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'Module Interface' is Misleading
Nathan Sidwell

The modules TS defines ‘module interface unit’ and ‘module implementation unit’. Unfortunately
‘interface’ and ‘implementation’ come with existing baggage that can mislead new users.

1 Background

The modules TS separates module translation units into two categories:
*  Module interface unit.
* Module implementation units.

The module interface unit is denoted by a module-declaration containing the ‘export’ keyword. The
implementation units’ module-declarations lack that keyword. The interface unit may:

* Declare exported entities. These are entities that are visible to importers of the module.
* Declare module-linkage entities that are visible within module implementation units.
* Define exported and module-linkage entities.

This last bullet, when applied to non-inline non-template functions and variables is exactly the
functionality of an implementation unit — the interface unit is itself an implementation unit.

While the modules-ts is careful to define these semantics, the words ‘interface’ & ‘implementation’
come loaded with presumed connotations. For instance, we are used to header files declaring an
interface to a library and other source files containing implementation. Likewise, ‘interface class’ is a
common concept of a class defining only abstract virtual member functions — defining no data
members or functions. I have had conversations and talks explaining that a module interface may
contain definitions and the other parties express surprise.

I suspect this confusion leads to simple module deployments consisting of two translation units — an
interface containing only header-like entities and a separate implementation containing function
definitions. A single translation unit may be more appropriate.

I believe this confusion is further compounded by compiler implementations that use a distinct source
file suffix for module interface units. Such a scheme permits an interface unit and the single
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implementation unit to have the same basename. (Of course confusion then arises over naming the
corresponding object files.)

2 Proposal

Using two unrelated names, whatever they may be, to distinguish the two cases could continue to
mislead a user into thinking that the (now-called) implementation unit has features that the (now-
called) interface unit does not.

Therefore I prefer names of the form ‘flanging module unit’ and ‘non-flanging module unit’, for some
value of ‘flange’. I think this clarifies that one of these things has additional features the other lacks.

Given that the (now-called) interface unit is the translation unit that exports entities, ‘exporting’ seems
a suitable distinguishing feature.

I propose using ‘exporting module unit’ and ‘non-exporting module unit’ to distinguish the two cases.

3 Changes to Modules-TS Draft

In brief, any mention of ‘interface unit’ would become ‘exporting unit’ and any mention of
‘implementation unit’ would become ‘non-exporting unit’. As non-module units also cannot
export entities, it may be necessary to insert ‘module’, to clarify that non-exporting is a feature of
a module unit.

Full details to be considered later.
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