Adjuncts to std: :hash

Document #: WG21 PO549R6

Date: 2019-08-30
Project: JTC1.22.32 Programming Language C++
Audience: LWG
Reply to: Walter E. Brown <webrown.cpp@gmail .com>
Contents
1 Introduction 1 3.1 Non-{en,dis}abled hashes 3
2 Proposals 2 3.2 About hash value 4
2.1 is_enabled_hash 2 4 Proposed wording 5
2.2 hash_for and is_hashable 2 5 Acknowledgments. 6
2.3 hash value 3 6 Bibliography 7
2.4 is_nothrow _hashable 3 7 Document history. 7
3 Alternatives 3

Abstract

Inspired by Lippincott’s paper [PO513R0] and subsequent correspondence with her, this paper
proposes, for the standard library, a few templates of general use in connection with std: :hash.

HASH, x. There is no definition for this word—nobody knows what hash is.
— AMBROSE BIERCE

He took the Who's feast,

he took the Who pudding, he took the roast beast.

He cleaned out that ice box as quick as a flash.

Why, the Grinch even took their last can of Who hash.

— DR. SEUSS (né THEODOR SEUSS GEISEL)

1 Introduction

Lippincott’s paper [P0513R0], adopted! for C++17 in Issaquah, introduced new vocabulary to
describe specializations of std::hash. Each is now “either disabled (‘poisoned’) or enabled
(‘untainted’).”2

The paper also suggested “a standard trait hash_enabled<T>.” No such trait was formally
proposed, however, because WG21 was at the time focussed on ballot resolution and other C++17
preparations.

To remedy that lack, this paper proposes that trait (under a slightly different name, however).
It also proposes a few other adjuncts that seem generally useful to std: :hash users.

Copyright © 2017, 2018 by Walter E. Brown. All rights reserved.
lAddressing the following issues and National Body comments: LWG 2543, FI 15, GB 69, and LWG 2791.

2While it is possible to code a hash specialization that is neither enabled nor disabled, such a specialization does not
meet the std: :hash requirements. See §3 for details.

mailto:webrown.cpp@gmail.com

2 P0549R6: Adjuncts to std: :hash

2 Proposals

2.1 is _enabled hash?3

The requirements for an enabled std: : hash specialization are specified in [unord.hash]/4. We
propose a corresponding new trait, is_enabled_hash, to decide at compile time whether a given
specialization meets those specifications.

The following expository implementation illustrates the trait’s proposed semantics:

1 template< typename H >
2 struct is_enabled _hash : false_type { };

4 template< typename T >

5 requires is_default_ constructible v<hash<T>>

6 and is_copy_constructible v <hash<T>>

7 and is_move_constructible_ v <hash<T>>

8 and is_copy_assignable_ v <hash<T>>

9 and is_move_assignable_v <hash<T>>

10 and is_destructible_ v <hash<T>>

11 and is_swappable v <hash<T>>

12 and is_invocable v <hash<T>, T>

13 and is_same_v<size_ t, decltype (hash<T>{} (declval<T >()))>
14 and is_same_v<size t, decltype (hash<T>{} (declval<T &>()))>
15 and is_same_v<size_t, decltype (hash<T>{} (declval<T consté&>()))>
16 struct

17 is_enabled_hash< hash<T> > : true_type { };

19 template< typename H >
20 inline constexpr bool is_enabled hash_v = is_enabled hash<H>::value;

As part of this proposal, user specialization of this template is not permitted, just as is the case
for nearly all type traits.

2.2 hash for and is _hashable
Upon reviewing and approving a draft of the above-proposed trait, Lippincott commented:*

Also, the question I imagine most people will want answered is “Can I hash T?” rather
than “Is H an enabled hasher?” I'd like to add is_hashable as a shortcut ...

The following expository implementation, a slight expansion of Lippincott’s code, illustrates the
intended semantics of this proposed “shortcut”:

1 template< class T >
2 using hash_for = hash< remove_cvref t<T> >;

4 template< class T >
5 using is_hashable = is_enabled hash< hash_for<T> >;

7 template< class T >
8 inline constexpr bool is_hashable v = is_hashable<T>: :value;

3See §3 for alternative designs.

4Lisa Lippincott: “Re: Follow-up to PO513R0.” Personal correspondence, 2016-12-09.

P0O549R6: Adjuncts to std: :hash 3

2.3 hash_value
Finally, Lippincott suggested:®

And if it’s not there already, we could use a function for calculating hashes. Making
every user instantiate, construct, and call the right specialization is for the birds.

The following expository implementation is adapted from Lippincott’s code; user specialization of
this template, too, is not permitted. By design, attempted instantiation of this template for a type
without an enabled hash yields an ill-formed program:

template< class T >
requires is_hashable v<T>
size t
hash_value(T&& t)
noexcept (noexcept (hash_for<T>{} (std: :forward<T>(t))))
{
return hash for<T>{} (std::forward<T>(t));
}

o N O g s w N

Note that this proposed template shares its name with a seemingly-similar Boost facility.
However, the corresponding Boost documentation states®, in pertinent part:

e “Generally shouldn’t be called directly by users”

e “This hash function is not intended for general use, and isn’t guaranteed to be equal during
separate runs of a program”

The version proposed herein has no such design restrictions.

2.4 is nothrow_hashable
Recent adoption of [PO599R1] has emphasized the noexcept nature of most of the library-provided

hash specializations. Because this status may be of special interest in the case of operator(),
we propose a corresponding is_nothrow_hashable trait:

1 template< class T >
2 inline constexpr bool is_nothrow hashable v = is_hashable_ v<T>
3 and noexcept (hash_value (declval<T>()));

5 template< class T >
6 using is_nothrow_hashable = bool_constant< is_nothrow_hashable v >;

3 Alternatives

3.1 Non-{en,dis}abled hashes

As we cited in §1, it is convenient to think of std: :hash specializations as “either disabled
(‘poisoned’) or enabled (‘untainted’).” However, it is technically possible to code a specialization
that meets neither definition. Of course, a program with such a specialization runs afoul of
[namespace.std]:

1.... A program may add a template specialization for any standard library template to
namespace std only if ... the specialization meets the standard library requirements
for the original template

SIbid.
6 See http://www.boost.org/doc/libs/1_63_0/doc/html/hash/reference.html#boost.hash_value_idp743313104.

http://www.boost.org/doc/libs/1_63_0/doc/html/hash/reference.html#boost.hash_value_idp743313104

4 P0549R6: Adjuncts to std: :hash

To what lengths, if any, should the standard library go to diagnose such undefined behavior?

1. Should we respecify the proposed is_enabled hash trait as follows?

e Have a BaseCharacteristic of true_type if template parameter H is an enabled special-
ization of hash;

e have a BaseCharacteristic of false_type if H is a disabled specialization of hash; and
e be ill-formed?, otherwise.

2. Alternatively, instead of altering the is_enabled_hash specification, should we provide, in
addition, an is_disabled hash trait, specified as follows?

e Have a BaseCharacteristic of true_type if template parameter H is a disabled special-
ization of hash;

e have a BaseCharacteristic of false_type, otherwise.

Update: LEWG expressed no opinion on this issue during this paper’s review in San Diego.
We therefore provide no accommodation for std::hash specializations that are neither
enabled nor disabled.

3.2 About hash value

Arthur O'Dwyer raised® an objection to the above design for function template hash_value on the
grounds that “it is a function (template), and so ADL kicks in.” Therefore, he demonstrated, there
is code that “builds before, fails to build after” as well as code that “builds both before and after,
but with a silent breaking change in behavior.”

Moreover, O’ Dwyer opined that “WG21 needs to avoid creating ADL situations on userspace
names that are in that sweet spot of ‘uncommon, yet plausible,” which is exactly where [he
believes] hash_value falls.” He proposed three designs, paraphrased below, that he would find
acceptable alternatives:

e implementation as a member function, e.g., std: :hash<void>: :operator () (T&& t);
e implementation as a Customization Point Object instead of as a function; or
e renaming “with a less ‘user-space’ spelling,” e.g., _ _hash_value or apply_enabled_hash.

However, others have strong reservations even while agreeing with O’'Dwyer’s premise. For
example, Lisa Lippincott writes® that “Arthur’s objection is certainly a valid one; adding a function
to namespace std can change the meaning of programs. But the breadth of its applicability
gives me pause: at its heart, I think it is an argument against adding almost any function to the
library.”

Given such divergent opinions, this paper proposes no wording for any of the cited alternatives,
so that LEWG can first decide whether it agrees with O’'Dwyer’s stated concern. If LEWG does
agree, we will then follow LEWG’s chosen design policy, once established. We ask only that
any such decisions be made promptly so as to avoid further delay, already considerable, in this
paper’s progress toward C++20.

Update: During this paper’s review in San Diego, LEWG addressed this issue by changing
this template’s name to hashed _value. The proposed wording, below, is consistent with
this decision and with the other minor LEWG change requests.

"This can be implemented via a judiciously-placed static_assert, for example.

8Arthur O’'Dwyer: “[isocpp-lib-ext] Priorities in San Diego?” Personal correspondence, 2018-10-26. (Alas, an earlier
draft of this paper’s R5 incorrectly described this correspondence as a posting to the WG21 lib-ext reflector; we deeply
regret that mischaracterization.)

9Lisa Lippincott: “[isocpp-lib-ext] DO549R5: ‘Adjuncts to std::hash’.” lib-ext reflector message, 2018-11-04.

P0O549R6: Adjuncts to std: :hash 5

4 Proposed wording'°

4.1 Insert the following row into Table 35 — Standard library feature-test macros. Adjust the
placeholder Value as needed so as to denote this proposal’s date of adoption.

| Macro name Value Header(s) \

__cpp_lib_hash adjuncts 20yymmL <bitset> <functional>
<memory> <optional>
<string> <string_view>
<system_error> <thread>
<typeindex> <variant>
<vector>

4.2 Insert into the synopsis in [functional.syn] as shown.

namespace std {

// 20.14.18, hash function primary template and adjuncts
template<class T> struct hash;

template<class T> struct is_enabled_hash;
template<class T> inline constexpr bool is_enabled hash_v
= is_enabled_hash<T>: :value;

template<class T> using hash_for = hash< remove_cvref t<T> >;

template<class T> struct is_hashable;
template<class T> inline constexpr bool is_hashable_v
= is_hashable<T>: :value;

template<class T>
size_t hashed value(const T& t) noexcept (see below) ;

template<class T> struct is_nothrow_ hashable;
template<class T> inline constexpr bool is_nothrow hashable v
= is_nothrow_hashable<T>: :value;

4.3 Retitle [unord.hash] as shown. (Note that there is a pre-existing discrepancy between this
title and the corresponding entry in the synopsis (see above); we recommend that the Project
Editor determine whether and how this mismatch should be resolved.)

20.14.18 Class template hash and adjuncts [unord.hash]

10proposed additions and deletiens are based on [N4830]. Editorial instructions and drafting notes look like this .

6 P0O549R6: Adjuncts to std: :hash

4.4 As shown, reword the last sentence of [unord.hash]/2 to take advantage of since-improved
terminology. (This is a drive-by fix.)

2 ... For any type Key for which there is neither the library-neorthe userprovides-an-expleit
er-partial a library-provided nor a program-provided specialization of the class template hash,
hash<Key> is disabled.

4.5 Append the following new text to the retitled [unord.hash].

6 The behavior of a program that adds a specialization hash<T> is undefined unless is_same_v<
T, decay_ t<T>> is true.

template<class T> struct is_enabled_hash;

7 Remarks: Each specialization of this template meets the Cppl 7UnaryTypeTrait require-
ments ([meta.rgmts]) with a BaseCharacteristic of true_type if T is an enabled specialization
of hash ([unord.hash]) and a BaseCharacteristic of false_type otherwise. [Note: The latter
does not necessarily imply that T is a disabled specialization of hash. — end note] The behavior
of a program that adds specializations for this template is undefined.

template<class T> struct is_hashable;

8 Remarks: Each specialization of this template meets the Cppl7UnaryTypeTrait require-
ments ([meta.rgmts]) with a BaseCharacteristic of true_type if hash_for<T> is an enabled
specialization of hash ([unord.hash]) and a BaseCharacteristic of false_type otherwise. The
behavior of a program that adds specializations for this template is undefined.

template<class T>
size_t hashed value(const T& t) noexcept (see below) ;

9 Constraints: is_hashable_v<T> is true.

10 Effects: Equivalent to: return hash_for<T>{} (t);

11 Remarks: The expression inside noexcept is equivalent to: noexcept (hash_for<T>{} (t)).

template<class T> struct is_nothrow_hashable;

12 Remarks: Each specialization of this template meets the Cppl7UnaryTypeTrait require-
ments ([meta.rqmts]) with a BaseCharacteristic of true_type if is_hashable_ v<T> &&
noexcept (hashed_value (declval<const T&>())) is true and a BaseCharacteristic of
false_type otherwise. The behavior of a program that adds specializations for this template
is undefined.

5 Acknowledgments

Special thanks to Lisa Lippincott, who inspired essentially all of this proposed functionality.
Thanks also to Andrey Semashev and the other readers of this paper’s pre-publication drafts for
their thoughtful comments.

P0O549R6: Adjuncts to std: :hash 7

6 Bibliography

[N4659]

[N4687]

[N4713]

[N4762]

[N4791]

[N4830]

[PO513RO]

[PO599R1]

Richard Smith: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N4659 (post-Kona mailing), 2017-03-21. http://wg21.link/n4659.

Richard Smith: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N4687 (post-Toronto mailing), 2017-07-30. http://wg21.link/n4687.

Richard Smith: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N4713 (post-Albuquerque mailing), 2017-11-27. http://wg21.link/
n4713.

Richard Smith: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N4762 (corrected post-Rappersville mailing), 2018-07-07. http://wg21.
link/n4762.

Richard Smith: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N4791 (post-San Diego mailing), 2018-12-07. https://wg21.link/
n4791.

Richard Smith: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N4830 (post-Cologne mailing), 2019-08-15. https://wg21.1ink/n4830.

Lisa Lippincott: “Poisoning the Hash.” ISO/IEC JTC1/SC22/WG21 document PO513RO (post-
Issaquah mailing), 2016-11-10. http://wg21.link/p0513r0.

Nicolai Josuttis: “noexcept for Hash Functions.” ISO/IEC JTC1/SC22/WG21 document
PO599R1 (post-Kona mailing), 2017-03-02. http://wg21.link/p0599R1.

7 Document history

Version

0
1

Date Changes

2017-02-01 e Published as PO549R0, pre-Kona.

2017-06-11 e Added is_nothrow_hashable (§2.4, etc.). e Updated relative to the post-Kona Work-
ing Draft [N4659]. e Made minor editorial improvements. e Published as PO549R1,
pre-Toronto.

2017-10-10 e Updated relative to the post-Toronto Working Draft [N4687]. e Revised citations to
use wg21.link. e Made minor technical and editorial improvements. e Published as
P0549R2, pre-Albuquerque.

2018-02-03 e Updated relative to the post-Albuquerque Working Draft [N4713]. e Added feature-test
macro recommendation. e Published as PO549R3, pre-Jacksonville.

2018-10-07 e Rebased on [N4762], taking advantage of recent new library specification elements
and new blanket prohibition on specializing library function templates. e Published as
P0O549R4, pre-San Diego.

2019-01-20 e Rebased on [N4791] (post-San Diego). e Added §3.2. e Tweaked/corrected exam-
ple code and proposed wording. e Applied LEWG’s and LWG’s guidance from San
Diego. e Published as PO549R5, pre-Kona.

2019-08-30 e Rebased on [N4830] (post-Cologne). e Applied LWG guidance from post-Kona, as
elaborated via personal correspondence. e Published as PO549R6, pre-Belfast.

http://wg21.link/n4659
http://wg21.link/n4687
http://wg21.link/n4713
http://wg21.link/n4713
http://wg21.link/n4762
http://wg21.link/n4762
https://wg21.link/n4791
https://wg21.link/n4791
https://wg21.link/n4830
http://wg21.link/p0513r0
http://wg21.link/p0599R1
wg21.link

	Title
	Contents
	Abstract
	1 Introduction
	2 Proposals
	2.1 is_enabled_hash
	2.2 hash_for and is_hashable
	2.3 hash_value
	2.4 is_nothrow_hashable

	3 Alternatives
	3.1 Non-{en,dis}abled hashes
	3.2 About hash_value

	4 Proposed wording
	– feature-test macro
	– Synopsis
	– Heading
	– hash<cv>
	– is_enabled_hash
	– is_hashable
	– hashed_value
	– is_nothrow_hashable

	5 Acknowledgments
	6 Bibliography
	7 Document history

