consequence of the structure of generated
code.

5.2 Another example

Let’s try another example:

void f(int i) {
[[assert: i==0]]
[[assert: i>=0]]
g0);

}

5.2.1 Disabled continuation and check default contracts

In this case, the generated code would be equivalent to:

void f(int i) {
if (i!=0) _.invoke_handler (); // does not return
else {
if (i<0) { // Always false as i==0 is always true
_invoke_handler (); // does not return

g();
}
}

The second check can only be called if the first one was successful. But if the first was
successful i must be 0 and the second one will be optimized out. Note, that again this is a
consequence of the generated code structure, and the resulting code would be similar to:

void f(int i) {
if (i!=0) _.invoke_handler (); // does not return
else {

g();
}
}

5.2.2 Enabled continuation and check default contracts

In this case, the generated code would be equivalent to:

void f(int i) {
if (i!=0) _invoke handler (); // may return
if (i<0) __invoke handler(); // may return. Never optimized out

g();
}

Now, both checks are independent and no one can be elided.



5.3 Consequences

As it has been shown through examples, no special provision in the standard is needed to state
our goal. Under disabled continuation mode a contract check implies its assumption. Under
enabled continuation mode a contract check does not imply any assumption at all.

6 Continuation mode

The ability to enable or disable the continuation mode of a translation unit as a whole is more
than it is needed. This has been agreed by several authors of the original contracts proposal.
In fact that can be safely removed as long as there is a way to state that a specific check should
continue upon violation.

6.1 Reasons to simplify

The original reasons [5] for including in the contract system a mode where execution continues
after running the violation handler were:

e Gradual introduction of contracts in old code bases.

e Test of the contracts themselves.

From those, the second one is not a real issue as there are multiple solutions. The real
motivation for continuation is the gradual introduction of contracts in old code bases. Besides
that, it is also important to address the case where a library that already has some contracts
need additional contracts to be added to it. In both cases, being able to add new contracts
where a violation only triggers some mechanism to log the violation is important.

For the very same reason, it seems that the current solution (where all contracts in a
translation unit change their behavior in case of violation from terminating the program to
continue after violation) is not the right solution to the problem. What it is really needed is a
mechanism to log violations to new contracts, while preexisting and well checked all contracts
remain terminating upon violation.

Consequently, the first thing to do is to remove the continuation build mode from the
contract system. The build mode may be off (no contact is checked), default (only default
contracts are checked) or audit (both default and audit contracts are checked). If any of
those checked contracts is violated, the violation handler is executed and when completed the
program is terminated.

To solve the need of contract violation logging a different mechanism could be defined.
However, we could also add a new contract construct to keep integration in the contract facility.
We propose to add a behavior adjective to any default or audit contract to indicate that
violation implies running the violation handler and resuming execution. For that purpose we
propose to use the adjective continue. In the next subsection, details are given.

6.2 A simplified model

Once the continuation build mode is removed a translation is controlled by the following options:

e Build mode: off, default, audit.

e Axiom mode: off, on.



In addition we propose that any precondition, postcondition or assertion may have an
optional mode.

void f(int * p) {
8(p);
[[assert: p!l=nullptr]|; // Default. Terminates on violation.
[[assert audit continue: xp==42|]; // Continue on violation.

/).
}

Note that continue does not specify a level, and in fact it is orthogonal to it. It just changes
the behavior of a contract check making it to continue after executing the violation handler
instead terminating program execution.

The contract mode continue can be applied to any default or audit contract.

[[assert: p!=nullptr]]; // Default contract. Terminate on violation.

[[assert continue: p!=nullptr||; // Default contract. Continue on violation.
[[assert default continue: p!=nullptr]]; // Same as above

[[assert audit: p!=nullptr]]; // Audit contract. Terminate on violation.
[[assert audit continue: p!=nullptr]]; // Audit contract. Continue on violation

However, a mode is nonsens for an axiom contract as they do not have run-time semantics.
[[assert axiom continue: p!=nullptr]]; // Error.

We selected the word continue as we beleive it is the simplest way of stating programmers
intentions (continue execution after this check regardless violation status). We find that adding
adjectives (e.g. maybe, always, never) are just confusing and missleading. We could also have
added a terminate or exit mode to state the opposite, but we beleived that this was an
unnecessary complication.

7 Proposed solutions

7.1 Avoiding the undefined behavior

This paper proposes to avoid the undefined behavior by clarifying the semantics of every build
mode in regards of both evaluation of conditions and assumption of those conditions. For as-
sumption of conditions the clarification needs to address the case where continuation is disabled
and when the continuation is enabled.

To define such semantics, the following simple principles are proposed to be followed:

e A contract that, in a given build mode, is not evaluated cannot be used for any kind of
assumption. This leads to modes where only contracts that have been checked are used
for assumptions and avoiding in this way the identified paths towards undefined behavior.

e Moreover, contracts that have been checked can only be assumed if the continuation mode
has been disabled. Otherwise, such assumptions cannot be made. Note, that no special
provision is needed as the application of general rules of conditional statements would
derive this behavior as illustrated in previous sections.

e Axiom contract are considered as if they had been evaluated when they are enabled.
Otherwise, they are ignored. Note that in any case, they need to have a valid syntax,



although expressions in an axiom are allowed to contain invocations to declared but not
defined functions. If an axiom contains any invocation that is declared but not defined
the axiom is ignored.

Below, the exact semantics of each build level are identified when they are applied to each
contract level.

7.1.1 Build mode

The build mode can be any of the following four: off, default, audit. This build level affeccts
which checks are evaluated at run-time.

contract-level Build mode

off ‘ default ‘ audit
axiom not checked | not checked | not checked
audit not checked | not checked checked
default not checked checked checked

Note, that only audit and default checks are affected by the build mode.

7.2 Allowing assumption of axioms
This paper proposes that an axiom mode is added. The axiom mode can be either off or on.
e When the axiom mode is off an implementation is not allowed to make any assumption.

e When the axiom mode is on an implementation is allowed to assume the axiom.

7.3 Continuation mode

This paper proposes to remove the continuation mode.

e An invocation to a returning violation handler results in a call to std: :terminate after
executing the violation handler.

7.4 A new syntax for continuation

This paper proposes to add syntax for a new continue adjective that can be applied to any
default or audit contract.

[[assert continue: predicate]]; // Default predicate with continuation
[[assert default continue: predicate]]; // Same as above

[[assert audit continue: predicate]]; // Aduit predicate with continuation

7.5 Summary of semantics

In this section a summary of the build options and their semantics is presented.
The translation is controlled by the following options:

e Build mode: off, default, and audit.

e Axiom mode: off, on.



1. Build-mode=off, Axiom-mode=off.

e No check is performed.

e No assumption is made.
2. Build-mode=off, Axiom-mode=on.

e No check is performed.

e Checks with axiom level are assumed.
3. Build-level=default, Axiom-mode=off.

e Checks with default level are evaluated and assumed.

Checks with audit are neither performed nor assumed.

Code for default contract checks assumes that the violation handler does not return.

e Code for default continue contract checks does not assume that the violation
handler does not return.

e No axiom is assumed.
4. Build-level=default, Axiom-mode=on.

Checks with default level are evaluated and assumed.

Checks with audit are neither performed nor assumed.

Code for default contract checks assumes that the violation handler does not return.

Code for default continue contract checks does not assume that the violation
handler does not return.

e Checks with axiom level are assumed.
5. Build-level=audit, Axiom-mode=off.

e Checks with default level are evaluated and assumed.
e Checks with audit level are evaluated and assumed.

e Code for default and audit contract checks assumes that the violation handler
does not return.

e Code for default continue and audit continue contract checks does not assume
that the violation handler does not return.

e No axiom is assumed.
6. Build-level=audit, Axiom-mode=on.

Checks with default level are evaluated and assumed.

Checks with audit level are evaluated and assumed.

Code for default and audit contract checks assumes that the violation handler
does not return.

Code for default continue and audit continue contract checks does not assume
that the violation handler does not return.

Checks with axiom level are assumed.
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8 Comparison with other proposals

In this section, we hilight our differences with other related proposals.

8.1 Differences with P1429R0

In P1429R0 [6] four semantics are defined (ignore, assume, check-never-continue, and check-
maybe-continue). We compare here with those semantics:

e The ignore semantics is obtained in our current model by disabling contract checking
(build mode off).

e The assume semantics is obtained for axiom contracts by enabling axioms. We have
already expressed in this paper the dangers of assuming contracts for default and audit.

e The check-never-continue is what we call termination and it is what happens for any
checked default or audit contract that has no continue adjective.

e The check-maybe-continue is what we call continue and it is what happens for any
checked default or audit contract that has a continue adjective.

P1429R0 then proposes the ability to select any of those semantics for any contract level. Of
course, all the combinations that we identified in this paper can be expressed by those means.
Below we show the equivalence:

e Build-mode=off, Axiom-mode=off.

— axiom=ignore, default=ignore, audit=ignore.

Build-mode=off, Axiom-mode=on.
— axiom=assume, default=1ignore, audit=ignore.

Build-mode=default, Axiom-mode=off.

— axiom=ignore, default=check-never-continue, audit=ignore.

Build-mode=default, Axiom-mode=on.

— axiom=assume, default=check-never-continue, audit=ignore.

Build-mode=audit, Axiom-mode=off.
— axiom=ignore, default=check-never-continue, audit=-check-never-continue.

Build-mode=audit, Axiom-mode=on.

— axiom=assume, default=check-never-continue, audit=check-never-continue.

Note that the semantics check-maybe-continue (for simplicity continue) is not in any of our
combinations, as this semantics, in our model, is only for in-code continuing contracts.

Our most important divergence here is that we consider that individual mapping of seman-
tics to levels is highly dangerous and error-prone. As a mere example, consider the following:

void f(int * p)
[[expects: p!=nullptr]|
[[expects audit: xp > 0]];
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If we allow any arbitrary combination we could select, for example, the following semantics:
default=ignore, audit=check-never-continue. This combination, would lead to undefined
behavior when p==nullptr.

Our second divergence is that P1429R0 allows either a contract-level or a contract-mode,
where the only proposed contract-mode for now is check maybe_continue that is assumed to
have a default level. Instead of that, we propose de continue adjective that can be applied
either to default or audit contracts. We see our model as a more generalized one, and at the
same time, we provide a simpler syntax.

Last but not least, P1429R0 proposes explicit syntax for the other three semantics. Adding
a syntax for ignore makes a contract only syntactically checked. Adding a syntax for assume
would lead to non-ignorable assumptions. Adding a syntax for check_never_continue would
introduce non-ignorable terminating checkes. The paper proposes that most uses of those
syntaxes would be in combination with macros, which we see as a drawback.

8.2 Differences with P1421R0

In P1421R0 [7] the five semantics from P1333R0, are cited. The main problem with this is
that despite the efforts made, it does not seem possible to tell the difference between check-
maybe-continue and check-always-continue. Additonally, the rest of semantics do not need to
be defined in the standard unless they are effectively used.

Secondly, P1421R0 proposes an alternate syntax for postconditions for stating the return
value:

[[ensures(r): r>0]]

The rationale for that is being able to tell the difference between a level and a variable
name. We consider that not necessary as there is a fixed number of levels and a developer may
easily select any other name for the return value.

Additionally, the proposal for additional arbitrary tags does not seem justified and is a
complication that seems a redesign of contracts. This also applies to the ability to add additional
implementation defined extensions.

9 Some questions

Why do we add the axiom build mode? Contracts with levels default and audit are
assumed only if they have been checked. That is pure consequence of their evaluation. However,
for contracts with level axiom some systems may want to take the option to still assume them
when other checks are disabled (new proposed axiom mode on) while in other systems the
policy may be to avoid assuming any axiom when other checks are enabled (new proposed
axiom mode off).

Would it make sense not to assume axioms when other checks are enabled? An
axiom is expected to be used for checks that may be assumed to be true and do not need to be
checked. A set of axioms can be inconsistent; if a tool detects inconsistency in a set of axioms
that is considered to be an error. Usual practice should be enable assumptions on axioms.
However, in some debug modes developers might want to avoid those assumptions. That is
obtained by disabling axioms with axiom mode set to off.

Why not controlling individual semantics for each contract level? That would lead to
some combinations that may be problematic or with surprising behavior. Consider for example,
enabling checking for audit contracts, but disabling checks for default contracts. In other
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cases, the combination of choices might even lead again to the undefined behavior that we are
trying hard to avoid. Even worse we might end up with the practice of needing to duplicate a
predicate in more that one assertion to guarantee it in multiple build modes.

Why not more build modes? The proposed modes seem useful for a variety of use cases.
They also seem enough to gain experience with the feature in C++20. After that, if needed,
the catalog of build modes might be extended in C++23.

Has this been implemented? The prototype implementation at https://github.com/
arcosuc3m/clang-contracts implements currently the new proposed semantics for audit,
default and off as there is no specific assumption enforcement.

How should axioms be taught? Axioms should be used only for predicates that are never
wrong. In fact, that is the mathematical notion of a logical axiom (a predicate that is universally
true). Axioms are not really preconditions, postconditions, or assertions but a portable way of
spelling assumptions. Note that an axiom should never be wrong because the consequence is
to inject undefined behavior.

10 Proposed wording

In this section a (probably incomplete) wording is presented. This will be refined before the
Kona meeting.

10.1 Part I: Avoiding undefined behavior

In section [dcl.attr.contract.check]/4, edit as follows:

10.2 Part II: A new axiom mode

After [dcl.attr.contract.check] /4, add a new paragraph:

10.3 Part III: Removing continue build mode

Remove completely [dcl.attr.contract.check]/7.
Add a new clause in [dcl.attr.contract.check].

7. After completing the execution of the violation handler execution s terminated
by invoking the function std: :terninate (135.1).
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10.4 Part I'V: Adding a contract mode
TBD.
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