
Adopt source location from Library

Fundamentals V3 for C++20

Robert Douglas, Corentin Jabot

2019-03-11

Document Number: P1208R4
Audience: LWG
Date: 2019-03-11
Project: Programming Language C++

1 Class source_location [reflection.src loc]

1.1 Header <source_location> Synopsis [reflection.src -
loc.intro]

namespace std {

struct source_location {

constexpr source_location() noexcept;

constexpr uint_least32_t line() const noexcept;

constexpr uint_least32_t column() const noexcept;

constexpr const char* file_name() const noexcept;

constexpr const char* function_name() const noexcept;

static consteval source_location current() noexcept;

};

}

[Note: The intent of source_location is to have a small size and efficient
copying.– end note ]

constexpr source_location() noexcept;
1 Effects: Constructs an object of class source_location.

2 Remark: The values are implementation-defined.

constexpr uint_least32_t line() const noexcept;

3 Returns: The presumed line number (16.8) represented by this object.

constexpr uint_least32_t column() const noexcept;

1



4 Returns: An implementation-defined value representing some offset from
the start of the line represented by this object.

constexpr const char* file_name() const noexcept;

5 Returns: The presumed name of the current source file (14.2) represented
by this object as an NTBS.

constexpr const char* function_name() const noexcept;

6 Returns: If this object represents a position in the body of a function,
returns an implementation-defined NTBS that should correspond to the
function name. Otherwise, returns an empty string.

static consteval source_location current() noexcept;

7 Returns: When invoked by a function call whose postfix-expression is a
(possibly parenthesized) id-expression naming current, returns a source_-
location with an implementation-defined value. The value should be af-
fected by #line (14.4) in the same manner as for __LINE__ and __FILE__.
If invoked in some other way, the value returned is unspecified.

8 Remark: When a brace-or-equal-initializer is used to initialize a non-static
data member, any calls to current should correspond to the location of
the constructor or aggregate initialization that initializes the member.

9 [Note: When used as a default argument (9.3.6), the value of the source_-
location will be the location of the call to current at the call site. – end
note ]

[Example:

struct s {

source_location member = source_location::current();

int other_member;

s(source_location loc = source_location::current())

: member(loc) // values of member will be from call-site
{}

s(int blather) : // values of member should be hereabouts
other_member(blather)

{}

s(double) // values of member should be hereabouts
{}

};

void f(source_location a = source_location::current()) {

source_location b = source_location::current(); // values in b represent
this line
}

void g() {

f(); // f’s first argument corresponds to this line of code

source_location c = source_location::current();

f(c); // f’s first argument gets the same values as c, above
}

2



– end example ]

2 Feature macro

We recommend the feature macro __cpp_lib_source_location for this fea-
ture.

3


