
Reducing <ratio>

Document #: WG21 P0656R0
Date: 2017-06-11
Project: JTC1.22.32 Programming Language C++
Audience: SG6 ⇒ LEWG ⇒ LWG
Reply to: Walter E. Brown <webrown.cpp@gmail.com>

Contents

1 Background and proposal 1
2 Expository implementation 2
3 Proposed wording 3
4 An alternative 4

5 Acknowledgments 4
6 Bibliography 4
7 Document history 5

Abstract

Using header <ratio> today, the ratio 1 : 2 could be represented by any of a potentially large
number of distinct types: ratio<1,2>, ratio<2,4>, ratio<5,10>, etc. Algorithms must there-
fore be constantly aware that any particular ratio type may be in unreduced form.

As promised in [P0548R0], this paper proposes to adjust the specification of those <ratio> types
corresponding to unreduced ratios so that they become aliases for the unique type corresponding
to that ratio in reduced form. (E.g., ratio<2,4> and ratio<5,10> would each alias ratio<1,
2>.) This will reduce cognitive burden on programmers and can also lead to somewhat simpler
code.

The ratio of something to nothing is infinite. So just do something.

— PETER DIAMANDIS

The only true measure of success is the ratio between what we might have done
and what we might have been on the one hand, and the thing we have made
and the things we have made of ourselves on the other.

— HERBERT GEORGE “H.G.” WELLS

There’s a fine line between a numerator and a denominator. (Only a fraction of
people will find this funny.)

— UNKNOWN

1 Background and proposal

Elementary school children are routinely taught how to reduce a fraction to its lowest terms:
divide both its numerator and its denominator by their greatest common divisor. Children are
also taught that ratios are commonly expressed as fractions, and that ratios can therefore be
similarly reduced.

When the <ratio> header was first designed (circa 1999), we decided (a) to allow any repre-
sentable ratio (whether reduced or unreduced) to be expressed, and (b) to provide a type alias
member and corresponding static data members denoting the ratio’s reduced equivalent. This
design resulted in the specification that is today found in subclause [ratio.ratio] of the post-Kona
Working Draft [N4659]:

Copyright c© 2017 by Walter E. Brown. All rights reserved.

1

mailto:webrown.cpp@gmail.com

2 P0656R0: Reducing <ratio>

namespace std {
template <intmax_t N, intmax_t D = 1>
class ratio {
public:

static constexpr intmax_t num;
static constexpr intmax_t den;
using type = ratio<num, den>;

};
}

1 If the template argument D is zero or the absolute values of either of the template arguments
N and D is not representable by type intmax_t, the program is ill-formed. [Note: These rules
ensure that infinite ratios are avoided and that for any negative input, there exists a repre-
sentable value of its absolute value which is positive. In a two’s complement representation,
this excludes the most negative value. — end note]

2 The static data members num and den shall have the following values, where gcd represents
the greatest common divisor of the absolute values of N and D:

(2.1) — num shall have the value sign(N) * sign(D) * abs(N) / gcd.

(2.2) — den shall have the value abs(D) / gcd.

In that C++98 era, this seemed the best we could do. Alas, these decisions regrettably allowed
a potentially large number of types to denote the same notional value: for example, the ratio
1 : 2 could be represented by the types ratio<2,4>, ratio<5,10>, ratio<1,2>, or any of many,
many others. Thus, <ratio> users must take into account that any particular ratio type may
be in unreduced form. Unfortunately, this consequence is sometimes overlooked. Even when
taken into account, it has led to convoluted and error-prone code.

Via aliases, however, modern C++ allows us to ensure that such currently-distinct types
(ratio<2,4>, ratio<5,10>, ratio<1,2>, etc.) all denote a single type, namely the equivalent
reduced type ratio<1,2>. As illustrated in the next section (and as had been promised in
[P0548R0]), this paper proposes to adjust ratio’s specification so as to do just that, and thus
obtain only reduced ratio types.

This change will simplify reasoning about types (such as std::duration) that rely on <ratio>.
It may also somewhat simplify their implementation, as they no longer need concern themselves
with unreduced ratio types. Moreover, it will simplify specification of ratio arithmetic, as shown
in §3, by removing extra wording to require reduced results.

2 Expository implementation

In brief, our strategy here1 is (a) to rename today’s ratio as, say, __ratio, and then (b) to
redefine ratio<N,D> as an alias template for the equivalent __ratio<N,D>::type. (We do not
show the helpers num_min_v, static_abs_v, static_gcd_v, and static_sign_v, as we believe
their intent is as obvious as their implementation is straightforward.)

1 template< intmax_t N, intmax_t D >
2 class __ratio { // same members as the former ratio template
3 static_assert(N != num_min_v<intmax_t>);
4 static_assert(D != 0 and D != num_min_v<intmax_t>);

1See §4 for an alternate approach.

P0656R0: Reducing <ratio> 3

6 private:
7 static constexpr intmax_t abs_N = static_abs_v<N>;
8 static constexpr intmax_t abs_D = static_abs_v<D>;
9 static constexpr intmax_t gcd = static_gcd_v<abs_N, abs_D>;

11 public:
12 // reduced ratio components
13 static constexpr intmax_t num = static_sign_v<D> * N / gcd;
14 static constexpr intmax_t den = abs_D / gcd;

16 // reduced ratio
17 using type = __ratio<num, den>;
18 }; // __ratio<,>

20 template< intmax_t N, intmax_t D = 1 >
21 using
22 ratio = typename __ratio<N, D>::type; // alias the reduced form

We validated the above updated implementation against the same public and private tests used
to validate implementations of the present specification. Every test passed unmodified.2

3 Proposed wording3

3.1 Edit [ratio.ratio] (23.16.3) as shown:

namespace std {
template <intmax_t N, intmax_t D = 1>

class ratioRatio { // exposition only
public:

static constexpr intmax_t num; // see below
static constexpr intmax_t den; // see below
using type = ratioRatio<num, den>;

};
template <intmax_t N, intmax_t D = 1>

using ratio = typename Ratio<N, D>::type;
}

1 IfThe program is ill-formed if (a) the template argument D is zero or (b) the absolute values of
either of the template arguments N and D is not representable by type intmax_t, the program
is ill-formed. [Note: These rules ensure (a) that infinite ratios are avoided and (b) that for any
negative input, there exists a representable value of its absolute value which is positive. In a two’s
complement representation, this excludes the most negative value. — end note]

2 The static data members num and den shall have the following values, where gcd represents the
greatest common divisor of the absolute values of N and D:

(2.1) — num shall have the value sign(N) * sign(D) * abs(N) / gcd.

2There were no tests expecting is_same<ratio<A,B>,ratio<C,D>> to be false in some cases. Some expressions
of this form would become true under the present proposal and thus would likely have failed such an academic,
implementation-oriented test.

3All proposed additions and deletions are relative to the post-Kona Working Draft [N4659]. Editorial notes are dis-
played against a gray background.

4 P0656R0: Reducing <ratio>

(2.2) — den shall have the value abs(D) / gcd.

3 [Example: Each of the following expressions is true.

• is_same_v<ratio<5,10>, ratio<1,2>>
• is_same_v<ratio<5,10>, ratio<2,4>>
• is_same_v<ratio<2,4>, ratio<1,2>>

— end example]

3.2 Edit [ratio.arithmetic] (23.16.4) as shown:

1 Each of the alias templates ratio_add, ratio_subtract, ratio_multiply, and ratio_
divide denotes the result of an arithmetic computation on two ratios R1 and R2. With XN
and YD computed (in the absence of arithmetic overflow) as specified by Table 51, each alias
denotes a ratio<U, V> such that U is the same as ratio<X, Y>::num and V is the same as
ratio<X, Y>::denratio<N, D>.

2 If it is not possible to represent UN or VD with intmax_t, the program is ill-formed. Otherwise,
an implementation should yield correct values of UN and VD. If it is not possible to represent X
or Yall intermediate results with intmax_t, the program is ill-formed unless the implementation
nonetheless yields correct values of UN and VD.

3.3 Edit column headings of Table 51 as shown:

Type Value of XN Value of YD

4 An alternative

We also considered a different approach that does not alter ratio’s specification, but introduces
the following new alias family instead:

1 template< intmax_t N, intmax_t D = 1 >
2 using
3 ratio_t = typename ratio<N, D>::type; // reduced form of ratio<N,D>

A different name is, of course, possible; reduced_ratio_t has already been suggested.

While we do not object to introducing such a new typedef-name, it does require users to be
explicit about when they want a ratio in its reduced form. Based on our test results from the first
approach, we find no cognitive, technical, or computational benefit in maintaining any unreduced
ratio, nor in requiring users to specify when a reduced ratio is wanted.

5 Acknowledgments

Many thanks to the readers of early drafts of this paper for their thoughtful comments.

6 Bibliography

[N4659] Richard Smith: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N4659 (post-Kona mailing), 2017–03–21. http://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2017/n4659.pdf.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf

P0656R0: Reducing <ratio> 5

[P0548R0] Walter E. Brown: “common_type and duration.” ISO/IEC JTC1/SC22/WG21 document
P0548R0 (pre-Kona mailing), 2017–02–01. http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2017/p0548r0.pdf.

7 Document history

Rev. Date Changes

0 2017-06-11 • Published as P0656R0.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0548r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0548r0.pdf

	Title
	Contents
	Abstract
	1 Background and proposal
	2 Expository implementation
	3 Proposed wording
	4 An alternative
	5 Acknowledgments
	6 Bibliography
	7 Document history

