
1

The Concurrent Invocation Library

Document number: P0642R2
Date: 2019-06-16
Project: Programming Language C++
Audience: SG1, LEWG, LWG
Authors: Mingxin Wang (Microsoft (China) Co., Ltd.),

Wei Chen (College of Computer Science and Technology, Key Laboratory for
Software Engineering, Jilin University, China)

Reply-to: Mingxin Wang <mingxwa@microsoft.com>

Table of Contents

The Concurrent Invocation Library ... 1
1 History.. 2

1.1 Changes from P0642R1 ... 2
1.2 Changes from P0642R0 ... 2

2 Introduction .. 3
3 Motivation and Scope .. 3

3.1 Limitations ... 3
3.1.1 Blocking .. 3
3.1.2 Execution Resource Management ... 4
3.1.3 Synchronization ... 4
3.1.4 Memory Management ... 5
3.1.5 Runtime Extension .. 5
3.1.6 Supporting Async Libraries ... 5

3.2 The Solution .. 5
3.2.1 Avoiding Blocking... 6
3.2.2 Managing Execution Resources .. 7
3.2.3 Exploring Synchronization .. 7
3.2.4 Customizing Memory Management .. 7
3.2.5 Exploring Runtime Extension ... 7
3.2.6 Supporting Async Libraries ... 8

4 Impact on the Standard ... 9
5 Design Decisions .. 9

5.1 Execution Structures .. 9
5.2 Binary Semaphores VS Futures ... 13
5.3 Polymorphism VS Compile-time Routing ... 13
5.4 Variable Parameter VS Single Parameter ... 14
5.5 Allocator VS Memory Allocator .. 14

6 Technical Specifications ... 15

2

6.1 Header <concurrent_invocation> synopsis .. 15
6.2 ConcurrentInvocationUnit requirements .. 16
6.3 Core Types ... 16

6.3.1 Class template concurrent_token .. 16
6.3.2 Class template concurrent_finalizer ... 17

6.4 Helper Utilities... 18
6.4.1 Class thread_executor .. 18
6.4.2 Class template promise_callback .. 18
6.4.3 Helper for CIU... 19
6.4.4 Helper for Concurrent Callback .. 20

6.5 Function templates concurrent_invoke ... 21

1 History

1.1 Changes from P0642R1

- Change the title of the paper from "Structure Support for C++ Concurrency" into "The Concurrent Invocation
Library";

- Change the motivating example into a more generic one;
- Change function templates sync_concurrent_invoke and async_concurrent_invoke into

concurrent_invoke.
- Remove the concepts of "Atomic Counter", "Atomic Counter Initializer", "Atomic Counter Modifier", "Linear

Buffer", which become implementation-defined details;
- Add class bad_concurrent_invocation_context_access and class templates

concurrent_token and concurrent_finalizer;
- Remove the concept of "Execution Agent Portal", which could be replaced by the Executors [P0443R10];
- Add two executor extensions: in_place_executor and thread_executor;
- Change requirements for runtime polymorphism into compile-time overload resolution.

1.2 Changes from P0642R0

- Redefine the AtomicCounterModifier requirements: change the number of times of "each of the first
fetch() operations to the returned value of acm.increase(s)" from (s + 1) to s;

- Redefine the ConcurrentProcedure requirements: change the return type of cp(acm, c) from "Any
type that meets the AtomicCounterModifier requirements" to void, update the corresponding sample
code;

- Redefine the signature of function template concurrent_fork: change the return type from "Any type that
meets the AtomicCounterModifier requirements" to void, update the corresponding sample flow chart.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0443r10.html

3

2 Introduction

Currently, there is little structural support to invoke multiple procedures concurrently in C++. Although we could use
multiple call to std::async or use other facilities such as std::experimental::latch to control runtime
concurrency and synchronization, there are certain limitations in usability, extendibility and performance. Based on the
requirements in concurrent invocation, this proposal intends to add structural support in concurrent invocation.

With the support of the proposed library, not only are users able to structure concurrent programs like serial ones as
flexible as function calls, but also to customize execution structure based on platform and performance considerations.
The implementation for the library is available here.

3 Motivation and Scope

This section includes a typical concurrent programming scenario, leading to 6 aspects of limitations when designing
concurrent programs with the facilities in the standard.

3.1 Limitations

Suppose it is required to make several (two or more; let's take "two" as an example) different library calls and save
their return values for subsequent operations. The library APIs are defined as follows:

ResultTypeA call_library_a();

ResultTypeB call_library_b();

In order to increase performance, we may make the two function calls concurrently. With the utilities defined in the

standard, we could use "std::thread", "std::async" or "std::latch" (Concurrency TS). For example, if
"std::async" is used, the following code may be produced:

std::future<ResultTypeA> fa = std::async(call_library_a);

std::future<ResultTypeB> fb = std::async(call_library_b);

ResultTypeA ra = fa.get();

ResultTypeB rb = fb.get();

// Subsequent operations

In the code above, there could be performance limitations in different execution contexts. Concretely, there could be 6

aspects of performance limitations in blocking, execution resource management, synchronization, memory management,
runtime extension and supporting async libraries.

3.1.1 Blocking

The sample code tries to obtain the result of the asynchronous calls via std::future::get(). However, this will

https://github.com/wmx16835/my-stl/blob/9e62a8f6e643878df516c94bcab9880256348cc4/src/main/p0642/concurrent_invocation.h

4

also block the calling thread and may reduce throughput of a system.
Additionally, we may turn to std::experimental::when_all and

std::experimental::future::then to avoid blocking:

std::experimental::when_all(std::move(fa), std::move(fb)).then(

 [](auto&& f) {

 ResultTypeA ra = std::get<0u>(f.get()).get();

 ResultTypeB rb = std::get<1u>(f.get()).get();

 // Subsequent operations

 });

However, it requires more code, much runtime overhead (except for blocking), and potentially more difficulty in

managing execution resources since the thread executing the continuation is unspecified.
Even if blocking caused by std::future::get() is rather acceptable than use a callback, there are many

blocking synchronization primitives that may have better performance supported by various platforms, such as the
"Futex" in modern Linux, the "Semaphore" defined in the POSIX standard and the "Event" in Windows. Besides, the
"work-stealing" strategy is sometimes used in large-scale systems, such as the Click programming language, the
"Fork/Join Framework" in the Java programming language and the "TLP" in the .NET framework.

3.1.2 Execution Resource Management

In the sample code for scenario 1, the two tasks are launched with std::async using default policy
std::launch::async | std::launch::deferred. Behind the function, two concrete threads are created for
the two tasks and will be destroyed when the tasks are completed.

This solution is more efficient than sequential calls of the two functions if there are abundant execution resources (e.g.,
CPU load is low) and the overhead in calling the functions is less than the that in creating new threads. However, in a
high-concurrency system, "threads" are relatively "sensitive" resources because

1. creating and destroying threads usually involve system calls, which may block other system calls and cost much
CPU time, and

2. too many running threads may increase management costs in an operating system and reduce throughput.
A solution to this issue is to use a more generic "Execution Agent" (e.g., thread pool) to control the total number of

threads, as well as to avoid overhead in creating and destroying concrete threads. However, if it is required to use another
execution agent other than creating a new thread to increase performance, std::async won't help and we may need to
write similar code from scratch.

3.1.3 Synchronization

If n libraries are concurrently called with std::async, there will be a total number of n times of
std::future::get(), introducing n times of "acquire-release" synchronization overhead. However, since the
concurrent calls are only required to happen before the subsequent process, one "acquire" synchronization operation
would be enough.

In the standard, there are four utilities that could efficiently perform such "many-to-one" synchronization:
std::experimental::latch, std::experimental::barrier, std::condition_varable and

5

std::atomic, where the semantics of the former three ones are coupled with "blocking", not being able to be
optimized.

3.1.4 Memory Management

With std::async, we are not able to specify the algorithm for memory allocation (e.g., with a customized allocator
using a memory pool). This is usually not a major issue in performance, but it would be more flexible to allow such
customization. In addition, the potential number of allocations in the sample code also has the potential to be reduced.

3.1.5 Runtime Extension

If one of the libraries in the motivating example may fork independent tasks at runtime that shall share a same
synchronization point, the library is required to perform proper synchronization and return when all the subtasks are
completed.

For example, when implementing a library for parallel quick-sort algorithm, we may not able to know the expected
concurrency at the beginning of the algorithm, because the number is related to the order of the input data. Therefore, we
may seek for more flexible facilities for concurrency control that support runtime extension. For example, the "Phaser" in
the Java programming language [java.util.concurrent.Phaser] provides such mechanism, but similar facilities are missing
in C++.

3.1.6 Supporting Async Libraries

Although one procedure occupies one execution agent in many cases, there are certain requirements where some
procedures may cross multiple execution agents, and std::async will not work. For example, when a procedure
involving async IO calls with a library like:

template <class ResponseHandler>

void async_socket_io(const socket_request& request, ResponseHandler&& handler)

Requires: is_invocable_v<extending_t<ResponseHandler>, socket_response> is true.
Effects: Execute the socket request and invoke the handler with the response data on an unspecified thread when the
data is available.
Note: socket_request and socket_response represents the request and response data, respectively.
extending_t is introduced in the "Extending Argument" library [P1648R0].

std::async will not work either, and more code is required to control synchronizations among execution agents.

3.2 The Solution

To implement with the proposed library for the same requirement in the previous section, that is to make different
library calls and save their return values for subsequent operations, the following code could be acceptable:

// #1: Construct a value of thread_executor

https://docs.oracle.com/javase/10/docs/api/java/util/concurrent/Phaser.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1648r0.pdf

6

thread_executor e;

// #2: Construct the Concurrent Invocation Unit

auto ciu = std::make_tuple(

 make_concurrent_callable(e, [](const contextual_data& cd) {

 cd.result_of_library_a = call_library_a();

 }),

 make_concurrent_callable(e, [](const contextual_data& cd) {

 cd.result_of_library_b = call_library_b();

 }));

// #3: Make invocation

std::future<contextual_data> f = concurrent_invoke(

 std::move(ciu), std::in_place_type<contextual_data>);

// #4: Block and get the stable context

contextual_data cd = f.get();

// Subsequent operations

The type contextual_data is defined as follows:

struct contextual_data {

 mutable ResultTypeA result_of_library_a;

 mutable ResultTypeB result_of_library_b;

};

The fields in the type are marked as mutable because it is guaranteed that each of them will not be accessed

concurrently, even if the two fields may be accessed at the same time.
On step #1, a value of thread_executor was constructed, which is a proposed Oneway Executor, providing

asynchronization.
With the executor, we could construct a "Concurrent Invocation Unit" (CIU) on step #2. A CIU could either be an

asynchronous callable type or an aggregation (container or tuple) of CIU. The function template
make_concurrent_callable is a helper function in the proposed library that constructs an asynchronous callable
object with a Oneway executor and a callable object.

On step #3, the concurrent invocation is performed with a proposed function template concurrent_invoke. Note
that the second argument std::in_place_type<contextual_data> is an "Extending Argument" [P1648R0],
and is equivalent to contextual_data{} but will only construct the value before its first usage and do not require
the type to be copy/move constructible.

3.2.1 Avoiding Blocking

Blocking is usually harmful to throughput in performance critical scenarios. To avoid blocking with the proposed
library, we could add a third argument to the function template concurrent_invoke indicating a callback function.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1648r0.pdf

7

For example:

auto cb = make_concurrent_callback(

 thread_executor{}, [](contextual_data&& data) { /*Subsequent operations*/ });

concurrent_invoke(std::move(ciu), std::in_place_type<contextual_data>,

 std::move(cb));

In the code above, make_concurrent_callback is a helper function template proposed in the library to

construct callback for concurrent invocation. A new thread will be created for the continuation. Note that the third
argument concurrent_invoke is also an extending argument like the second one.

3.2.2 Managing Execution Resources

In the sample code with the proposed library, thread_executor was used for asynchronization. However, thread
could be expensive execution resources in high performance service, and frequently creating and destroying threads may
increase system overhead. Therefore, the "thread pool" was invented to reuse execution resources in different context.

To apply different management strategy for execution resource for various needs, we could construct different Oneway
Executors other than thread_executor. For example, the class static_thread_pool::executor_type
proposed in the "Executors" library [P0443R10].

3.2.3 Exploring Synchronization

Too many synchronization operations is harmful for performance. If n libraries are called with std::async, there
will be a total number of n times of full acquire-release synchronizations, whereas n times of release synchronization and
only one acquire synchronization operations are required for concurrent_invocation. Therefore, the
synchronization overhead for the proposed library, for a same concurrency requirement, could be no higher than
std::experimental::latch, while providing non-blocking mechanism.

3.2.4 Customizing Memory Management

The function template overloads concurrent_invoke accepts one to four arguments, representing the CIU, the
context, the callback and the memory allocator, respectively. The second, third and fourth argument are all extending
argument. global_memory_allocator{} [P1172R1] is the default fourth argument that allocates global memory,
and could be replaced with any type that meets specific requirements.

3.2.5 Exploring Runtime Extension

If runtime extension is required for some procedures, we could change the parameter type of the CIU from the
"contextual data type" into a token. For example, the expression in second step of the sample implementation:

make_concurrent_callable(e, [](const contextual_data& cd) {

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0443r10.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1172r1.pdf

8

 cd.result_of_library_b = call_library_b();

}

is equivalent to:

make_concurrent_callable(e, [](auto&& token) {

 token.context().result_of_library_b = call_library_b();

}

Note that the proposed library will try to invoke the input callable object with the token; if it is not invocable with a

token, the library will try to invoke with token.context(); if it is also not invocable with the result of
token.context(), the library will try to invoke with no arguments; if it is still not invocable, the expression is
ill-formed.

With the token, we will be able to do more things than performing operations on the context. One of the coolest
things is to "fork" the current procedure with another CIU, and the CIU will share a same concurrent invocation with the
current procedure as if it were a part of the original CIU for the initial concurrent invocation. This technique is useful
when the concurrency is only known at runtime.

3.2.6 Supporting Async Libraries

When working with asynchronous libraries, it usually requires more engineering effort to control concurrency and
synchronization. There are little facilities in C++ that we could use directly for such requirements. In the Java
programming language, method thenCompose(Function<? super T,? extends CompletionStage<U>>
fn) in the interface java.util.concurrent.CompletionStage<T> provides such mechanism. However, not
only could it fragment the program, reducing readability, but also tightly couples to the Future mechanism, reducing
performance.

Async libraries are easily supported with the proposed library in a concurrent invocation, because the end of a
procedure is not defined as the last line of the callable code, but the destruction of the token. For example, if we need to
call the async library mentioned in the "Limitations in Supporting Async Libraries":

template <class ResponseHandler>

void async_socket_io(const socket_request& request, ResponseHandler&& handler);

we could include the token as a part of the response handler:

[](auto&& token) {

 // ...

 async_socket_io(

 /* some request */,

 [token = std::move(token)](socket_response) { /* ... */ });

 // ...

};

This feature also provides convenience to perform asynchronous and recursive concurrent invocation.

https://docs.oracle.com/javase/10/docs/api/java/util/concurrent/CompletionStage.html#thenCompose(java.util.function.Function)
https://docs.oracle.com/javase/10/docs/api/java/util/concurrent/CompletionStage.html#thenCompose(java.util.function.Function)
https://docs.oracle.com/javase/10/docs/api/java/util/concurrent/CompletionStage.html

9

4 Impact on the Standard

Figure 1 – Related Work

Figure 1 includes the related work in the standard and the TSes.

5 Design Decisions

5.1 Execution Structures

In concurrent programs, executions of tasks always depend on one another, thus the developers are required to control
the synchronizations among the executions; these synchronization requirements can be divided into 3 basic
categories: "one-to-one", "one-to-many", "many-to-one". Besides, there are "many-to-many" synchronization
requirements; since they are usually not "one-shot", and often be implemented as a "many-to-one" stage and a
"one-to-many" stage, they are not fundamental ones.

"Function" and "Invocation" are the basic concepts of programming, enabling users to wrap their logic into units and
decoupling every part from the entire program. This solution generalizes these concepts in concurrent programming.

When producing a "Function", only the requirements (pre-condition), input, output, effects, synchronizations,
exceptions, etc. for calling this function shall be considered; who or when to "Invoke" a "Function" is not to be
concerned about. When it comes to concurrent programming, there shall be a beginning and an ending for each
"Invocation"; in other words, a "Concurrent Invocation" shall begin from "one" and end up to "one", which forms a
"one-to-many-to-one" synchronization.

10

Figure 2

The most common concurrent model is starting several independent tasks and waiting for their completion. This is the
basic model for "Concurrent Invoke", and typical scenario is shown in Figure 2.

Figure 3

Turning blocking program into non-blocking ones is a common way to break bottleneck in throughput. We could let

the execution agent that executes the last finished task in a concurrent invocation to do the rest of the works (the concept

11

"execution agent" is defined in C++ ISO standard 30.2.5.1: An execution agent is an entity such as a thread that may
perform work in parallel with other execution agents). A typical scenario is shown in Figure 3.

Figure 4

The "Concurrent Invoke" models are the static execution structures for concurrent programming, but not enough for

runtime extensions. For example, when implementing a concurrent quick-sort algorithm, it is hard to predict how many
subtasks will be generated. Therefore, we need a more powerful execution structure that can expand a concurrent
invocation, which means, to add other tasks executed concurrently with the current tasks in a same concurrent invocation
at runtime. This model is defined as "Concurrent Fork". A typical scenario for the "Concurrent Fork" model is shown in
Figure 4.

12

Figure 5

Figure 6

With the concept of the "Concurrent Invoke" the "Concurrent Fork" models, we can easily build concurrent programs

with complex dependencies among the executions, meanwhile, stay the concurrent logic clear. Figure 5 shows a typical

13

scenario for a composition of the " Concurrent Invoke" and the "Concurrent Fork" models; Figure 6 shows a more
complicated scenario.

From the "Concurrent Invoke" and the "Concurrent Fork" models, we can tell that:
- the same as serial invocations, the "Concurrent Invoke" models can be applied recursively, and
- applying the "Concurrent Fork" model requires one existing concurrent invocation to expand.

5.2 Binary Semaphores VS Futures

In previous revisions of this proposal, the concept "Binary Semaphore" was introduced as an abstraction for the Ad-hoc
synchronizations required in the "Concurrent Invoke" model. Typical implementations may have one or more of the
following mechanisms:

- simply use std::promise<void> to implement, as mentioned earlier, or
- use the "Spinlock" if executions are likely to be blocked for only short periods, or
- use the Mutexes together with the Condition Variables to implement, or
- use the primitives supported by specific platforms, such as the "Futex" in modern Linux, the "Semaphore"

defined in the POSIX standard and the "Event" in Windows, or
- have "work-stealing" strategy that may execute other unrelated tasks while waiting.

However, I found there could be more requirements in blocking:
- sometimes blocking could be tolerated to reduce engineering cost, but we may also need timing mechanism to

ensure the stability of the entire system, which will make it the concept more complicated and the lifetime of
the context shall be extended until every procedures in the concurrent invocation has finished, and

- If we perform blocking as we invoke the library, the CIU will not be destroyed until blocking is released
automatically or due to timeouts, etc. On the one hand, it may be good for performance because async
procedures may reuse the resources on the call stack of the calling thread without copying them. However, on
the other hand, if the CIU could be destroyed in time, not only could the resources be released, but we will be
able to submit tasks to some execution agents in batch, when the executor is destroyed, to reduce the number of
critical section and increase performance. After all, it is convenient to manage all the contextual resources in
the "concurrent context" if necessary.

Therefore, the concept of "Binary Semaphore" was removed from this revision based on the considerations above, and
only provide a "future" version even if it does not have potentially the highest performance. Meanwhile, the proposed
library retained the extendibility to customize any blocking mechanism with a "callback" such as platform-specific
primitives or the "work-stealing" strategy, etc. if necessary.

5.3 Polymorphism VS Compile-time Routing

I have tried many ways to design the API for the concurrent invocation library, and I once thought that polymorphism
could be the best solution for engineering experience, and that was my original motivation for the PFA [P0957R2].
However, after exploring more in metaprogramming, I found proper compile-time routing has more usability and zero
runtime overhead comparing to polymorphism. Therefore, the PFA was separated from this paper from revision 1.

Here is a part of a deprecated design for concurrent invocation:

template <class F = /* A polymorphic wrapper */, class C = std::vector<F>>

class concurrent_invoker {

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0957r2.pdf

14

 public:

 template <class _F>

 void attach(_F&& f);

 template <class T>

 void invoke(T&& context);

};

The class template concurrent_invoker holds a container for the procedures to be invoked concurrently.

However, it may introduce extra runtime overhead since F is a (default or customized) polymorphic wrapper, and an
extra variable-size container will be constructed even if the concurrency could be determined at compile-time.

In order not to introduce extra runtime overhead and retain usability, the concept of "CIU" (Concurrent Invocation Unit)
was proposed with recursive semantics, and I designed another library for compile-time routing [P1649R0] as an
infrastructure for the proposed library.

5.4 Variable Parameter VS Single Parameter

There are many variable parameter function templates in the standard providing the mechanism for in-place
construction. Actually, I found in-place construction is indispensable in concurrent programming, especially for the
contexts including concurrent data structure such as concurrent queue or map, which are usually not move constructible
at all.

However, since there could be many parameters for a function template with different semantics, it becomes difficult to
let all of them have the potential for in-place construction. Therefore, a separate "Extending Argument" library [P1648R0]
is designed as a generic solution for lifetime extension and in-place construction, making it possible to in-place-construct
any argument in a function template without variable parameter and retain clear semantics.

5.5 Allocator VS Memory Allocator

Allocator is a widely used facility in C++ as an abstraction for memory management. However, it does not work well
in self-referencing or type-erased context. For example, it is not feasible to allocate a value of a type template specified
by the allocator:

template <class T, class Alloc>

class foo;

We are not able to instantiate the class template std::allocator with foo specified by the allocator itself because

infinite template recursion is not supported (e.g., std::allocator<foo<T, std::allocator</* infinite
recursion */>>>). Although the issue could be mitigated if infinite template recursion could be supported with
another proposal of mine, recursive template instantiation [P1230R0], it makes the semantics complicated so that have
limitations in extendibility. Therefore, the concept of "Memory Allocator" [P1172R1] was proposed not only for
recursive scenarios, but also for type-erasure [P0957R2].

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1649r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1648r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1230r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1172r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0957r2.pdf

15

6 Technical Specifications

6.1 Header <concurrent_invocation> synopsis

namespace std {

template <class CTX, class E_CB, class MA>

class concurrent_breakpoint;

class invalid_concurrent_breakpoint;

template <class CTX, class E_CB, class MA = global_memory_allocator>

class concurrent_token;

template <class CTX, class E_CB, class MA = global_memory_allocator>

class concurrent_finalizer;

class thread_executor;

template <class CTX>

class promise_callback;

template <>

class promise_callback<void>;

template <class E_F, class CTX, class E_CB, class MA>

class contextual_concurrent_callable;

template <class E_E, class E_F>

class concurrent_callable;

template <class E_CT, class CTX, class E_CB, class MA>

class contextual_concurrent_callback;

template <class E_E, class E_CT>

class concurrent_callback;

template <class E_E, class E_F>

auto make_concurrent_callable(E_E&& e, E_F&& f);

template <class E_E, class E_CT>

auto make_concurrent_callback(E_E&& e, E_CT&& ct);

16

template <class CIU, class E_CTX, class E_CB,

 class E_MA = global_memory_allocator>

void concurrent_invoke(CIU&&, E_CTX&&, E_CB&&, E_MA&& = E_MA{});

template <class CIU, class E_CTX = in_place_type_t<void>>

decltype(auto) concurrent_invoke(CIU&& ciu, E_CTX&& ctx = E_CTX{});

}

6.2 ConcurrentInvocationUnit requirements

A type meets the ConcurrentInvocationUnit requirements of specific types CTX, E_CB, MA if
- it is invocable with concurrent_token<CTX, E_CB, MA>, or
- it is a "Generic Tuple" or a "Generic Container" of types meeting the ConcurrentInvocationUnit

requirements of CTX, E_CB, MA.
A "Generic Tuple" is an instantiation of std::tuple, std::pair or std::array. A "Generic Container" is the

type of any range expression that is iterable with a range-based for statement.

6.3 Core Types

There are three core class templates and one core class in this library.
1. Class template concurrent_breakpoint is the data structure for concurrent invocation and has

unspecified constructors.
2. Class invalid_concurrent_breakpoint inherits from std::logic_error and is the exception

thrown when concurrent_token or concurrent_finalizer is not associated to a valid
concurrent_breakpoint.

3. Class template concurrent_token is the facility for CIUs to fork/join the concurrent invocation.
4. Class template concurrent_finalizer is the facility for Concurrent Callback to access the context and

clean up.

6.3.1 Class template concurrent_token

Any well-formed instantiation for concurrent_token is default-constructible, move-constructible and
move-assignable. The default constructor will construct a value of concurrent_token associated with no concurrent
invocation.

template <class CTX, class E_CB, class MA>

class concurrent_token {

 public:

 concurrent_token();

 concurrent_token(concurrent_token&&);

17

 ~concurrent_token();

 concurrent_token& operator=(concurrent_token&&);

 template <class CIU> void fork(CIU&& ciu) const;

 decltype(auto) context() const;

};

~concurrent_token();

Effects: Join the current procedure to the concurrent invocation if the *this associates to a valid value of
concurrent_breakpoint<CTX, E_CB, MA>, and destroy *this. The last join operation will trigger the
execution of the callback.

template <class CIU>

void fork(CIU&& ciu) const;

Requires: *this is associated with a concurrent invocation, and CIU shall meet the
ConcurrentInvocationUnit requirements of CTX, E_CB and MA.
Effects: Fork the concurrent invocation associated to *this with the provided ciu.

decltype(auto) context() const;

Requires: *this is associated with a concurrent invocation.
Return Type: const CTX& if is_void_v<CTX> is false, otherwise, void.
Returns: A const reference of the context associated to the concurrent invocation if is_void_v<CTX> is false,
otherwise, nothing.

6.3.2 Class template concurrent_finalizer

Any well-formed instantiation for concurrent_finalizer is default-constructible, move-constructible and
move-assignable. The default constructor will construct a value of concurrent_finalizer associated with no
concurrent invocation.

template <class CTX, class E_CB, class MA>

class concurrent_finalizer {

 public:

 concurrent_finalizer();

 concurrent_finalizer(concurrent_finalizer&&);

 ~concurrent_finalizer();

 concurrent_finalizer& operator=(concurrent_finalizer&&);

 decltype(auto) context() const;

};

~concurrent_finalizer();

Effects: Destroy corresponding the data structure of the concurrent invocation if the *this associates to a valid
value of concurrent_breakpoint<CTX, E_CB, MA>, and destroy *this.

18

decltype(auto) context() const;

Requires: *this is associated with a concurrent invocation.
Return Type: CTX& if is_void_v<CTX> is false, otherwise, void.
Returns: A reference of the context associated to the concurrent invocation if is_void_v<CTX> is false,
otherwise, nothing.

6.4 Helper Utilities

Helper utilities are not required for every usage for this library but has the potential for improving engineering
experience with concurrent invocation.

6.4.1 Class thread_executor

The class thread_executor meets the OneWayExecutor requirements [P0443R10], and is default-constructible
and copy-constructible.

class thread_executor {

 public:

 template <class F>

 void execute(F&& f) const;

};

template <class F>

void execute(F&& f) const;

Requires: F shall be a callable type with no arguments.
Effects: Create a new thread to execute f. The program shall not exit before completion of the execution.

6.4.2 Class template promise_callback

The class template promise_callback is a helper for the function templates overloads concurrent_invoke
with one or two parameters. Any well-formed instantiation for promise_callback has unspecified constructors.

template <class CTX>

class promise_callback {

 public:

 template <class E_CB, class MA>

 void operator()(concurrent_finalizer<CTX, E_CB, MA>&& finalizer) &&;

};

template <>

class promise_callback<void> {

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0443r10.html

19

 public:

 template <class CTX, class E_CB, class MA>

 void operator()(concurrent_finalizer<CTX, E_CB, MA>&&) &&;

};

6.4.3 Helper for CIU

There are two class templates and a function template that helps creating asynchronous CIUs with a Oneway Executor
and a callable value.

template <class E_F, class CTX, class E_CB, class MA>

class contextual_concurrent_callable {

 public:

 contextual_concurrent_callable(contextual_concurrent_callable&&);

 contextual_concurrent_callable& operator=(contextual_concurrent_callable&&);

 void operator()() &&;

};

Any well-formed instantiation for contextual_concurrent_callable is move-constructible and

move-assignable. It may associate with a callable value f of type E_F and a value token of type
concurrent_token<CTX, E_CB, MA> associating with a concurrent invocation.

Invoking an rvalue reference of contextual_concurrent_callable<E_F, CTX, E_CB, MA> will perform
make_extended_view(std::forward<E_F>(f)), and invoke the return value nf of type F:

- If std::is_invocable_v<F, concurrent_token<CTX, E_CB, MA>> is true, perform
std::invoke(nf, std::move(token)), or

- If std::is_invocable_v<F, std::add_lvalue_reference_t<const CTX>> is true, perform
std::invoke(nf, token.context()) and destroy token, or

- If std::is_invocable_v<F> is true, perform std::invoke(nf) and destroy token, or
- Otherwise, the expression is ill-formed.

template <class E_E, class E_F>

class concurrent_callable {

 public:

 template <class _E_E, class _E_F>

 explicit concurrent_callable(_E_E&& e, _E_F&& f);

 concurrent_callable(const concurrent_callable&);

 concurrent_callable(concurrent_callable&&);

 concurrent_callable& operator=(const concurrent_callable&);

 concurrent_callable& operator=(concurrent_callable&&);

 template <class CTX, class E_CB, class MA>

 void operator()(concurrent_token<CTX, E_CB, MA>&& token) &&;

};

20

Any well-formed instantiation for concurrent_callable is copy-constructible, copy-assignable,
move-constructible and move-assignable. It associates with a value e of type E_E and a value f of type E_F. The type
extending_t<E_E> shall meet the OneWayExecutor requirements.

Invoking an rvalue reference of concurrent_callable<E_E, E_F> will perform
make_extended_view(std::forward<E_E>(e)).execute(contextual_callable), where
contextual_callable is a value of type contextual_concurrent_callable<E_F, CTX, E_CB, MA>.

template <class E_E, class E_F>

auto make_concurrent_callable(E_E&& e, E_F&& f);

Effects: Construct a value of type concurrent_callable<decay_t<E_E>, decay_t<E_F>>.
Returns: concurrent_callable<decay_t<E_E>, decay_t<E_F>>(forward<E_E>(e),

forward<E_F>(f)).

6.4.4 Helper for Concurrent Callback

Like the CIU, there are two class templates and a function template that helps creating asynchronous callback with a
Oneway Executor and a callable continuation.

template <class E_CT, class CTX, class E_CB, class MA>

class contextual_concurrent_callback {

 public:

 contextual_concurrent_callback(contextual_concurrent_callback&&);

 contextual_concurrent_callback& operator=(contextual_concurrent_callback&&);

 void operator()() &&;

};

Any well-formed instantiation for contextual_concurrent_callback is move-constructible and

move-assignable. It may associate with a callable value ct of type E_CT and a value finalizer of type
concurrent_finalizer<CTX, E_CB, MA> associating with a concurrent invocation.

Invoking an rvalue reference of contextual_concurrent_callback<E_CT, CTX, E_CB, MA> will perform
make_extended_view(std::forward<E_CT>(ct)), and invoke the return value nct of type CT:

- If std::is_invocable_v<CT, concurrent_finalizer<CTX, E_CB, MA>> is true, perform
std::invoke(nct, std::move(finalizer)), or

- If std::is_invocable_v<CT, CTX> is true, perform std::invoke(nct,

std::forward<CTX>(finalizer.context())) and destroy finalizer, or
- If std::is_invocable_v<CT> is true, perform std::invoke(nct) and destroy finalizer, or
- Otherwise, the expression is ill-formed.

template <class E_E, class E_CT>

class concurrent_callback {

 public:

 template <class _E_E, class _E_CT>

 explicit concurrent_callback(_E_E&& e, _E_CT&& ct);

 concurrent_callback(const concurrent_callback&);

21

 concurrent_callback(concurrent_callback&&);

 concurrent_callback& operator=(const concurrent_callback&);

 concurrent_callback& operator=(concurrent_callback&&);

 template <class CTX, class E_CB, class MA>

 void operator()(concurrent_finalizer<CTX, E_CB, MA>&& finalizer) &&;

};

Any well-formed instantiation for concurrent_callback is copy-constructible, copy-assignable,

move-constructible and move-assignable. It associates with a value e of type E_E and a value ct of type E_CT. The
type extending_t<E_E> shall meet the OneWayExecutor requirements.

Invoking an rvalue reference of concurrent_callback<E_E, E_CT> will perform
make_extended_view(std::forward<E_E>(e)).execute(contextual_callback), where
contextual_callback is a value of type contextual_concurrent_callback<E_CT, CTX, E_CB, MA>.

template <class E_E, class E_CT>

auto make_concurrent_callback(E_E&& e, E_CT&& ct);

Effects: Construct a value of type concurrent_callback<decay_t<E_E>, decay_t<E_CT>>.
Returns: concurrent_callback<decay_t<E_E>, decay_t<E_CT>>(forward<E_E>(e),

forward<E_CT>(ct)).

6.5 Function templates concurrent_invoke

template <class CIU, class E_CTX, class E_CB, class E_MA>

void concurrent_invoke(CIU&& ciu, E_CTX&& ctx, E_CB&& cb, E_MA&& ma);

Requires: Type CIU meets the ConcurrentInvocationUnit requirements of extending_t<E_CTX>,
E_CB and extending_t<MA>. Type extending<E_CB> shall be a callable type with
concurrent_finalizer<extending_t<E_CTX>, E_CB, MA>. Type extending<MA> shall meet the
MemeoryAllocator requirements [P1172R1] of
sizeof(concurrent_breakpoint<extending_t<E_CTX>, E_CB, extending_t<MA>>) and
alignof(concurrent_breakpoint<extending_t<E_CTX>, E_CB, extending_t<MA>>).
Effects: Construct a value of concurrent_breakpoint<extending_t<E_CTX>, E_CB,

extending_t<MA>> and perform concurrent invocation with ciu on the breakpoint.

template <class CIU, class E_CTX = in_place_type_t<void>>

decltype(auto) concurrent_invoke(CIU&& ciu, E_CTX&& ctx = E_CTX{});

Effects: Equivalent to
using R = conditional_t<

 is_move_constructible_v<extending_t<E_CTX>>, extending_t<E_CTX>, void>;

promise<R> p;

future<R> result = p.get_future();

concurrent_invoke(forward<CIU>(ciu), forward<E_CTX>(ctx),

 promise_callback<R>{move(p)});

return result;

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1172r1.pdf

22

Return type: std::future<extending_t<CTX>> if extending_t<CTX> is move-constructible, or
std::future<void> otherwise.
Returns: A value of std::future that will be available after the concurrent invocation has finished.

	The Concurrent Invocation Library
	1 History
	1.1 Changes from P0642R1
	1.2 Changes from P0642R0

	2 Introduction
	3 Motivation and Scope
	3.1 Limitations
	3.1.1 Blocking
	3.1.2 Execution Resource Management
	3.1.3 Synchronization
	3.1.4 Memory Management
	3.1.5 Runtime Extension
	3.1.6 Supporting Async Libraries

	3.2 The Solution
	3.2.1 Avoiding Blocking
	3.2.2 Managing Execution Resources
	3.2.3 Exploring Synchronization
	3.2.4 Customizing Memory Management
	3.2.5 Exploring Runtime Extension
	3.2.6 Supporting Async Libraries

	4 Impact on the Standard
	5 Design Decisions
	5.1 Execution Structures
	5.2 Binary Semaphores VS Futures
	5.3 Polymorphism VS Compile-time Routing
	5.4 Variable Parameter VS Single Parameter
	5.5 Allocator VS Memory Allocator

	6 Technical Specifications
	6.1 Header <concurrent_invocation> synopsis
	6.2 ConcurrentInvocationUnit requirements
	6.3 Core Types
	6.3.1 Class template concurrent_token
	6.3.2 Class template concurrent_finalizer

	6.4 Helper Utilities
	6.4.1 Class thread_executor
	6.4.2 Class template promise_callback
	6.4.3 Helper for CIU
	6.4.4 Helper for Concurrent Callback

	6.5 Function templates concurrent_invoke

