
p0408r7 - Efficient Access to basic_stringbuf’s Buffer
Including wording from p0407 Allocator-aware basic_stringbuf

Peter Sommerlad

2019-07-18

Document Number: p0408r7
Date: 2019-07-18
Project: Programming Language C++
Audience: LEWG / LWG
Target: C++20

1 Motivation

Streams have been the oldest part of the C++ standard library and their specification doesn’t
take into account many things introduced since C++11. One of the oversights is that there is no
non-copying access to the internal buffer of a basic_stringbuf which makes at least the obtaining
of the output results from an ostringstream inefficient, because a copy is always made. I personally
speculate that this was also the reason why basic_strbuf took so long to get deprecated with its
char * access.

With move semantics and basic_string_view there is no longer a reason to keep this pessimissation
alive on basic_stringbuf.

I also believe we should remove basic_strbuf from the standard’s appendix [depr.str.strstreams].
This is proposed in p0448, that completes the replacement of that deprecated feature.

2 Introduction

This paper proposes to adjust the API of basic_stringbuf and the corresponding stream class
templates to allow accessing the underlying string more efficiently.

C++17 and library TS have basic_string_view allowing an efficient read-only access to a contiguous
sequence of characters which I believe basic_stringbuf has to guarantee about its internal buffer,
even if it is not implemented using basic_string obtaining a basic_string_view on the internal
buffer should work sidestepping the copy overhead of calling str().

On the other hand, there is no means to construct a basic_string and move from it into a
basic_stringbuf via a constructor or a move-enabled overload of str(basic_string &&).

1



2 p0408r7 2019-07-18

2.1 History
2.1.1 Changes from r6
The feedback by LWG in Cologne 2019 was incorporated.

— bump paper revision and base it on current working draft (Daniel Krügler checked that all
existing context wording is still OK.)

— specify the moved from state to be "str().empty() is true" instead of comparing with an
empty string literal.

— make initialization sequencing more clear by replacing ". Calls..." with ", then calls..."

— reformulate constraint on constraint constructor (taking a string with a different allocator)
to be in line with current wording guidelines (sentence instead of code). (also for str(SAlloc)
overload).

— simplified effects clause of constructors moving from string.

— make conditional noexcept conform with synopsis for swap, but non-member swap gets it in
synopsis without see below, because it is short enough.

— remove obsolete wording in constructor definitions ("Constructs..." to "Initilizes")

— replace many "Returns:" with "Effects: Equivalent to: " to obtain requirements in many
places. This allows to remove some Constraints on SAlloc (if Marshall believes so - Tomasz
said to remove the str() constraints on SAlloc is OK).

— replace many "Calls " with "Equivalent to:" in Effects clauses

— simplifies wording for str() member functions by relating to view() (except for rvalue-ref
qualified one)

— make view() member specification simpler and more correct, by using "Let sv be basic_-
string_view<....>" and referring to sv instead of the incomplete type right now.

— minor cosmetic adjustments wrt spacing

— make stream swap operations more clear and implicitly add preconditions through specifying
them with effects equivalent to (as suggested by Tomasz Kaminski).

— consistently make view() noexcept

— add get_allocator() to str() calling view.

2.1.2 Changes from r5
There was a review in my absence (again) in San Diego, November 2018. I’ll try my best to
incorporate the feedback here.

— rebase on n4791.

— undo premature application of p1163 (explicit -> non-explicit multi-parameter ctors by
additional overloads) (ARGHHH, but I now think I follow Titus argumentation that it might
be a bad idea).

— see table 1. LEWG might need to reconsider the combination of p0407/p0408 to agree on
sane ctor overloads. LWG and Ville gave feedback on different ctor overloads. New Design:



p0408r7 2019-07-18 3

separate SFINAEd overloads for "foreign allocator" string arguments.

— clean up str() member function overloads. This was in the overlap of p0407 and p0408 and
not seen by LEWG in that way (sorry!). Split getter to two, one taking an allocator for the
new string. Setter str(string const&) member function remains a template on the string’s
Allocator.

— adjust the italic explanations accordingly to the changes.

— LWG question: Do the constructors taling a SAlloc template parameter restrict it to
Cpp17Allocator requirements? It is implicit via basic_string.

— Fixed a specification bug in move construction allowing keeping the original wording of move-
assign. rhs must be "synced" first, by relying initializing buf from std::move(rhs).str()
instead from std::move(rhs.buf) directly.

— merge getters str() specification of high_mark into a single specification for simplification
and consistency.

— split copying setters str(basic_string const &) into the previously existing one and the
one taking a basic_string with a different allocator, like with the constructors to reduce ABI
problems.

— drive by editorial fix to mention already existing Allocator template parameter in stream
classes, i.e., basic_istringstream<charT, traits, Allocator> where mentioned in descriptions

— drive-by fix to postcondition of basic_stringbuf move constructor to also refer to getloc().

2.1.3 Changes from r4
Incorporate suggestions from LWG review in Batavia, August 2018. This was the first time the
combined proposal was reviewed.

— Adjust specification sections to new naming schema introduced at the Rapperswil Meeting 2018
for C++20. (Requires->(Mandates (compile-time), Expects(contract)), Remarks->Constraints,
Postconditions->Ensures).

— change the overloads of constructors with default arguments to only have the single argument
version explicit according to p1163.

— introduce an exposition-only member function init_buf_ptrs() in basic_stringbuf to set
the streambuf pointers. In the standard version, that was part of the str(string) member
function and now is needed in more than one place. Add a note there about internally violating
invariants of buf. Explain the exposition only members in the front matter of the class.

— reduce clutter, since bit operations are possible in enum ios_base::openmode parameters.

— Provide a note that allocator properties are propagated along the properties of the basic_string
member buf in the front matter of the class. I hope this is sufficient to address the issue from
Batavia about what happens with the allocators. Also all other allocator relevant comments
should be addressed through that delegation to basic_string’s properties.

— I provided the following definition of swap for basic_stringbuf adopted from basic_string.
Note, the base class swap does not give a noexcept guarantee. I provided that:



4 p0408r7 2019-07-18

Table 1: Overview of stringbuf/stringstream constructors

string which Allocator ctor comment
default exists

yes explicit exists
copy opt explicit exists

yes yes 407 for stateful allocs
move opt explicit 408, combined again

other-copy1 yes 407 other kind of strings2

other-copy1 yes yes 407 other kind of strings2

other-copy1 opt explicit 407 above with default alloc3

yes explicit 407 for stateful allocators
move yes yes 408r5 - useless, copies anyway

1 other-copy means has a different Allocator template argument
2 allow if same or different allocator for string, because allocator is given,
see copy-ctor string with allocator parameter.
3 LEWG new design question: requires string Allocator different from
stringbuf Allocator (new), otherwise existing ctor is changed ABI (and
may be CTAD) breakage.
* in addition a move ctor is defined taking an additional Allocator argument
like with basic_string
** Allocator should always be the last Parameter (is that really always
the case?).

void swap(basic_stringbuf& s)
noexcept(allocator_traits<Allocator>::propagate_on_container_swap::value ||

allocator_traits<Allocator>::is_always_equal::value);

— basic_stringbufmove constructor now guarantees that rhs is empty, as if std::move(rhs).str()
was called. This seems the easiest way to guarantee its get and put area are re-initialized
accordingly. While technically not required, it makes handling moved-from streambufs (which
are rare) consistent with calling the rvalue-ref-qualified str() member function. Please note,
we do not give such a guarantee to the moved-from state of the stream objects, since they
get their buffer pointer stolen and thus are completely unrelated to a streambuf after been
moved-from. Only moving out the underlying string keeps the stream in working condition.

2.1.4 Changes from r3
To make the job of reviewing and integrating my stringstream adjustments easier, I incorporate
the changes proposed in p0407r2 (allocator-aware basic_stringbuf), since both papers have been
forwarded by LEWG to LWG.

— Added full set of reasonable overloads to the constructors with and without allocator (basic_-
string&& does not get an allocator constructor template argument to allow efficient construction
from charT* literals).



p0408r7 2019-07-18 5

2.1.5 Changes from r2
Discussed in Albuquerque, where LEWG was in favor to forward it to LWG for IS with the following
change.

— reestablish rvalue-ref qualified str() instead of the previously suggested pilfer().

— address LWG only in document header.

2.1.6 Changes from r1
Discussed in LEWG Issaquah. Answering some questions and raising more. Reflected in this paper.

— reflected new section numbers from the std. now relative to the current working draft.

— implementation is now working with gcc 7. (not relevant for this paper)

2.1.7 Changes from r0

— Added more context to synopsis sections to see all overloads (Thanks Alisdair).

— rename str_view() to just view(). There was discussion on including an explicit conversion
operator as well, but I didn’t add it yet (my implementation has it).

— renamed r-value-ref qualified str() to pilfer() and removed the reference qualification from
it and remaining str() member.

— Added allocator parameter for the basic_string parameter/result to member functions (see
p0407 for allocator support for stringstreams in general)

3 Acknowledgements

— Daniel Krügler encouraged me to pursue this track.

— Alisdair Meredith for telling me to include context in the synopsis showing all overloads. That
is the only change in this version, no semantic changes!

— Jonathan Wakely to show me the #undef _GLIBCXX_EXTERN_TEMPLATE

4 Impact on the Standard

This is an extension to the API of basic_stringbuf, basic_stringstream, basic_istringstream,
and basic_ostringstream class templates.

This paper addresses both Library Fundamentals TS 3 and C++Next (2020?). When added to the
standard draft with p0448 (spanstream), section [depr.str.strstreams] should be removed.

5 Design Decisions

After experimentation I decided that substituting the (basic_string<charT,traits,Allocator
const &) constructors in favor of passing a basic_string_view would lead to ambiguities with the
new move-from-string constructors.



6 p0408r7 2019-07-18

5.1 Hint to implementers
In both libc++ and libstdc++ I needed to make basic_stringbuf a friend of basic_string to allow
efficient growth of the buffer beyond the current string length (breaking an invariant) until it is
retrieved using one of the str() member functions. Other implementations might use a different
strategy of caring for the buffer space that should be efficiently be adopted by the returned string
object, thus requiring either special basic_string constructors or access to its internals as well.

5.2 Open Issues to be discussed by LWG
Note: this list includes the discussion of p0407 features.

— Does it make sense to add noexcept specifications for move() and swap() members, since the
base classes and other streams do not. At least it does not make sense so for stream objects,
since the base classes do not specify that.

— The basic_string constructors that move from the string get a default template argument for
SAlloc in the hope that allows initialization from a character string literal. Need confirmation
that this trick works and selects the better constructor for temporary conversion without
ambiguity, because for the copying (const-ref) overload the allocator of the string needs to be
deduced. This should lead to the effect of optimizing existing usages.

5.3 Open Issues discussed by LEWG in Albuquerque

— Should pilfer() be rvalue-ref qualified to denote the "destruction" of the underlying buffer?
LEWG in Issaquah didn’t think so, but I’d like to ask again. LEWG small group in Albuquerque
in favor of rvalue-ref qualification. Re-establish str()&&, drop pilfer

5.4 Open Issues discussed by LEWG in Issaquah and Albuquerque

— Is the name of the str_view() member function ok? No. Renamed to view()

— Should the str()&& overload be provided for move-out? No. give it another name (pilfer)
and remove rvalue-ref-qualification (Issaquah). Re-establish str()&&, drop pilfer

— Should str()&& empty the character sequence or leave it in an unspecified but valid state?
Empty it, and specify.

— Provide guidance on validity lifetime of of the obtained string_view object.

5.5 Open Issues to be discussed by LEWG/LWG (in Kona?)

— LEWG: Please look at constructor overloads (see Table 1) and str() overloads that came from
the mix of p0407 with p0408.

— Both: Constructor overloads taking a string with a different allocator, esp. SFINAE. Is that
OK?

— LWG: Is !is_same_v<SAlloc,Allocator> the correct SFINAE predicate for foreign allocator
overloads?

— LEWG: noexcept for view() member function of stringbuf (note streams have a precondition
on this call and can not be noexcept)(suggested by LWG).



p0408r7 2019-07-18 7

— LWG: Does an Allocator template parameter that is mapped to basic_string’s Allocator
template parameter need to conform to Cpp17Allocator requirements or is that given implicit
by its usage?

— LWG: recheck wording.

6 Technical Specifications

The following is relative to n4820.

Remove section on char* streams [depr.str.strstreams] and all its subsections from appendix D.

6.1 28.8.2 Adjust synopsis of basic_stringbuf [stringbuf]
Add a new constructor overload.

Note that p0407 provides allocator support for basic_stringbuf, since now both papers have been
forwarded to LWG, the changes proposed in p0407 are integrated here for ease of review and integration.
The explanations of those changes are added in italics here. from r6 on some changes that need to be
revisited by LEWG are made, since the overlap of the two papers’ functionality.

Change each of the non-moving, non-deleted constructors to add a const-ref Allocator parameter as
last parameter with a default constructed Allocator as default argument. Add an overload for the
move constructor adding an Allocator parameter like with basic_string. Add an exposition-only
member variable buf to allow referring to it for specifying allocator behaviour. May be: Add noexcept
specification, depending on allocator behavior, like with basic_string?
This section also adopts the changes of p1163 by only marking the single argument constructors
explicit and provide non-explicit overloads for zero, two or more argument versions. That paper
p1163 was tentatively accepted in Batavia, August 2018.

// [stringbuf.cons], constructors
basic_stringbuf() : basic_stringbuf(ios_base::in | ios_base::out) {}
explicit basic_stringbuf(ios_base::openmode which);
explicit basic_stringbuf(

const basic_string<charT, traits, Allocator>& str,
ios_base::openmode which = ios_base::in | ios_base::out);

explicit basic_stringbuf(const Allocator& a)
: basic_stringbuf(ios_base::in | ios_base::out, a) { }

basic_stringbuf(ios_base::openmode which, const Allocator& a);
explicit basic_stringbuf(

basic_string<charT, traits, Allocator>&& s,
ios_base::openmode which = ios_base::in | ios_base::out);

template<class SAlloc>
basic_stringbuf(

const basic_string<charT, traits, SAlloc>& s,
const Allocator& a)
: basic_stringbuf(s, ios_base::in | ios_base::out, a) { }

template<class SAlloc>
basic_stringbuf(



8 p0408r7 2019-07-18

const basic_string<charT, traits, SAlloc>& str,
ios_base::openmode which,
const Allocator& a);

template<class SAlloc>
basic_stringbuf(

const basic_string<charT, traits, SAlloc>& str,
const Allocator& a) : basic_stringbuf(str, ios_base::in | ios_base::out, a) {}

template<class SAlloc>
explicit basic_stringbuf(

const basic_string<charT, traits, SAlloc>& str,
ios_base::openmode which = ios_base::in | ios_base::out);

basic_stringbuf(const basic_stringbuf& rhs) = delete;
basic_stringbuf(basic_stringbuf&& rhs);
basic_stringbuf(basic_stringbuf&& rhs, const Allocator& a);

// [stringbuf.assign], assign and swap
basic_stringbuf& operator=(const basic_stringbuf& rhs) = delete;
basic_stringbuf& operator=(basic_stringbuf&& rhs);
void swap(basic_stringbuf& rhs) noexcept(see below );

The following list summarizes the edits:

— Add an rvalue-ref overload of str() that obtains the underlying string via moving from buf.

— Add a str(Allcator) overload template member function to take an Allocator for the returned
string and add a reference qualification the existing str() overload.NEW: was intermingled
with existing str() member, now separate.

— Add the view() member function obtaining a string_view to the underlying internal buffer.NEW:
make that noexcept.

— Add a setter str() overload as a template member function copying into the string buffer to
take an allocator template parameter that differs from the buffer’s own Allocator

— Add a str(string&&) overload that moves from its string rvalue-reference argument into the
internal buffer.

— Provide an exposition-only member function init_buf_ptrs() to ensure streambuf pointers
are initialized correctly by all buf setting operations.
// [stringbuf.members], getters and setters:
basic_string<charT, traits, Allocator> str() const &;

template<class SAlloc>
basic_string<charT,traits,SAlloc> str(const SAlloc& sa) const;
basic_string<charT, traits, Allocator> str() &&;
basic_string_view<charT, traits> view() const noexcept;

void str(const basic_string<charT, traits, Allocator>& s);

template<class SAlloc>
void str(const basic_string<charT, traits, SAlloc>& s);
void str(basic_string<charT, traits, Allocator>&& s);



p0408r7 2019-07-18 9

Add the following declaration to the public section of synopsis of the class template basic_stringbuf:

allocator_type get_allocator() const noexcept;

Add the following exposition only member to the private section of synopsis of the class template
basic_stringbuf. This allows to delegate all details of allocator-related behaviour on what basic_-
string is doing, simplifying this specification a lot.

private:
ios_base::openmode mode; // exposition only
basic_string<charT, traits, Allocator> buf; // exposition only
void init_buf_ptrs(); // exposition only

Add a conditional noexcept specification to swap with see below:
template <class charT, class traits, class Allocator>

void swap(basic_stringbuf<charT, traits, Allocator>& x,
basic_stringbuf<charT, traits, Allocator>& y) noexcept(noexcept(x.swap(y)));

Adjust p2 of the section to include the additionbal exposition only members and add a note on the
allocator properties of basic_stringbuf.

1 The class basic_stringbuf is derived from basic_streambuf to associate possibly the input
sequence and possibly the output sequence with a sequence of arbitrary characters. The sequence
can be initialized from, or made available as, an object of class basic_string.

2 For the sake of exposition, the maintained data and internal pointer initialization is presented here
as:

—(2.1) ios_base::openmode mode, has in set if the input sequence can be read, and out set if the
output sequence can be written.

—(2.2) basic_string<charT, traits, Allocator> buf contains the underlying character sequence.

—(2.3) init_buf_ptrs() sets the base class’ get area ([streambuf.get.area]) and put area ([stream-
buf.put.area]) pointers after initializing, moving from, or assigning to buf accordingly.

6.1.1 28.8.2.1 basic_stringbuf constructors [stringbuf.cons]
Adjust the constructor specifications taking the additional Allocator parameter and an overload for
the move-constructor taking an Allocator. Make the constructors’ wording that actually construct a
buf consistent.

explicit basic_stringbuf(ios_base::openmode which);

1 Effects: Constructs an object of class basic_stringbuf, initializingInitializes the base class
with basic_streambuf()([streambuf.cons]), and initializing mode with which. It is implementation-
defined whether the sequence pointers (eback(), gptr(), egptr(), pbase(), pptr(), epptr())
are initialized to null pointers.

2 Ensures: str().empty() is true == "".

explicit basic_stringbuf(
const basic_string<charT, traits, Allocator>& s,
ios_base::openmode which = ios_base::in | ios_base::out);



10 p0408r7 2019-07-18

3 Effects: Constructs an object of class basic_stringbuf, initializingInitializes the base class
with basic_streambuf()([streambuf.cons]), and initializing mode with which , and buf with
s, then calls init_buf_ptrs(). Then calls str(s).

basic_stringbuf(
ios_base::openmode which,
const Allocator &a);

4 Effects: Initializes the base class with basic_streambuf()([streambuf.cons]), mode with which,
and buf with a, then calls init_buf_ptrs().

5 Ensures: str().empty() is true.

explicit basic_stringbuf(
basic_string<charT, traits, Allocator>&& s,
ios_base::openmode which = ios_base::in | ios_base::out);

6 Effects: Constructs an object of class basic_stringbuf, initializingInitializes the base class
with basic_streambuf() ([streambuf.cons]), initializing mode with which, and buf with
std::move(s), then calls init_buf_ptrs().

template<class SAlloc>
basic_stringbuf(

basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which,
const Allocator &a);

7 Effects: Initializes the base class with basic_streambuf() ([streambuf.cons]), mode with
which, and buf with {s,a}, then calls init_buf_ptrs().

template<class SAlloc>
explicit basic_stringbuf(

const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which = ios_base::in | ios_base::out);

8 Constraints: is_same_v<SAlloc,Allocator> is false.
9 Effects: Initializes the base class with basic_streambuf() ([streambuf.cons]), mode with

which, and buf with s, then calls init_buf_ptrs().

Add the additional move constructor taking an allocator and adjust the description accordingly:

basic_stringbuf(basic_stringbuf&& rhs);
basic_stringbuf(basic_stringbuf&& rhs, const Allocator& a);

Note to LWG reviewers: using std::move(rhs).str() ensures rhs.buf is in a consistent state before the
move happens. Before the spec was wrong, because rhs.buf might have been shorter than the actual
written characters. Also a drive by (IMHO editorial fix) better spelling out what happens since we
now have the exposition only members.

10 Effects: Move constructs from the rvalue rhs. Copy constructs the base class from rhs and
initializes mode with rhs.mode. In the first form buf is initialized from std::move(rhs).str().
In the second form buf is initialized from {std::move(rhs).str(), a}. It is implementation-
defined whether the sequence pointers in *this (eback(), gptr(), egptr(), pbase(), pptr(),



p0408r7 2019-07-18 11

epptr()) obtain the values which rhs had. Whether they do or not, *this and rhs reference
separate buffers (if any at all) after the construction. The openmode, locale and any other
state of rhs is also copied.

11 Ensures: Let rhs_p refer to the state of rhs just prior to this construction and let rhs_a refer
to the state of rhs just after this construction.

—(11.1) str() == rhs_p.str()

—(11.2) gptr() - eback() == rhs_p.gptr() - rhs_p.eback()

—(11.3) egptr() - eback() == rhs_p.egptr() - rhs_p.eback()

—(11.4) pptr() - pbase() == rhs_p.pptr() - rhs_p.pbase()

—(11.5) epptr() - pbase() == rhs_p.epptr() - rhs_p.pbase()

—(11.6) if (eback()) eback() != rhs_a.eback()

—(11.7) if (gptr()) gptr() != rhs_a.gptr()

—(11.8) if (egptr()) egptr() != rhs_a.egptr()

—(11.9) if (pbase()) pbase() != rhs_a.pbase()

—(11.10) if (pptr()) pptr() != rhs_a.pptr()

—(11.11) if (epptr()) epptr() != rhs_a.epptr()

—(11.12) getloc() == rhs_p.getloc()

—(11.13) rhs is empty but usable, as if std::move(rhs).str() was called.

6.2 28.8.2.2 Assign and swap [stringbuf.assign]
Most of this section is included to allow for simpler adding of conditional noexcept.

basic_stringbuf& operator=(basic_stringbuf&& rhs);

1 Effects: After that move assignment *this has the observable state it would have had if it
had been move constructed from rhs (see [stringbuf.cons]).

2 Returns: *this.

void swap(basic_stringbuf& rhs) noexcept(see below );

3 Expects: allocator_traits<Allocator>::propagate_on_container_swap::value is true
or get_allocator() == s.get_allocator() is true.

4 Effects: Exchanges the state of *this and rhs.
5 Remarks: The expression inside noexcept is equivalent to:

allocator_traits<Allocator>::propagate_on_container_swap::value ||
allocator_traits<Allocator>::is_always_equal::value.

template <class charT, class traits, class Allocator>
void swap(basic_stringbuf<charT, traits, Allocator>& x,

basic_stringbuf<charT, traits, Allocator>& y) noexcept(noexcept(x.swap(y)));

6 Effects: Equivalent to: x.swap(y).



12 p0408r7 2019-07-18

6.2.1 28.8.2.3 Member functions [stringbuf.members]
Provide a section introducing paragraph explaining the high-water-mark. The wording is taken directly
from n4791 [stringbuf.members] p.1 with some grammar adjustment to adjust to the fact that we
now have multiple setters. Introduce the exposition only private member functions init_buf_ptrs()
to provide the correct intialization of streambuf pointer members and adjust the str(s) member
functions with parameters accordingly.

1 The member functions getting the underlying character sequence all refer to a high_mark value,
where high_mark represents the position one past the highest initialized character in the buffer.
Characters can be initialized by writing to the stream, by constructing the basic_stringbuf passing
a basic_string argument, or by calling one of the str() member functions passing a basic_string
as an argument. In the latter case, all characters initialized prior to the call are now considered
uninitialized (except for those characters re-initialized by the new basic_string).

void init_buf_ptrs(); // exposition only

2 Effects: Initializes the input and output sequences from buf according to mode.
3 Ensures:

—(3.1) If ios_base::out is set in mode,
pbase() points to buf.front() and
epptr() >= pbase() + buf.size() is true;

—(3.1.1) in addition, if ios_base::ate is set in mode,
pptr() == pbase() + buf.size() is true,

—(3.1.2) otherwise pptr() == pbase() is true.

—(3.2) If ios_base::in is set in mode,
eback() points to buf.front(), and
(gptr() == eback() && egptr() == eback() + buf.size()) is true.

4 [Note: For efficiency reasons stream buffer operations might violate invariants of buf while
it is held encapsulated in the basic_stringbuf, i.e., by writing to characters in the range
[buf.data()+buf.size(), buf.data()+buf.capacity()). All operations retrieving a basic_-
string from buf ensure that the basic_string invariants hold on the returned value. —end
note ]

Add the definition of the get_allocator function:

allocator_type get_allocator() const noexcept;

5 Returns: buf.get_allocator().

Add a getter overload taking an allocator parameter for the copied from string to allow having a
different allocator than the underlying stream and add a ref-qualifier to the existing getter overload
to avoid ambiguities with the rvalue-ref qualified overload. Add a getter overload that is rref qualified
and mention it. Simplify wording by delegating to the new view() member.

basic_string<charT, traits, Allocator> str() const &;

6 Returns: A basic_string object whose content is equal to the basic_stringbuf underlying



p0408r7 2019-07-18 13

character sequence. If the basic_stringbuf was created only in input mode, the resultant
basic_string contains the character sequence in the range [eback(), egptr()). If the basic_stringbuf
was created with which & ios_base::out being nonzero then the resultant basic_string
contains the character sequence in the range [pbase(), high_mark), where high_mark
represents the position one past the highest initialized character in the buffer. Characters
can be initialized by writing to the stream, by constructing the basic_stringbuf with a
basic_string, or by calling the str(basic_string) member function. In the case of calling
the str(basic_string) member function, all characters initialized prior to the call are now
considered uninitialized (except for those characters re-initialized by the new basic_string).
Otherwise the basic_stringbuf has been created in neither input nor output mode and a zero
length basic_string is returned.

Effects: Equivalent to: return basic_string<charT, traits, Allocator>(view(), get_-
allocator());

template<class SAlloc>
basic_string<charT, traits, SAlloc> str(const SAlloc& sa) const;

7 Constraints: SAlloc is a type that qualifies as an allocator ([container.requirements.general]).
8 Effects: Equivalent to: return basic_string<charT, traits, SAlloc>(view(), sa);

Add the following specifications for str()&& and view() const member function. :

basic_string<charT, traits, Allocator> str() &&;

9 Returns: A basic_string<charT, traits, Allocator> object move constructed from the
basic_stringbuf’s underlying character sequence in buf. This can be achieved by first
adjusting buf to have the same content as view().

10 Ensures: The underlying character sequence buf is empty and pbase(), pptr(), epptr(),
eback(), gptr(), egptr() are initialized as if by calling init_buf_ptrs() with an empty
buf.

basic_string_view<charT, traits> view() const noexcept;

11 Let sv be basic_string_view<charT, traits>.
12 Returns: A sv object referring to the basic_stringbuf’s underlying character sequence in

buf:

—(12.1) If ios_base::out is set in mode, then sv(pbase(), high_mark-pbase()) is returned.

—(12.2) Otherwise, if ios_base::in is set in mode, then sv(eback(), egptr()-eback()) is
returned.

—(12.3) Otherwise, sv() is returned.
13 [Note: Using the returned sv object after destruction or invalidation of the character sequence

underlying *this is undefined behavior, unless sv.empty() is true. —end note ]

add setter overloads and simplify their specification trough relying on buf and init_buf_ptrs().

void str(basic_string<charT, traits, Allocator>&& s);



14 p0408r7 2019-07-18

14 Effects: Equivalent to:
buf = std::move(s);
init_buf_ptrs();

void str(const basic_string<charT, traits, Allocator>& s);

15 Effects: Equivalent to:
buf = s;
init_buf_ptrs();

Copies the content of s into the basic_stringbuf underlying character sequence and initializes
the input and output sequences according to mode.

16 Ensures: If mode & ios_base::out is nonzero, pbase() points to the first underlying character
and epptr() >= pbase() + s.size() holds; in addition, if mode & ios_base::ate is nonzero,
pptr() == pbase() + s.size() holds, otherwise pptr() == pbase() is true. If mode & ios_base::in
is nonzero, eback() points to the first underlying character, and both gptr() == eback()
and egptr() == eback() + s.size() hold.

template<class SAlloc>
void str(const basic_string<charT, traits, SAlloc>& s);

17 Constraints: is_same_v<SAlloc,Allocator> is false.
18 Effects: Equivalent to:

buf = s;
init_buf_ptrs();

6.3 28.8.3 Adjust synopsis of basic_istringstream [istringstream]
Provide constructor overloads taking an Allocator argument and also those that allow a string with a
different allocator type.

// [istringstream.cons], constructors:
basic_istringstream() : basic_istringstream(ios_base::in) {}
explicit basic_istringstream(ios_base::openmode which);
explicit basic_istringstream(

const basic_string<charT, traits, Allocator>& str,
ios_base::openmode which = ios_base::in);

basic_istringstream(
ios_base::openmode which,
const Allocator& a);

explicit basic_istringstream(
basic_string<charT, traits, Allocator>&& s,
ios_base::openmode which = ios_base::in);

template <class SAlloc>
basic_istringstream(

const basic_string<charT, traits, SAlloc>& s,
const Allocator& a) : basic_istringstream(s, ios_base::in, a) {}

template <class SAlloc>
basic_istringstream(



p0408r7 2019-07-18 15

const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which,
const Allocator& a);

template <class SAlloc>
explicit basic_istringstream(

const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which = ios_base::in);

basic_istringstream(const basic_istringstream& rhs) = delete;
basic_istringstream(basic_istringstream&& rhs);

// [istringstream.assign], assign and swap
basic_istringstream& operator=(const basic_istringstream& rhs) = delete;
basic_istringstream& operator=(basic_istringstream&& rhs);
void swap(basic_istringstream& rhs);

Adjust getter/setter members according to basic_stringbuf:
// [istringstream.members], members:
basic_stringbuf<charT, traits, Allocator>* rdbuf() const;

basic_string<charT, traits, Allocator> str() const &;

template<class SAlloc>
basic_string<charT,traits,SAlloc> str(const SAlloc& sa) const;
basic_string<charT, traits, Allocator> str() &&;
basic_string_view<charT, traits> view() const noexcept;

void str(const basic_string<charT, traits, Allocator>& s);

template<class SAlloc>
void str(const basic_string<charT, traits, SAlloc>& s);
void str(basic_string<charT, traits, Allocator>&& s);

6.3.1 28.8.3.1 basic_istringstream constructors [istringstream.cons]
Adjust the constructor specifications analog to basic_stringbuf. deliberately do not provide the special
move constructor taking an allocator. Drive-by editorial fix to include Allocator template argument.

explicit basic_istringstream(ios_base::openmode which);

1 Effects: Constructs an object of class basic_istringstream<charT, traits>, initializingInitializes
the base class with basic_istream<charT, traits>(addressof(sb))([istream]) and initializing
sb with basic_stringbuf<charT, traits, Allocator>(which | ios_base::in) ([string-
buf.cons]).

explicit basic_istringstream(
const basic_string<charT, traits, Allocator>& str,
ios_base::openmode which = ios_base::in);

2 Effects: Constructs an object of class basic_istringstream<charT, traits>, initializingInitializes
the base class with basic_istream<charT, traits>(addressof(sb))([istream]) and initializing
sb with basic_stringbuf<charT, traits, Allocator>(str, which | ios_base::in) ([string-
buf.cons]).



16 p0408r7 2019-07-18

basic_istringstream(
ios_base::openmode which,
const Allocator& a);

3 Effects: Initializes the base class with basic_istream<charT, traits>(addressof(sb))([istream])
and sb with basic_stringbuf<charT, traits, Allocator>(which | ios_base::in, a) ([string-
buf.cons]).

explicit basic_istringstream(
basic_string<charT, traits, Allocator>&& s,
ios_base::openmode which = ios_base::in);

4 Effects: Initializes the base class with basic_istream<charT, traits>(addressof(sb))([istream])
and sb with basic_stringbuf<charT, traits, Allocator>(std::move(s), which | ios_-
base::in) ([stringbuf.cons]).

template<class SAlloc>
basic_istringstream(

const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which,
const Allocator& a);

5 Effects: Initializes the base class with basic_istream<charT, traits>(addressof(sb))([istream])
and sb with basic_stringbuf<charT, traits, Allocator>(s, which | ios_base::in, a) ([string-
buf.cons]).

template<class SAlloc>
explicit basic_istringstream(

const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which = ios_base::in);

6 Effects: Initializes the base class with basic_istream<charT, traits>(addressof(sb))([istream])
and sb with basic_stringbuf<charT, traits, Allocator>(s, which | ios_base::in) ([string-
buf.cons]).

6.3.2 28.8.3.2 Assignment and swap [istringstream.assign]
change the definition of the swap member to incorporate the new requirement implicitly given by
basic_stringbuf::swap:

void swap(basic_istringstream& rhs);

1 Effects: Exchanges the state of *this and rhs by calling Equivalent to:
basic_istream<charT, traits>::swap(rhs); and
sb.swap(rhs.sb);.

6.3.3 28.8.3.3 Member functions [istringstream.members]
Extend str() overloads according to basic_stringbuf and add view() :

basic_string<charT, traits, Allocator> str() const &;

1 Returns: Effects: Equivalent to: return rdbuf()->str().;



p0408r7 2019-07-18 17

template<class SAlloc>
basic_string<charT,traits,SAlloc> str(const SAlloc& sa) const;

2 Effects: Equivalent to: return rdbuf()->str(sa);

basic_string<charT,traits,Allocator> str() &&;

3 Effects: Equivalent to: return std::move(*rdbuf()).str();

basic_string_view<charT, traits> view() const noexcept;

4 Effects: Equivalent to: return rdbuf()->view();

void str(const basic_string<charT, traits, Allocator>& s);

5 Effects: CallsEquivalent to: rdbuf()->str(s).

template<class SAlloc>
void str(const basic_string<charT, traits, SAlloc>& s);

6 Effects: Equivalent to: rdbuf()->str(s).

void str(basic_string<charT, traits, Allocator>&& s);

7 Effects: Equivalent to: rdbuf()->str(std::move(s)).

6.4 28.8.4 Adjust synopsis of basic_ostringstream [ostringstream]
Provide constructor overloads taking an Allocator argument and also those that allow a string with a
different allocator type.

// [ostringstream.cons], constructors:
basic_ostringstream() : basic_ostringstream(ios_base::in) {}
explicit basic_ostringstream(ios_base::openmode which);
explicit basic_ostringstream(

const basic_string<charT, traits, Allocator>& str,
ios_base::openmode which = ios_base::out);

basic_ostringstream(
ios_base::openmode which,
const Allocator& a);

explicit basic_ostringstream(
basic_string<charT, traits, Allocator>&& s,
ios_base::openmode which = ios_base::out);

template <class SAlloc>
basic_ostringstream(

const basic_string<charT, traits, SAlloc>& s,
const Allocator& a) : basic_ostringstream(s, ios_base::out, a) {}

template <class SAlloc>
basic_ostringstream(

const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which,
const Allocator& a);

template <class SAlloc>
explicit basic_ostringstream(



18 p0408r7 2019-07-18

const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which = ios_base::out);

basic_ostringstream(const basic_ostringstream& rhs) = delete;
basic_ostringstream(basic_ostringstream&& rhs);

// [ostringstream.assign], assign and swap
basic_ostringstream& operator=(const basic_ostringstream& rhs) = delete;
basic_ostringstream& operator=(basic_ostringstream&& rhs);
void swap(basic_ostringstream& rhs);

Adjust getter/setter members according to basic_stringbuf:
// [ostringstream.members], members:
basic_stringbuf<charT, traits, Allocator>* rdbuf() const;

basic_string<charT, traits, Allocator> str() const &;

template<class SAlloc>
basic_string<charT,traits,SAlloc> str(const SAlloc& sa) const;
basic_string<charT, traits, Allocator> str() &&;
basic_string_view<charT, traits> view() const noexcept;

void str(const basic_string<charT, traits, Allocator>& s);

template<class SAlloc>
void str(const basic_string<charT, traits, SAlloc>& s);
void str(basic_string<charT, traits, Allocator>&& s);

6.4.1 28.8.4.1 basic_ostringstream constructors [ostringstream.cons]
Adjust the constructor specifications analog to basic_stringbuf. deliberately do not provide the special
move constructor taking an allocator. Drive-by editorial fix to include Allocator template argument.

explicit basic_ostringstream(ios_base::openmode which);

1 Effects: Constructs an object of class basic_ostringstream<charT, traits>, initializingInitializes
the base class with basic_ostream<charT, traits>(addressof(sb))([ostream]) and initializing
sb with basic_stringbuf<charT, traits, Allocator>(which | ios_base::out) ([string-
buf.cons]).

explicit basic_ostringstream(
const basic_string<charT, traits, Allocator>& str,
ios_base::openmode which = ios_base::out);

2 Effects: Constructs an object of class basic_ostringstream<charT, traits>, initializingInitializes
the base class with basic_ostream<charT, traits>(addressof(sb))([ostream]) and initializing
sb with basic_stringbuf<charT, traits, Allocator>(str, which | ios_base::out) ([string-
buf.cons]).

basic_ostringstream(
ios_base::openmode which,
const Allocator& a);

3 Effects: Initializes the base class with basic_ostream<charT, traits>(addressof(sb)) ([os-



p0408r7 2019-07-18 19

tream]) and sb with basic_stringbuf<charT, traits, Allocator>(which | ios_base::out,
a) ([stringbuf.cons]).

explicit basic_ostringstream(
basic_string<charT, traits, Allocator>&& s,
ios_base::openmode which = ios_base::out);

4 Effects: Initializes the base class with basic_ostream<charT, traits>(addressof(sb))([ostream])
and sb with basic_stringbuf<charT, traits, Allocator>(std::move(s), which | ios_-
base::out) ([stringbuf.cons]).

template<class SAlloc>
basic_ostringstream(

const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which,
const Allocator& a);

5 Effects: Initializes the base class with basic_ostream<charT, traits>(addressof(sb))([ostream])
and sb with basic_stringbuf<charT, traits, Allocator>(s, which | ios_base::out,
a) ([stringbuf.cons]).

template<class SAlloc>
explicit basic_ostringstream(

const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which = ios_base::out);

6 Constraints: is_same_v<SAlloc,Allocator> is false.
7 Effects: Initializes the base class with basic_ostream<charT, traits>(addressof(sb))([ostream])

and sb with basic_stringbuf<charT, traits, Allocator>(s, which | ios_base::out) ([string-
buf.cons]).

6.4.2 28.8.4.2 Assignment and swap [ostringstream.assign]
change the definition of the swap member to incorporate the new requirement implicitly given by
basic_stringbuf::swap:

void swap(basic_ostringstream& rhs);

1 Effects: Exchanges the state of *this and rhs by calling Equivalent to:
basic_ostream<charT, traits>::swap(rhs); and
sb.swap(rhs.sb);.

6.4.3 28.8.4.3 Member functions [ostringstream.members]
Extend str() overloads according to basic_stringbuf and add view() :

basic_string<charT, traits, Allocator> str() const &;

1 Returns: Effects: Equivalent to: return rdbuf()->str().;

template<class SAlloc>
basic_string<charT,traits,SAlloc> str(const SAlloc& sa) const;

2 Effects: Equivalent to: return rdbuf()->str(sa);



20 p0408r7 2019-07-18

basic_string<charT,traits,Allocator> str() &&;

3 Effects: Equivalent to: return std::move(*rdbuf()).str();

basic_string_view<charT, traits> view() const noexcept;

4 Effects: Equivalent to: return rdbuf()->view();

void str(const basic_string<charT, traits, Allocator>& s);

5 Effects: CallsEquivalent to: rdbuf()->str(s).

template<class SAlloc>
void str(const basic_string<charT, traits, SAlloc>& s);

6 Effects: Equivalent to: rdbuf()->str(s).

void str(basic_string<charT, traits, Allocator>&& s);

7 Effects: Equivalent to: rdbuf()->str(std::move(s)).

6.5 28.8.5 Adjust synopsis of basic_stringstream [stringstream]
Provide constructor overloads taking an Allocator argument and also those that allow a string with a
different allocator type.

// [stringstream.cons], constructors:
basic_stringstream() : basic_stringstream(ios_base::out | ios_base::in) {}
explicit basic_stringstream(ios_base::openmode which);
explicit basic_stringstream(

const basic_string<charT, traits, Allocator>& str,
ios_base::openmode which = ios_base::out | ios_base::in);

basic_stringstream(
ios_base::openmode which,
const Allocator& a);

explicit basic_stringstream(
basic_string<charT, traits, Allocator>&& s,
ios_base::openmode which = ios_base::out | ios_base::in);

template <class SAlloc>
basic_stringstream(

const basic_string<charT, traits, SAlloc>& s,
const Allocator& a) : basic_stringstream(s, ios_base::out | ios_base::in, a) {}

template <class SAlloc>
basic_stringstream(

const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which,
const Allocator& a);

template <class SAlloc>
explicit basic_stringstream(

const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which = ios_base::out | ios_base::in);

basic_stringstream(const basic_stringstream& rhs) = delete;
basic_stringstream(basic_stringstream&& rhs);



p0408r7 2019-07-18 21

// [stringstream.assign], assign and swap
basic_stringstream& operator=(const basic_stringstream& rhs) = delete;
basic_stringstream& operator=(basic_stringstream&& rhs);
void swap(basic_stringstream& rhs);

Adjust getter/setter members according to basic_stringbuf:
// [ostringstream.members], members:
basic_stringbuf<charT, traits, Allocator>* rdbuf() const;

basic_string<charT, traits, Allocator> str() const &;

template<class SAlloc>
basic_string<charT,traits,SAlloc> str(const SAlloc& sa) const;
basic_string<charT, traits, Allocator> str() &&;
basic_string_view<charT, traits> view() const noexcept;

void str(const basic_string<charT, traits, Allocator>& s);

template<class SAlloc>
void str(const basic_string<charT, traits, SAlloc>& s);
void str(basic_string<charT, traits, Allocator>&& s);

6.5.1 28.8.5.1 basic_stringstream constructors [stringstream.cons]
Adjust the constructor specifications analog to basic_stringbuf. deliberately do not provide the special
move constructor taking an allocator. Drive-by editorial fix to include Allocator template argument.

explicit basic_stringstream(ios_base::openmode which);

1 Effects: Constructs an object of class basic_stringstream<charT, traits>, initializingInitializes
the base class with basic_iostream<charT, traits>(addressof(sb))([iostream.cons]) and
initializing sb with basic_stringbuf<charT, traits, Allocator>(which) ([stringbuf.cons]).

explicit basic_stringstream(
const basic_string<charT, traits, Allocator>& str,
ios_base::openmode which = ios_base::out | ios_base::in);

2 Effects: Constructs an object of class basic_stringstream<charT, traits>, initializingInitializes
the base class with basic_iostream<charT, traits>(addressof(sb))([iostream.cons]) and
initializing sb withbasic_stringbuf<charT, traits, Allocator>(str, which) ([stringbuf.cons]).

basic_stringstream(
ios_base::openmode which,
const Allocator& a);

3 Effects: Initializes the base class with basic_iostream<charT, traits>(addressof(sb))([iostream.cons])
and sb with basic_stringbuf<charT, traits, Allocator>(which, a) ([stringbuf.cons]).

explicit basic_stringstream(
basic_string<charT, traits, Allocator>&& s,
ios_base::openmode which = ios_base::out | ios_base::in);

4 Effects: Initializes the base class with basic_iostream<charT, traits>(addressof(sb))([iostream.cons])
and sb with basic_stringbuf<charT, traits, Allocator>(std::move(s), which) ([string-
buf.cons]).



22 p0408r7 2019-07-18

template<class SAlloc>
basic_stringstream(

const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which,
const Allocator& a);

5 Effects: Initializes the base class with basic_iostream<charT, traits>(addressof(sb))([iostream.cons])
and sb with basic_stringbuf<charT, traits, Allocator>(s, which, a) ([stringbuf.cons]).

template<class SAlloc>
explicit basic_stringstream(

const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which = ios_base::out | ios_base::in);

6 Constraints: is_same_v<SAlloc,Allocator> is false.
7 Effects: Initializes the base class with basic_iostream<charT, traits>(addressof(sb))([iostream.cons])

and sb with basic_stringbuf<charT, traits, Allocator>(s, which) ([stringbuf.cons]).

6.5.2 28.8.5.2 Assignment and swap [stringstream.assign]
change the definition of the swap member to incorporate the new requirement implicitly given by
basic_stringbuf::swap:

void swap(basic_stringstream& rhs);

1 Effects: Exchanges the state of *this and rhs by calling Equivalent to:
basic_iostream<charT, traits>::swap(rhs); and
sb.swap(rhs.sb);.

6.5.3 28.8.5.3 Member functions [stringstream.members]
Extend str() overloads according to basic_stringbuf and add view() :

basic_string<charT, traits, Allocator> str() const &;

1 Returns: Effects: Equivalent to: return rdbuf()->str().;

template<class SAlloc>
basic_string<charT,traits,SAlloc> str(const SAlloc& sa) const;

2 Effects: Equivalent to: return rdbuf()->str(sa);

basic_string<charT,traits,Allocator> str() &&;

3 Effects: Equivalent to: return std::move(*rdbuf()).str();

basic_string_view<charT, traits> view() const noexcept;

4 Effects: Equivalent to: return rdbuf()->view();

void str(const basic_string<charT, traits, Allocator>& s);

5 Effects: Calls Equivalent to: rdbuf()->str(s).

template<class SAlloc>



p0408r7 2019-07-18 23

void str(const basic_string<charT, traits, SAlloc>& s);

6 Effects: Equivalent to: rdbuf()->str(s).

void str(basic_string<charT, traits, Allocator>&& s);

7 Effects: Equivalent to: rdbuf()->str(std::move(s)).

7 Appendix: Example Implementations

The given specification has been implemented within a recent version of the sstream header of
gcc8. Modified version of the headers and some tests are available at https://github.com/
PeterSommerlad/SC22WG21_Papers/tree/master/workspace/Test_basic_stringbuf_efficient/
src.

A corresponding implementation for clang 7 is available in the vicinity of the one above at: https://
github.com/PeterSommerlad/SC22WG21_Papers/tree/master/workspace/Test_clang_p0407_p0408

https://github.com/PeterSommerlad/SC22WG21_Papers/tree/master/workspace/Test_basic_stringbuf_efficient/src
https://github.com/PeterSommerlad/SC22WG21_Papers/tree/master/workspace/Test_basic_stringbuf_efficient/src
https://github.com/PeterSommerlad/SC22WG21_Papers/tree/master/workspace/Test_basic_stringbuf_efficient/src
https://github.com/PeterSommerlad/SC22WG21_Papers/tree/master/workspace/Test_clang_p0407_p0408
https://github.com/PeterSommerlad/SC22WG21_Papers/tree/master/workspace/Test_clang_p0407_p0408

	1 Motivation
	2 Introduction
	2.1 History

	3 Acknowledgements
	4 Impact on the Standard
	5 Design Decisions
	5.1 Hint to implementers
	5.2 Open Issues to be discussed by LWG
	5.3 Open Issues discussed by LEWG in Albuquerque
	5.4 Open Issues discussed by LEWG in Issaquah and Albuquerque
	5.5 Open Issues to be discussed by LEWG/LWG (in Kona?)

	6 Technical Specifications
	6.1 28.8.2 Adjust synopsis of basic_stringbuf [stringbuf]
	6.2 28.8.2.2 Assign and swap [stringbuf.assign]
	6.3 28.8.3 Adjust synopsis of basic_istringstream [istringstream]
	6.4 28.8.4 Adjust synopsis of basic_ostringstream [ostringstream]
	6.5 28.8.5 Adjust synopsis of basic_stringstream [stringstream]

	7 Appendix: Example Implementations

